Alcohol Intake Assessment: The Sober Facts

Gerda I. J. Feunekes, Pieter van 't Veer, Wija A. van Staveren, and Frans J. Kok

Recent recommendations in regard to the level of alcohol intake have mainly been based on epidemiologic studies which relied on self-reported amounts of alcohol consumed. Therefore, it is important to be aware of the quality of self-reported measures of alcohol intake. Alcohol intake assessment methods were reviewed with respect to their capacity to rank individuals according to alcohol intake and their ability to explain the variation in the level of intake in population samples. In 33 methodological papers published after 1984, alcohol intake was assessed by five main methods: quantity frequency, extended quantity frequency, retrospective diary, prospective diary, and 24-hour recalls. The mean level of alcohol intake differed by 20% between these methods. It was also found that when researchers asked specifically about intake of beer, wine, and liquor, this resulted in 20% higher estimates of intake. These percentages were similar among populations with low and high mean alcohol consumption (4 vs. 10 drinks per week). It was found that ranking of individuals according to intake was satisfactory, with weighted correlation coefficients between methods ranging from 0.63 to 0.73. The authors conclude that, when there is sufficient evidence that alcohol intake is underestimated in a population, methods that enquire about both the frequency and amount consumed, for beer, wine, and liquor, separately, will yield the most realistic levels of intake.

Recent liberalization of recommendations on alcohol intake, e.g., in Great Britain, toward 2–3 drinks per day for women and 3–4 drinks per day for men (1), has been based mainly on epidemiologic studies which have relied on self-reports of "usual" alcohol intake of individuals. This underlines the importance of the quality of self-reported alcohol intake measures. These epidemiologic studies primarily aimed to assess the strength of the association between alcohol and health, with a focus on ranking individuals according to intake, rather than on accurately assessing the absolute level of intake. Different assessment methods, however, may give systematic differences in mean level of alcohol intake. To advise the public on "sensible" limits of alcohol intake and to be able to verify compliance, methods are needed that properly rank individuals according to alcohol intake, and that also assess correctly the absolute level of intake.

Self-reported alcohol intake in surveys usually covers only half the amount sold (2, 3). This may be explained partly by sampling errors, i.e., heavy drinkers may be less likely to participate in surveys. In addition, the discrepancy may be explained by response errors, e.g., difficulties in recall of drinking practices and culturally determined socially desirable answers. Underreporting of alcohol intake by individuals is common for all available methods, which does not, however, necessarily mean these methods are not of value. When each individual underreports a similar proportion, the level of alcohol intake is underestimated, but ranking is correct (figure 1). However, when underreporting is non-proportional and different between subjects, ranking is also affected. The relation between alcohol intake and health may then be weakened.

In this paper, we systematically review the literature on alcohol intake assessment methods, to establish which method could be able to set limits. In contrast to previous reviews (4, 5), we quantify the performance of the methods and distinguish the ranking of individuals from estimating the level of intake.

MATERIALS AND METHODS

Literature search

Papers published after 1984 were obtained from MEDLINE and the ALCDOC database from the Netherlands Alcohol Documentation Centre. Search items used were: alcohol, drinking, or alcoholic intoxication; epidemiologic methods.
ducibility, reliability, recall, memory, misclassification, overreporting, or underreporting. We only included papers in English, which comprised 98 percent of the obtained references. Literature on alcohol abuse, alcohol dependency, and drunk driving was excluded, as were studies with alcoholics. Additional references were derived from citations. Because most of the evidence on alcohol and health has come from studies that have used food frequency questionnaires, we included reports on the relative validity or reproducibility of food frequency questionnaires used in major studies (6–11).

Inclusion criteria

Of 84 papers identified in our literature search, 33 (39 percent) were relevant to our review objectives. We excluded studies that assessed alcohol intake in the distant past or post-mortem (n = 11). Because of our interest in the general population, studies in special samples were excluded, i.e., studies in students (n = 15), pregnant women (n = 6), patients (n = 4), prisoners (n = 1), and subjects at a North Pole army post (n = 1). Thirteen additional papers were excluded for one of the following reasons: insufficient description of the type of method, inconsistency in procedures, no within-subjects design, focus on frequency of heavy drinking rather than total intake, or another paper from the data set was already included.

Data collection and analysis

From the selected studies, for all methods applied in these studies, we abstracted: length of reference period, i.e., number of days, weeks, or months, or the ambiguous “usual intake”; beverage specificity, i.e., beer, wine, and spirits separately versus only the total number of alcoholic drinks, and administration mode, i.e., face-to-face interview, telephone interview, self-administered questionnaire, and diary. For each method, mean, standard deviation, number of subjects, and percent of nonusers were abstracted. In addition, Pearson or Spearman coefficients of correlation were obtained. Several studies presented the results for subgroups only, so sometimes two or more data points could be derived from one study. In the results, we therefore refer to “observations” instead of “studies.” The performance of the methods was evaluated quantitatively. We addressed both the assessment of the level of intake and the ranking of individuals according to intake. In all analyses, results of individual observations were weighed by the inverse of the squared standard error of the reported value.

To assess the determinants of the variation in level of intake, we examined the type of method used, length of reference period, beverage specificity, and administration mode. Analysis of variance (SAS 6.11, SAS Institute Inc., Cary, North Carolina) was carried out on all eligible studies which assessed validity of a method and reported mean intake, sample size (n) and a measure of sampling variability, i.e., standard error or standard error of the mean. We adjusted for “study” to account for between-study differences such as sex ratio, age, drinking culture, and social acceptability of drinking. In addition to the quantitative analysis, we carried out a qualitative evaluation to be able to use all studies which fulfilled the selection criteria, including studies that did not have all data required for the quantitative analysis. We checked whether the significant differences in the quantitative analysis were in line with the results of all 33 papers. When the results differed less than 5 percent, the results were considered to be in agreement. For example, if method X appeared to yield a 10 percent higher estimate than method Y in the quantitative analyses, each paper which made a comparison between X and Y was checked for agreement, and a 5–15 percent higher estimation by X would count as “in agreement.”

To describe ranking, data were analyzed for men and women, and age groups separately.

RESULTS

Of 33 eligible papers, 30 assessed relative validity of alcohol intake assessment methods by comparing the estimates of alcohol intake from up to five methods (2, 6–34), but only 12 papers had the quantitative data as
required (table 1). Eleven of 33 papers had quantitative data of test-retest reproducibility of alcohol intake estimation (6–8, 11, 18, 19, 22, 27, 34–36). The 12 validation studies yielded 39 data points to evaluate the level estimation, whereas 18 studies lacked the data required and could be evaluated qualitatively only. For the evaluation of ranking, 30 correlations from 12 validation studies, and 29 correlations from 11 reproducibility studies were available.

From all methods evaluated in the papers, we identified five main types of methods. The “quantity frequency method” (QF) is a simple method that is often used to assess alcohol intake in a specified period. It consists of one question to assess the average frequency (“How often do you drink?”) combined with a question on the average quantity (“How many drinks per occasion?”). The quantity frequency method is sometimes extended with questions on variability of drinking practices (e.g., week/weekend, binges), and/or location-specific consumption (e.g., amount at home, in bar). The “graduated frequency method” estimates frequencies over the full range of quantities consumed, starting with the highest amount consumed, and consecutively asking frequencies for all smaller amounts.

TABLE 1. Characteristics of 30 validity studies included in the review, which all assessed the level of alcohol intake with two or more methods

<table>
<thead>
<tr>
<th>Author, publication year, and country (ref. no.)</th>
<th>Sample size (males/females)</th>
<th>Methods*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocké et al., 1996, Netherlands (11)</td>
<td>63/58</td>
<td>FFQ*, 24-hour recalls*</td>
</tr>
<tr>
<td>Goldbohm et al., 1994, Netherlands (10)</td>
<td>59/48</td>
<td>FFQ*, PD*</td>
</tr>
<tr>
<td>Goransson et al., 1994, Sweden (16)</td>
<td>930</td>
<td>QF*, extended QF*</td>
</tr>
<tr>
<td>Single and Wortley, 1994, Canada (3)</td>
<td>7,702</td>
<td>QF, RD</td>
</tr>
<tr>
<td>Gavaler and Love, 1992, United States (21)</td>
<td>-128</td>
<td>QF*, PD*</td>
</tr>
<tr>
<td>Munger et al., 1992, United States (6)</td>
<td>-44</td>
<td>FFQ*, 24-hour recalls*</td>
</tr>
<tr>
<td>Giovannucci et al., 1991, United States (7)</td>
<td>138/173</td>
<td>QF*, PD*</td>
</tr>
<tr>
<td>Russell et al., 1991, United States (23)</td>
<td>4,367</td>
<td>QF, QF*</td>
</tr>
<tr>
<td>Flegal, 1990, United States (25)</td>
<td>107/121</td>
<td>QF*, PD*</td>
</tr>
<tr>
<td>Midanik et al., 1989, United States (27)</td>
<td>275/260</td>
<td>QF*, RD*</td>
</tr>
<tr>
<td>Lemmens et al., 1988, Netherlands (28)</td>
<td>399</td>
<td>PD*, RD</td>
</tr>
<tr>
<td>Pietinen et al., 1988, Finland (6)</td>
<td>158/-</td>
<td>FFQ*, PD*</td>
</tr>
</tbody>
</table>

Studies (k = 18, and altogether 36,658 subjects) that lacked data to be evaluated in the quantitative analyses, and which were evaluated qualitatively instead

Breslin et al., 1995, Canada (12)	7/33	QF*, PD*
Perrine et al., 1995, United States (13)	30/-	RD*, PD*
Romelsjo et al., 1995, Sweden (14)	1,054/1,359	QF*, extended QF*
Searles et al., 1995, United States (15)	151/-	QF, 24-hour recalls*
King, 1994, United States (17)	237	F*, FFQ*
Midanik, 1994, United States (18)	2,058	QF, extended QF
Williams et al., 1994, United States (19)	11,208/9,888	QF, extended QF*
Wyllie et al., 1994, New Zealand (20)	1,528	QF, extended QF, RD
Feskanich et al., 1993, United States (9)	127/-	FFQ*, PD*
Lemmens et al., 1992, Netherlands (28)	918	Q, QF, extended QF, PD*, RD*
Corti et al., 1990, Australia (24)	-1,356	PD*, RD
Hilton, 1989, United States (26)	83	QF*, extended QF, PD*
Simpura, 1988, Finland (29)	2,907	QF, RD
Sobell et al., 1988, United States (30)	31/31	QF*, RD*
Fitzgerald and Mullford, 1987, United States (31)	997	QF, extended QF
Redman et al., 1987, Australia (32)	778	QF, RD
Hilton, 1986, United States (33)	1,772	Q (situation-specific)*, extended QF*
Williams et al., 1985, United States (34)	105	Extended QF*, PD*

* QF, quantity frequency; F, frequency; Q, quantity; FFQ, QF within food frequency questionnaire; PD, prospective diary; RD, retrospective diary; 24-hour recall, series of 24-hour recalls; **, beverage-specific questions.
incorporated the “time-line follow back method,” asks subjects to recall their day-by-day intake, with or without help of cognitive cues such as a calendar. Another method to recall intake is a series of (random) recalls of consumption in the past 24 hours (“24-hour recalls”) (table 1).

The studies with quantitative data came from relatively few areas—North America, and North and West Europe. Alcohol intake was assessed for a period ranging from 3 days to one year, with some methods referring to “usual” intake without specification. All 24-hour recalls and prospective diaries were beverage specific.

Table 2 summarizes the capability of methods to explain variance in the level of alcohol intake and shows substantial variation according to method characteristics. Beverage specificity was the only significant predictor of alcohol intake; when subjects were asked separately about their intake of wine, beer, and spirits, this resulted in a 19 percent higher reported intake. Neither the type of method, the length of the reference period, nor the administration mode were statistically significantly related to reported alcohol intake and could not explain variance in the level of alcohol intake and measurement error.

Table 2 summarizes the capability of methods to explain variance in the level of alcohol intake and shows substantial variation according to method characteristics. Beverage specificity was the only significant predictor of alcohol intake; when subjects were asked separately about their intake of wine, beer, and spirits, this resulted in a 19 percent higher reported intake. Neither the type of method, the length of the reference period, nor the administration mode were statistically significantly related to reported alcohol intake.

Table 2. Reported mean alcohol intake (drinks/week), by type of method, beverage specificity, length of reference period, and mode of administration, based on 39 observations from 12 studies with a total of 15,028 subjects (see table 1 for studies included)

<table>
<thead>
<tr>
<th>Type of method*</th>
<th>No. of observations per level</th>
<th>Mean alcohol intake ± SE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity frequency (QF)</td>
<td>21</td>
<td>6.2 ± 1.5</td>
</tr>
<tr>
<td>Retrospective diary (RD)</td>
<td>4</td>
<td>5.1 ± 1.8</td>
</tr>
<tr>
<td>Prospective diary (PD)</td>
<td>11</td>
<td>6.2 ± 1.6</td>
</tr>
<tr>
<td>Series of 24-hour recalls</td>
<td>3</td>
<td>7.5 ± 13.8</td>
</tr>
<tr>
<td>(24-hour recalls)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beverage-specific*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>8</td>
<td>5.4 ± 0.5†</td>
</tr>
<tr>
<td>Yes</td>
<td>30</td>
<td>6.4 ± 0.5</td>
</tr>
<tr>
<td>Reference period*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–7 days</td>
<td>7</td>
<td>5.7 ± 2.2</td>
</tr>
<tr>
<td>8–14 days</td>
<td>4‡</td>
<td>7.7 ± 7.8</td>
</tr>
<tr>
<td>15–30 days</td>
<td>8</td>
<td>6.2 ± 3.9</td>
</tr>
<tr>
<td>One year</td>
<td>16</td>
<td>6.0 ± 2.0</td>
</tr>
<tr>
<td>"Usual"</td>
<td>4</td>
<td>6.0 ± 2.2</td>
</tr>
<tr>
<td>Administration mode*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face-to-face interview</td>
<td>5§</td>
<td>3.1 ± 7.1</td>
</tr>
<tr>
<td>Self-administered questionnaire</td>
<td>24</td>
<td>6.1 ± 4.9</td>
</tr>
<tr>
<td>Diary</td>
<td>4</td>
<td>6.1 ± 4.9</td>
</tr>
<tr>
<td>Telephone interview</td>
<td>6¶</td>
<td>8.6 ± 20.9</td>
</tr>
</tbody>
</table>

* Adjusted for "study." SE, standard error.
† Significantly different from non-beverage specific (p < 0.001); n = 38.
‡ Two 24-hour recalls, two PD.
§ Three RD, two PD.
¶ Four QF, one RD, one series of 24-hour recalls.

For both levels of intake, the patterns were similar, but the differences between methods were larger, suggesting that these systematic reporting errors tended to be proportional to the level of intake (figure 2). The type of method appeared to explain additional variance when combined with beverage specificity in the same model; retrospective diaries gave intakes 20–22 percent below the intake assessed with the quantity frequency method or prospective diaries. No independent effects were detected from length of reference period, and administration mode.

In the additional qualitative evaluation of all 30 studies, five studies appeared to have findings that were in agreement (within 5 percent) with the difference between beverage-specific and non-beverage-specific methods, and two were not. The remaining 23 studies did not include required data to examine beverage specificity. The differences between methods were weakly supported by the qualitative evaluation: in five studies, the findings were in agreement (within 5 percent); six studies were not in agreement; and 11 studies missed the data required for this comparison.

Table 3 shows the ability of the alcohol intake assessment methods to rank individuals. Association between alcohol intake assessed with different methods was reasonable, with validity correlations in different studies ranging from 0.32 to 0.90, and the weighted averages between 0.63 and 0.73. Thus, ranking capability for alcohol intake appeared to be better than for nutrient or energy intake (6, 10, 11). The diagonal in table 3 shows weighted averages of test-retest correlations ranging from 0.84 to 0.88, based on correlations that ranged from 0.75 to 0.99 in the separate studies (6–8, 11, 18, 19, 22, 27, 34–36). Thus, test-retest correlations clearly exceeded validity correlations.

DISCUSSION

From our analysis of the literature, the sober facts on assessment of alcohol intake are that retrospective diaries tend to give intake estimates that are about 20 percent lower than quantity frequency and prospective diaries. Additional assessment of the type of alcoholic drinks gave roughly a 20 percent higher estimated intake level than for nutrient or energy intake.
intake. The length of reference period and the administration mode of the questionnaire was not related to the reported level of alcohol intake. In contrast to the systematic differences in the level of alcohol intake, the ranking capacity was satisfactory for most methods evaluated. So, epidemiologists can validly identify associations between alcohol, health, and disease, but this does not directly lead to clarity on sensible limits for acceptable alcohol intake.

Validity of the quantitative approach

Regarding the quality of the studies and the data underlying our analyses, it should be realized that many methodological papers were not relevant to our purposes because of non-representative groups and/or inappropriate design. Even of the 33 eligible papers, only 12 provided the basic quantitative and methodological data required to address level of intake, and 21 studies provided data relevant to ranking. However, results of qualitative analyses were generally in line with our main findings.

Because we had no access to the original data, we had to rely on published data with population means and correlations. Systematic differences between methods could have been assessed more accurately if we could have compared reported alcohol intake at the individual instead of the aggregate level. Further, a very limited number of papers fulfilled inclusion criteria and had basic quantitative data available. Wine drinking countries in Southern Europe had no methodological studies available, which limited cultural variability in the data. Therefore, we could not evaluate the role of cultural differences in drinking habits, e.g., timing (at daily meal, at celebrations) and situation (alone, or with family, friends, or colleagues). Furthermore, several potentially relevant factors have been reported to affect alcohol intake, but the available data did not allow us to make allowance for these factors in the quantitative analysis. For example, a high number and

FIGURE 2. Average alcohol intake in drinks/week (standard error of the mean) assessed by four types of methods and by beverage specificity; separately for subgroups with low and high alcohol intake according to the quantity frequency method. *Beverage specificity: \(p < 0.001 \) in low intake subgroups and \(p = 0.07 \) in high intake subgroups. †Retrospective diary gives lower alcohol intake than quantity frequency or prospective diary \((p < 0.01) \). ‡QF, quantity frequency; RD, retrospective diary; PD, prospective diary; 24h-rec, 24-hour recalls.
range of answering categories (37) and assessment of

glass/container size (vs. standard size) (38) may

increase reported alcohol intake. However, we realize

that a general phenomenon in food intake research is

that "the more you ask, the more overreporting you

get" and this may also apply to alcohol intake

assessment. Because no validated independent marker

of alcohol intake is currently available, we followed the

suggestion of Midanik (4) and concentrated on the rel-

tative validity of the methods. The question "What is

the best alcohol assessment method?" has to be

answered separately for the main objectives of the

alcohol assessment. For the purposes of epidemiologic

research, we need particularly a valid ranking, and to

advise the population we need in addition a valid esti-

mation of level.

Validity of ranking

Despite the difficulties in assessing level of intake,

ranking was satisfactory, as exemplified by the high

validity and test-retest correlations. Because such cor-

relations were of the same order of magnitude and

tend to be similar in many studies (10), Spearman and

Pearson correlation coefficients were combined in the

analyses. In theory, these high correlations might

result from consistent under- and overreporters, lead-

ing to so-called correlated errors. However, Goldbohm

et al. (10) have published data which showed that 78

percent of the variance was due to between-subject

variance, 12 percent to random within-subject vari-

ation, and only 10 percent to correlated within-subject

variance. This is much better than for other dietary

factors, and explains why epidemiologic studies have

been able to find associations between alcohol and

health.

For epidemiologic studies, most methods will suf-

fice as they all rank well. In this case, it is important to

account for variability in drinking (e.g., day-to-day

variation and binge drinking). Simple methods do not

rank in a poorer manner than more elaborate methods,

so the cheaper method of quantity frequency assess-

ment may be favored.

Validity of level

Our results differ from those of previous reviews (4,

22) in which the quantity frequency method generally

gave lower estimations of intake. However, this might

be due to the fact that the papers which were suitable

for our quantitative analysis were different from the

type of papers usually considered in alcohol intake

assessment reviews. A third of the papers came from

epidemiologic questionnaires which assessed the com-

position of the diet, thereby including alcohol. Because

most findings regarding the relation between alcohol

and health are derived from such questionnaires, these

papers yielded important information. Possibly the

context of the alcohol questions affects the outcome to

a larger extent than expected.

* Test-retest correlations are on the diagonal axis, all others are between-method correlations.
† Minimum and maximum values as reported in the studies are shown in parentheses.
‡ n, total number of subjects included.
§ —, no data available.

<table>
<thead>
<tr>
<th>Method</th>
<th>QF</th>
<th>Extended QF</th>
<th>RD</th>
<th>PD</th>
<th>24-hour recalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>QF (quantity frequency)</td>
<td>0.88</td>
<td>(0.75, 0.99)</td>
<td>0.67</td>
<td>(0.66, 0.74)</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended QF (QF with questions on variability or location-specific drinking)</td>
<td>0.63</td>
<td>(0.59, 0.90)</td>
<td>0.67</td>
<td>(0.66, 0.74)</td>
<td>0.71</td>
</tr>
<tr>
<td>RD (retrospective diary)</td>
<td>0.67</td>
<td>(0.66, 0.74)</td>
<td>0.67</td>
<td>(0.66, 0.74)</td>
<td>0.67</td>
</tr>
<tr>
<td>PD (prospective diary)</td>
<td>0.71</td>
<td>(0.61, 0.90)</td>
<td>0.73</td>
<td>(0.57, 0.89)</td>
<td>0.65</td>
</tr>
<tr>
<td>24-hour recalls (series of 24-hr recalls)</td>
<td>0.68</td>
<td>(0.32, 0.90)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Am J Epidemiol Vol. 150, No. 1, 1999
Improving methods

Methods used to evaluate new assessment techniques can be improved. First, with respect to questionnaire development in different cultures or circumstances, protocol analysis in which people think out loud about the questions asked (39) is a worthwhile exercise to ensure that questions are clear and that the wording is optimal. Second, concerning study design, cross-over designs have not often been used in studies which validate alcohol intake assessment methods. Assessment of alcohol intake with an extensive method may affect alcohol intake assessed with a shorter method afterwards. Split half design has been used to exclude such a carry-over effect (40). Predictive validity has been assessed with the use of several methods in an epidemiologic study (41) to compare their risk estimates. Last, research in this area would benefit from a good marker of alcohol intake in the “low to moderate” intake range. Although such markers are not yet available, we might be able to work creatively with repeated assessment of short-term intake markers such as saliva, sweat, and breath (15). The use of markers could also help to determine whether underreporting of alcohol intake is also proportional to the actual intake at very low and at very high levels, exceeding the socially acceptable range. Until now, biologic markers have been “validated” against self-reported intake. Possible biologic markers should ideally be tested in a controlled study in which subjects consume a specific amount of alcohol during a longer period.

Conclusion

To advise people, and to define “sensible limits,” methods to assess alcohol intake need to give a good estimation of the level of intake. Ranking alone is not sufficient. Considering the methods that could be evaluated in this review, the simplest methods appear to be very much neglected. For instance, the “usual frequency” method, which is often used in surveys, has been evaluated only once (22). In general, we would like to emphasize that ex-drinkers and lifetime abstainers should be marked as different groups. Additionally, the reference period should be chosen which fits the goal: a study on traffic accident and drinking needs another reference period than alcohol intake and liver diseases.

Although our data suggest that the quantity frequency method or prospective diary yield the highest levels of estimated intake, independent methods and/or biologic markers are needed to show which methods are closer to true intake. So, only when there is sufficient evidence that alcohol intake is underestimated in a population, we recommend the assessment of both the quantity and frequency component of alcohol consumption and that these components be assessed separately for all types of alcoholic beverages.

ACKNOWLEDGMENTS

This review was supported by a grant from the European Branch of the International Life Sciences Institute (ILSI).

REFERENCES

16. Göransson M, Hanson BS. How much can data on days with...