Cloud Condensation Nuclei and Ship Tracks

JAMES G. HUDSON
Division of Atmospheric Sciences, Desert Research Institute, University and Community College System of Nevada, Reno, Nevada

TIMOTHY J. GARRETT, PETER V. HOBBS, AND SCOTT R. STRADER
Department of Atmospheric Sciences, University of Washington, Seattle, Washington

YONGHONG XIE AND SEONG SOO YUM
Division of Atmospheric Sciences, Desert Research Institute, University and Community College System of Nevada, Reno, Nevada

(Manuscript received 17 September 1996, in final form 3 December 1997)

ABSTRACT

Enhancements of droplet concentrations in clouds affected by four ships were fairly accurately predicted from ship emission factors and plume and background cloud condensation nucleus (CCN) spectra. Ship exhausts thus accounted for the increased droplet concentrations in these “ship tracks.” Derived supersaturations were typical of marine stratus clouds, although there was evidence of some lowering of supersaturations in some ship tracks closer to the ships where CCN and droplet concentrations were very high.

Systematic differences were measured in the emission rates of CCN for different engines and fuels. Diesel engines burning low-grade marine fuel oil produced order of magnitude higher CCN emissions than turbine engines burning higher-grade fuel. Consequently, diesel ships burning low-grade fuel were responsible for nearly all of the observed ship track clouds. There is some evidence that fuel type is a better predictor of ship track potential than engine type.

1. Introduction

As part of the endeavor to determine the immediate cause of ship tracks (Durkee et al. 2000) it is important to determine whether, and which of, the particles emitted by ships are responsible for the formation of the enhanced cloud droplet concentrations that constitute ship tracks. The water solubility of a particle, as determined by cloud condensation nucleus (CCN) measurements, is key to this determination because this characterizes particles according to the likelihood of cloud droplet nucleation (e.g., Twomey and Squires 1959). Many studies have demonstrated the connection between CCN spectra and cloud droplet spectra (e.g., Jiusto 1966; Radke and Hobbs 1969; Warner 1969). In general, those particles that have lower critical supersaturations (S_c) are more likely to produce cloud droplets (e.g., Hudson 1984); there is also a tendency for larger cloud droplets to form on larger (S_c) CCN (Hudson and Rogers 1986; Twohy and Hudson 1995). Concentrations of CCN and cloud droplets can be compared if it is assumed that the lower S_c nuclei will preferentially produce cloud droplets. Thus, an integration of the cumulative CCN spectrum up to the S_c that results in a match of CCN number concentration with cloud droplet number concentration (N_d) reveals the effective supersaturation (S_{eff}) in a cloud. Comparisons between CCN and cloud droplets amount to a comparison of cloud formation in the controlled environment of a cloud chamber with cloud formation in the real atmosphere.

Here we explore the relationships between the CCN emitted by ships and N_d. We use the measurements of particle source strengths from ships (Hobbs et al. 2000) and a Gaussian plume diffusion model to predict enhancements of N_d due to the CCN emitted by ships. These predictions are made and compared with measurements for a series of cloud penetrations at various distances from four ships. We explore reasons for discrepancies between the predictions and measurements. We then characterize various ship engines and fuels according to their relative CCN production; this helps predict the likelihood of a ship to produce a ship track in
marine stratiform clouds under prescribed ambient conditions.

2. Experimental

The Desert Research Institute (DRI) CCN spectrometer (Hudson 1989) was on the University of Washington (UW) C-131A aircraft during the Monterey Area Ship Track (MAST) experiment (Hobbs et al. 2000). It produced a nearly continuous record of the CCN spectrum between 0.02% and 1% supersaturation with about 20 channels of resolution. This detailed CCN spectrum was recorded at a rate of 1–0.1 Hz throughout most of the C-131 MAST flights. These measurements were complemented by measurements of the total number of particles by a TSI 3760, which has a lower size detection limit of about 0.02-μm diameter (Hobbs et al. 2000). Cloud droplet concentrations (N_d) were measured using a PMS Forward Scattering Spectrometer Probe (FSSP-100) aboard the C-131 (Hobbs et al. 2000).

Most of the out-of-cloud measurements of the ship plumes were made so close to the ships that the particle concentrations were very high. Such measurements were not ideal for the CCN–droplet comparisons for two reasons. 1) The out-of-cloud plume measurements and many of the cloud measurements were spatially separated; several processes (i.e., coagulation and gas-to-particle conversion) could change CCN spectra between these locations over time periods as long as 2 h (see Figs. 2–4). 2) The high particle concentrations (tens of thousands cm⁻³) close to the ships often challenged CCN measurement accuracy. The main cause of inaccuracies for high-concentration CCN measurements is the depletion of water vapor within the cloud chamber, which lowers the supersaturation. This difficulty was minimized by using small sample flow rates, by calibrating the instrument with high particle concentrations, and by relying on plume measurements with lower CCN concentrations.

3. Analysis methods

The primary goal is to compare measured enhancements of cloud droplet concentrations (ΔN_d) in ship tracks with predictions of ΔN_p that are based on CCN measurements in plumes close to the ships that caused the ship tracks. Observed ΔN_d were determined from the difference in the average N_d measured within the ship tracks (perturbed clouds) compared with the average N_d measured in adjacent background clouds. These ΔN_d values were determined from several horizontal flight passes that were generally done perpendicular to the length of the ship tracks. Several of these passes were made at various distances from the ship. In general, ΔN_d decreased with distance from a ship because of the horizontal spreading of the plume with distance from its source. Hobbs et al. (2000) used this method to compare predictions of condensation nucleus (CN) concentrations with the sum of measurements of interstitial CN and cloud droplets. To apply this method of analysis the source strength of the CN was first determined for each ship. Then the plume was assumed to spread out and to dilute linearly with the background air; the height of the boundary layer was assumed to remain constant. Thus, the plume was assumed to spread or dilute only in the horizontal dimension perpendicular to the length of the plume. This width of the plume was determined from CN measurements, and from the assumption of a Gaussian shape. We found, nevertheless, that the assumed shape of the plume is much less important than the width as long as it is determined consistently. Wider plumes at greater distances from the ships, were more diluted with background aerosol. Hobbs et al. (2000) verified this procedure by finding good agreement between predictions of total aerosol concentrations—based only on the dilution of the CN concentrations—and measurements of ΔN_p plus interstitial CN concentrations. These comparisons showed a general decrease in ΔN_p and interstitial CN with distance from a ship.

Here we employ the same Gaussian diffusion model, along with some other factors, to make predictions of ΔN_p alone. We refer to these predictions of ΔN_p as ΔNCN_p. Two factors in addition to those used by Hobbs et al. (2000) are needed to make these predictions: 1) CCN spectra that can be attributed to production by the ships (CCN_p) and 2) the effective supersaturation (S_eff) of the clouds. We also need to assume 1) that S_eff is the same for all clouds in each case study—background and ship tracks—which also implies homogeneity of background CCN and N_d, and 2) that the ratio of plume CCN concentrations at S_eff to the plume CN concentrations is constant throughout each case study. These assumptions will later be tested and discussed. These comparisons of excess cloud droplet concentrations from measurements (ΔN_d) and predictions (ΔNCN_p) constitute what has come to be known as “closure” experiments.

The prediction of ΔNCN_p began with a determination of S_eff for each case study. Next, the ratio of the concentration of CCN at S_eff to the CN concentration was determined for out-of-cloud plumes close to the ships. Finally, the same Gaussian plume model prediction of CN in each ship track, used by Hobbs et al. (2000), was applied, with the multiplication by the CCN/CN ratio. This predicts ΔNCN_p for each ship track. Hobbs et al. (2000) used above-background CN concentrations in a ship plume and a Gaussian plume model to predict the increase, above background, of the sum of interstitial aerosol and N_d downwind in a ship track. These predictions were based on the source strength of the ship, which was determined from CN and CO_2 measurements near the ships (Hobbs et al. 2000). The apportionment of excess CN between interstitial aerosol and cloud droplets in the ship tracks was not addressed by Hobbs et al. (2000).

The background CCN measurements (CCN) at each
The value of S_{eff} was determined by matching N_f of background clouds to the S_e that yielded the same cumulative concentration for CCN$_b$. Five to 10 measurements, each of 1–2-min duration, of the value of CCN$_b$ out of cloud within the boundary layer were obtained during each of the four flights analyzed here (Table 1). We had to assume that the CCN concentrations within the boundary layer outside of the ship plumes were homogeneous for each case study. Examples of these spectra, each of which consisted of several records of a few seconds, are shown in Fig. 1. Figures 1a and 1b illustrate typical polluted and clean background concentrations encountered during MAST. CCN$_b$ was subtracted from the CCN concentrations measured in the plume to determine the contribution of the CCN from the ships alone (CCN$_p$), which are shown in Figs. 1c and 1d.

The high particle concentrations in some of the plumes closest to the ships could cause erroneously low measurements of CCN/CN ratios because high concentrations of growing droplets can lower the supersaturation in diffusion cloud chambers (Hudson and Squires 1973). This could result in some droplets not growing large enough to be put into the correct droplet size (nucleus S_j) channels (Hudson 1989). However, laboratory calibrations with known aerosols at the concentration ranges encountered in the ship plumes demonstrated that this should have been a problem only for the very highest CCN concentrations at the lowest S_j values. Channel shifting was minimized by using concentrations for the calibrations that were similar to those encountered in the plumes. Fortunately, there was also more than one plume penetration for each of the four cases analyzed here (Table 1). For the sake of accuracy and consistency, the lower particle concentrations measured in each case study were used in the analysis. In some cases, there appeared to be a trend of higher CCN/CN ratios for the lower concentration plume measurements. Nonetheless, the consistency in CCN/CN ratios, as expressed by the standard deviations in Table 1 (columns 3 and 4), was so good that this problem seemed to be minimal anyway.

4. Results

The third column of Table 2 lists N_f in background clouds adjacent to the various ship tracks. The variabilities (minimum, mean, maximum) displayed here are a combination of the standard deviations of the mean N_f measured in the different background clouds, the average standard deviations of the 1-s data intervals of the different cloud penetrations, and the range in the mean values of N_f for the various cloud penetrations on each flight. An amalgamation of these three different ways of expressing the variations in N_f was used to estimate representative variations in S_{eff} (minimum is mean minus variation, and maximum is mean plus variation); these S_{eff} values are shown in the fourth column of Table 2. Here, S_{eff} was determined by matching each N_f in column 3 with CCN$_b$ (e.g., Hudson 1984).
Fig. 1. Examples of cumulative CCN spectra. (a) and (b) are for background air (CCN_b) for dirty and clean, respectively; (c) and (d) are for ship exhausts (CCN_p) with the background contribution (CCN_b) removed.

The fifth column shows the CCN concentrations at S_{eff} in the plume of the ship (CCN_p). This is the difference between the measured concentration at S_{eff} in the exhaust plume and the measured concentration at S_{eff} for CCN_b (e.g., Figs. 1a,b).

The sixth column in Table 2 shows the CN concentration for that same ship plume; this also has the background CN concentration subtracted from the CN concentration measured in the plume. The seventh column shows the ratio of concentrations of CCN at S_{eff} to CN in the plume [CCN(S_{eff})/CN]. When this is multiplied by the emission factor given in Eq. (3) of Hobbs et al. (2000), a prediction of the increase in cloud droplet concentration due to the ship exhaust (ΔN_{CCN}) is obtained. Figure 2 shows the ratio of this prediction (ΔN_{CCN}) to the measured enhancement in cloud droplet concentration (ΔN_d) in the ship tracks (solid points). The eighth column in Table 2 shows the averages of the
TABLE 2. Characterization of ship tracks. Here, \(N_p\) is ambient cloud droplet concentration, \(S_{\text{eff}}\) the effective cloud supersaturation, \(CCN_p\) the CCN concentration from the ship, \(CN_p\) the total is ambient cloud droplet concentration, \(\Delta N_{\text{CCN}}\) the predicted CCN concentration from the Gaussian plume model (column 8) and from the cloud droplet growth model of Robinson (1984) (column 11), and \(W\) the updraft velocity.

<table>
<thead>
<tr>
<th>Date and ship name</th>
<th>(N_p) (cm(^{-3}))</th>
<th>(S_{\text{eff}}) (%)</th>
<th>(CCN_p) (cm(^{-3}))</th>
<th>(CN_p) (cm(^{-3}))</th>
<th>(CCN_p) (at (S_{\text{eff}}))</th>
<th>(\Delta N_{\text{CCN}}/\Delta N_{\text{CCN}}) (Gaussian plume model)</th>
<th>(W) (cm s(^{-1}))</th>
<th>(S_{\text{eff}}) (%)</th>
<th>(\Delta N_{\text{CCN}}/\Delta N_{\text{CCN}}) (cloud droplet growth model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Jun, Fremo Scorpius</td>
<td>Min 38</td>
<td>0.03</td>
<td>3</td>
<td>1419</td>
<td>0.002</td>
<td>0.034</td>
<td>5.8</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Mean 54</td>
<td>0.18</td>
<td>28</td>
<td>0.02</td>
<td>0.34</td>
<td>16.9</td>
<td>0.33</td>
<td>1.52</td>
<td>100</td>
<td>0.69</td>
</tr>
<tr>
<td>Max 70</td>
<td>0.21</td>
<td>99</td>
<td>0.07</td>
<td>1.17</td>
<td>38.6</td>
<td>1.15</td>
<td>1.52</td>
<td>100</td>
<td>0.69</td>
</tr>
<tr>
<td>27 Jun, Taihe</td>
<td>Min 136</td>
<td>0.19</td>
<td>118</td>
<td>2232</td>
<td>0.053</td>
<td>1.18</td>
<td>14.9</td>
<td>0.24</td>
<td>1.28</td>
</tr>
<tr>
<td>Mean 151</td>
<td>0.21</td>
<td>135</td>
<td>0.061</td>
<td>1.36</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max 166</td>
<td>0.24</td>
<td>155</td>
<td>0.069</td>
<td>1.55</td>
<td>21.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 Jun, Star Livorno</td>
<td>Min 38</td>
<td>0.07</td>
<td>153</td>
<td>4001</td>
<td>0.038</td>
<td>0.32</td>
<td>9.7</td>
<td>0.19</td>
<td>1.04</td>
</tr>
<tr>
<td>Mean 52</td>
<td>0.19</td>
<td>582</td>
<td>0.142</td>
<td>1.24</td>
<td>31.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max 66</td>
<td>0.63</td>
<td>1075</td>
<td>0.27</td>
<td>2.30</td>
<td>51.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Jun, NYK Sunrise</td>
<td>Min 150</td>
<td>0.90</td>
<td>1325</td>
<td>7548</td>
<td>0.175</td>
<td>1.52</td>
<td>100</td>
<td>0.69</td>
<td>1.38</td>
</tr>
<tr>
<td>Mean 167</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max 184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With the exception of the underprediction for the Fre-
mo Scorpius on 8 June (mean ratio of prediction to measurements of 0.34 or 0.33), the mean predictions of \(\Delta N_{CCN} \) are higher than the measured values of \(\Delta N_d \). It should be noted that the CN concentration was also considerably underpredicted for 8 June—0.6 average ratio of predictions to measurements (Hobbs et al. 2000). The CCN/CN ratio for the **Fremo Scorpius** was the lowest of the diesel-powered ships burning marine fuel oil, as shown both by Table 1 and by Hobbs et al. (2000). Moreover, the mean size of the dried particles from this ship was smaller than some other diesel ships burning low-grade fuel (Hobbs et al. 2000). The overall average agreement between these four predictions (\(\Delta N_{CCN} \)) and measurements (\(\Delta N_d \)) of excess droplet concentrations was 1.1 for the Gaussian diffusion plume model and 1.0 for the cloud droplet condensation growth model. The latter model accounts for any lowering of \(S_{eff} \) in the ship tracks. In view of the uncertainties pointed out by Hobbs et al. (2000), the results, though perhaps fortuitous, support the view that the enhancements in droplet concentrations in ship tracks (\(\Delta N_d \)) are due to CCN emitted by ships.

Figure 4 shows how the measured \(\Delta N_d \) decreased with the age of the plume, and Fig. 5 shows the same for \(\Delta N_{CCN} \) (predicted from Gaussian plume model) with age. Table 3 quantifies the slopes of the linear regressions of these relationships showing that the reductions with distance are greater for the Gaussian diffusion model (column 3) than for the measurements (column 2). The last column of Table 3 shows that the condensational

Table 3: Slopes of linear regressions of measured excess droplet concentrations (\(\Delta N_d \)) and predicted excess droplet concentrations (\(\Delta N_{CCN} \)) vs age of ship track.

<table>
<thead>
<tr>
<th>Date and ship name</th>
<th>Measured (see Fig. 4)</th>
<th>Predicted from Gaussian diffusional plume model (see Fig. 5)</th>
<th>Predicted from cloud droplet condensation growth model (see Fig. 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Jun, Fremo Scorpius</td>
<td>−1.58</td>
<td>−1.82</td>
<td>−1.84</td>
</tr>
<tr>
<td>27 Jun, Taihe</td>
<td>−2.12</td>
<td>−2.76</td>
<td>−1.00</td>
</tr>
<tr>
<td>29 Jun, Star Livorno</td>
<td>−0.079</td>
<td>−2.58</td>
<td>−2.10</td>
</tr>
<tr>
<td>30 Jun, NYK Sunrise</td>
<td>−1.57</td>
<td>−1.30</td>
<td>−0.99</td>
</tr>
<tr>
<td>Average</td>
<td>−1.34</td>
<td>−2.11</td>
<td>−1.48</td>
</tr>
</tbody>
</table>
cloud droplet growth model predicts a lower slope of ΔN_{CCN} versus age, which is more in line with the observations (column 2 of Table 3). The lower slopes shown in column 4 than in column 3 of Table 3 are a direct result of the lowering of S_{eff}, and thus of a relative lowering of ΔN_{CCN} values in the less diluted ship tracks; this decreases the slope of ΔN_{CCN} versus plume/track age.

Table 4 illustrates these points more clearly where, instead of plume age, a more direct indicator of plume/track dilution, namely, the width of the ship track, is used for the independent variable. Here three of the four cases produce a very close match of the predicted to the observed slope. These results suggest that one of the explanations given by Ferek et al. (1998) for the apparently greater than expected persistence of excess

Fig. 3. Effective supersaturation (S_{eff}) in ship tracks vs plume age using the adiabatic cloud model. The dashed line is S_{eff} for the background clouds.

Fig. 4. Measured excess cloud droplet concentrations (ΔN_d) in the ship tracks vs age of ship plume.
droplet concentrations in ship tracks, namely, the increase in S_{eff} downwind of the ships, may be correct. The S_{eff} is predicted to be higher for lower values of CCN and ΔN_{CCN}, which are produced at greater distances from ships due to the diffusion of the ship effluents. The fact that even the more detailed droplet growth model still predicts a greater slope than observed suggests that there may still be some enhancement, with time, of CCN either by chemical or physical processes (e.g., coagulation), which increase the CCN concentrations downwind (in opposition to the effect of dilution). This latter effect was also discussed by Ferek et al. (1998).

5. Particle volatility

To obtain some information on particle composition, volatility measurements were made of the CCN and CN in the ambient air and in the ship plumes using the method described by Hudson and Da (1996). All of the volatility measurements described here were made out of cloud. A composite of the volatility measurements of the background aerosol is presented in Fig. 6 and, for 1 June only, in Fig. 7. In agreement with the results of Hudson and Da (1996) the present results show that most of the background CCN had a fractionation temperature characteristic of ammonium sulfate or ammonium bisulfate (\sim200°C). Figure 8 shows that the volatility measurements within the plumes of diesel ships using marine fuel oil were nearly identical to those in the background air. Although most of the latter measurements were made on the plume from one ship, the Monterrey (Table 1), there were partial (at a limited number of temperatures) measurements from other ships that were consistent with these results. Due to the lack of knowledge of volatility temperatures for organic compounds, we cannot test the suggestions of Hobbs et al. (2000) that these substances contribute to the CCN in ship plumes. All we can say is that these volatility measurements suggest that ammonium sulfate (or bisulfate) could be the predominant component of the aerosol in both the background air and in the ship effluents.

6. Discussion and conclusions

The results presented in this paper show that the excess droplet concentrations in ship tracks can be fairly accurately predicted with a simple model of the diffusion of the effluents emitted by a ship’s engine. More accurate predictions are made with a cloud droplet condensational growth model, which allows for lower S_{eff} in the ship tracks when CCN concentrations are high.

The cloud droplet condensational growth model used in this paper requires as input the condensation coefficient for water. This is the fraction of molecules that are on a path toward the droplet that actually stick to the droplet. The value of the condensation coefficient is uncertain (Mozurkewich 1986). We used a value of 0.036, which has often been used in cloud physics (e.g., Pruppacher and Klett 1980; Rogers and Yau 1989), based on Chodes et al. (1974). When a condensation coefficient of 1.0, as suggested by Leaitch et al. (1986), was used for one of the flights, only one value of S_{eff} was further decreased. A higher condensation coefficient (e.g., 1.0) would cause the droplets to grow faster.
and thus reduce the maximum supersaturation. However, this enhanced growth rate of droplets did not further reduce S_{eff} in most of the ship tracks studied here. Use of the higher condensation coefficient slightly increased the deduced updraft velocity. On the other hand, if the condensation coefficient were lower than 0.036, it would reduce the rate of droplet growth and allow higher cloud supersaturations. A lower condensation coefficient would then tend to mitigate the reductions of the cloud droplet growth model closer to the predictions of the Gaussian plume model (which assumes constant S_{eff}). The fact that better agreement was found between the predictions and the measurements for higher condensation coefficients suggests, at least, that the condensation coefficient is probably not significantly lower than 0.036. If it were much lower than 0.036, then there would be less lowering of S_{eff} in the more concentrated ship tracks closer to the ships. If that were the case, the less than predicted decrease in D_{Nd} with increasing distance from the ships would be more difficult to explain.

The inferred S_{eff}, which was usually \lesssim0.2% (see columns 4 and 10 of Table 2), is similar to previous estimates for ambient eastern Pacific stratus clouds (e.g., Hudson 1983; Hudson and Svensson 1995; Hudson and Yum 1997); the implied updraft velocities (W, column 9 of Table 2) are also typical of stratus clouds (e.g., Curry 1986; Hudson and Svensson 1995; Hudson and Yum 1997). The exception is the flight of 30 June, when the inferred S_{eff} was above 1%, which was the highest S_{c} that was measured in this study with an inferred W of 100 cm s$^{-1}$.

On average, about 10% of the particles from the ship exhausts were found to act as CCN (at S_{eff}). This is in close agreement with the 12% value derived independently by Hobbs et al. (2000) from the ratio of ΔN_{a} to the increase in total aerosol in each ship track. Since S_{eff} was about 0.2% for three of the four flights listed in Table 2, in Table 1 we have listed the CCN/CN ratios measured in the plumes for a supersaturation of 0.2%. Table 1 also shows the CCN/CN ratio for 1% S_{c}, which is generally an upper limit of S_{eff} (e.g., Rogers and Yau 1989) and the highest S_{c} measured in MAST. Table 1

Table 4. Slopes of linear regressions of excess droplet concentrations in the ship tracks vs width of the ship tracks.

<table>
<thead>
<tr>
<th>Date and ship name</th>
<th>Measured</th>
<th>Predicted from Gaussian plume model</th>
<th>Predicted from cloud condensation growth model</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Jun, Fermo Scorpius</td>
<td>-0.021</td>
<td>-0.022</td>
<td>-0.022</td>
</tr>
<tr>
<td>27 Jun, Taihe</td>
<td>-0.017</td>
<td>-0.046</td>
<td>-0.020</td>
</tr>
<tr>
<td>29 Jun, Star Livorno</td>
<td>-0.0056</td>
<td>-0.041</td>
<td>-0.030</td>
</tr>
<tr>
<td>30 Jun, NYK Sunrise</td>
<td>-0.017</td>
<td>-0.030</td>
<td>-0.018</td>
</tr>
<tr>
<td>Average</td>
<td>-0.015</td>
<td>-0.035</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

Fig. 6. Composite of all CCN (at 1% S_{c}) volatility measurements in background air. Measurements of heated samples were normalized to near-simultaneous measurements of unheated samples.

Fig. 7. As Fig. 6 but for data obtained on 1 Jun.
shows substantial differences in CCN/CN ratios for different ships, with engine type and/or fuel type appearing to affect the value of this ratio. Clearly, turbine engines using navy distillate fuel emit fewer CCN than diesel engines using marine fuel oil.

The results listed in Table 1 are consistent with the hypothesis of Hobbs et al. (2000) that fuel type is a better predictor than engine type of whether ship tracks will form in a given environment. For example the *Safeguard*, which had diesel engines but used navy distillate fuel, had CCN/CN ratios similar (even lower) than those of the turbine-powered ships. However, the evidence presented here that favors fuel type over engine type is based on measurements of the plume from just one diesel-engine ship that used the higher-grade fuel.

Although there was variability in the plume measurements from a given ship, and there was variability among ships with similar fuels and engines, these variabilities were not enough to blur the clear differences in CCN/CN ratios between the different engines and/or fuels. The diesel engines burning marine fuel oil had order of magnitude higher CCN/CN ratios (Table 1). The much lower CCN/CN ratios for the turbine-powered ships using navy distillate fuel are probably the reason that these ships were never observed to produce ship tracks in MAST. Although the navy-distillate-fueled *Safeguard* produced a weak ship track, it did so only in very clean air.

The CCN/CN ratios are also consistent with the dry particle measurements described by Hobbs et al. (2000). The lower CCN/CN particle ratios for the distillate-fueled exhausts are consistent with the smaller particle sizes that were measured in those exhaust plumes. The larger particles in diesel plumes were consistent with the higher CCN/CN ratios found in those plumes.

If CN fluxes were similar for the variously powered and fueled ships, as seemed to be the case (Hobbs et al. 2000), then we might expect ΔN_d to be an order of magnitude less for the navy-distillate-fueled ships compared to the ships burning marine fuel oil. The measured ΔN_d in the ship tracks produced by diesel-powered ships using marine fuel oil (Table 1) ranged from 40 to 160 cm$^{-3}$ (Fig. 4) [there was only one case lower than 40 cm$^{-3}$: 15 cm$^{-3}$ (Fig. 4b)]. The background N_d values were about 50 cm$^{-3}$ for two of those flights and 150 cm$^{-3}$ for the other two flights (column 3 of Table 2). Any one of the ΔN_d values in the ship tracks is distinguishable from the lower values of N_d in the background clouds (80%–320% differences) because even for the higher background N_d values, the ΔN_d values in ship tracks were 27%–107% above the mean background N_d. This is still distinguishable from the standard deviations of the 1-s background N_d, which ranged from 7% to 23% of the background mean N_d. There were some higher standard deviations on 8 June, a clean background day. We have inferred that ΔN_{CCN} would be an order of magnitude lower, thus 4–16 cm$^{-3}$, for the navy-distillate-fueled ships because of their order of magnitude lower CCN/CN ratios. For a background cloud with N_d of 50 cm$^{-3}$ this is an 8%–32% perturbation, which is generally greater than the standard deviation of the mean value of N_d in the background clouds (7%–23%). However, for the higher background N_d values, this ΔN_{CCN} represents a perturbation of only 3%–10%, which is less than the measured variability in N_d in the background clouds (7%–23%), making it difficult to produce a detectable ship track.

The above discussion explains why the turbine-powered ships using navy distillate fuel (*Copeland, Kansas City*, and *Mt. Vernon*) did not produce ship tracks when the background clouds had high N_d values ($N_d > 150$...
cm$^{-3}$), while the Safeguard did produce weak ship tracks with background N_j values of 12–40 cm$^{-3}$. Conversely, we suggest that turbine ships could produce ship tracks in cleaner background clouds ($N_j < 50$ cm$^{-3}$), and that the Safeguard could not produce ship tracks when background N_j were higher than 150 cm$^{-3}$, conditions that were sometimes encountered in MAST.

The fluxes of CCN from the ships can be put into perspective by comparing them with fluxes from an urban area (Frisbie and Hudson 1993). First, the average CN flux from the ships was about 1% of that from the city of Denver, Colorado—10^{16} s$^{-1}$ (Frisbie et al. 2000) versus 10^{18} s$^{-1}$ (Frisbie and Hudson 1993). The CCN/CN ratios at high S_c for the diesel ships burning low-grade fuel were remarkably similar to results for the city of Denver—16.6% for $S_c = 1$% (MAST) and 17% for $S_c = 0.9$% (Denver); thus, the flux of CCN with $S_c = 1$% was about $1 / 10$ of that from Denver. However, for $S_c = 0.2$%, these ships produced significantly higher CCN/CN ratios than Denver—5.8% versus 1.4%. Thus, the flux of CCN from dirty ships (diesel with low-grade fuel) at typical stratus cloud supersaturations (0.2%) was about $4 \times$ of that from the city of Denver. On the other hand, the CCN/CN ratio for the cleaner-burning turbine-powered and/or higher-grade fuels was significantly lower for $S_c = 1$% (Table 1), but only somewhat lower than Denver at S_c values typical of marine stratus clouds (0.2%, Table 1). Thus, urban emissions should have a relative effect on stratus clouds that is intermediate between those of the two types of ship effluents discussed here, even though the total output of particles from a ship is much smaller than that of a large urban area.

Acknowledgments. We thank Ronald Ferek and other members of the UW C-131A crew for help in collecting data. This research was supported by ONR Grants N00014-93-1 and N00014-94-1-0339 to the UW and DRI, respectively.

REFERENCES

