Pulmonary Dysfunction, Assessment, and Treatment in Multiple Sclerosis

Donna Fry, PT, PhD; Toni Chiara, PT, PhD

Pulmonary muscle weakness is a symptom of multiple sclerosis (MS) that begins early in the disease process, although it is often not recognized by health-care providers until later stages. Standard pulmonary function tests are not effective in detecting this reduction in pulmonary muscle strength. Maximal inspiratory and expiratory pressures are indirect measures of pulmonary muscle strength that are effective in detecting early changes. Once detected, pulmonary muscle weakness is effectively treated with pressure threshold load inspiratory and expiratory muscle exercises that can be implemented using inexpensive handheld pressure threshold load muscle training devices. These exercises require little time and are effective in patients with any level of disability. Int J MS Care. 2010;12:97–104.

Multiple sclerosis (MS) is a disease of the central nervous system. Signs and symptoms and the accumulation of disability are due to demyelination and axonal injury. Multiple sclerosis affects not only muscles of the limbs and trunk but also muscles of respiration. Muscle weakness, changes in muscle tone, motor incoordination, and postural abnormalities all reduce pulmonary function. In the majority of patients with mild-to-moderate disability associated with MS, central motor conduction to the diaphragm muscle is abnormal. Respiratory impairment in neurologic or neuromuscular injuries or disorders such as MS includes 1) difficulty in ventilation due to inspiratory muscle weakness; 2) difficulty in coughing due to weakness of the expiratory muscles, upper-airway (glottic) muscle, and inspiratory muscles; and 3) risk of aspiration of fluids due to upper-airway muscle weakness.

Actual prevalence rates of respiratory problems in individuals with MS are not known; however, due to the prevalence of MS in the United States (approximately 400,000) and worldwide (2.5 million), a significant number of individuals may be at risk. Very few studies address differences in respiratory impairment relative to type of MS, although Grasso et al. reported greater respiratory abnormalities in patients with cerebellar involvement.

Patients with MS rarely complain of pulmonary dysfunction, although upon testing pulmonary dysfunction is commonly found. Pulmonary muscle strength is often reduced even in patients with mild disease. Pulmonary compromise affects as many as 52% of recently diagnosed individuals with MS. Pulmonary muscle involvement occurring early in the course of the disease is due largely to reversible neuromuscular failure. Indirect measures of pulmonary muscle strength (maximal inspiratory pressure [MIP] and maximal expiratory pressure [MEP]) are significantly reduced in patients with MS. In ambulatory patients with MS, average MIP values range from 55% to 77% of predicted values, and average MEP values range from 34% to 60% of predicted values. In patients with MS who are either confined to bed or primarily use a wheelchair, average MIP values range from 27% to 74% of predicted values, and average MEP values range from 18% to 51% of predicted values. Pulmonary muscle endurance is measured indirectly by maximal voluntary ventilation (MVV). Average MVV values range from 91% to 95% of predicted values in ambulatory patients with MS and are approximately 68% of predicted values in those who are confined to bed or primarily use a wheelchair.

Respiratory compromise including acute respiratory failure, previously considered a condition rarely associated with MS, has been found to be common in MS, particularly during the terminal stage. Acute respiratory failure may occur in patients with moderate-
to-severe respiratory muscle weakness and in those challenged by relatively minor added respiratory loads, such as that associated with an otherwise uneventful respiratory infection. Due to progressive decrease of motor efficiency, restrictive symptoms reduce the vital capacity (VC), inspiratory and expiratory flows, and MVV.

Assessment of Respiratory Function

Full pulmonary function tests are often conducted by pulmonologists. However, in traditional pulmonary function testing protocols, respiratory muscle strength, measured by MIP and MEP, is often not included. Physical therapy offices that have appropriate testing equipment can easily include both spirometry and tests of respiratory muscle strength in their regular examination of a patient with MS (Table 1). This typically does not increase patient cost because it is charged under the physical therapy examination Current Procedural Terminology (CPT) code 97001.

Spirometry

As noted previously, respiratory complaints may not be forthcoming from individuals with MS even though,

Table 1. Assessment of pulmonary function and respiratory muscles

<table>
<thead>
<tr>
<th>Function tested</th>
<th>Assessment method</th>
<th>Equipment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>Maximal volume of air forcibly blown out after full inspiration</td>
<td>Spirometer<sup>a</sup></td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td>Maximal volume of air forcibly blown out in the first second during the FVC test</td>
<td>Spirometer</td>
</tr>
<tr>
<td>FEV<sub>1</sub>/FVC ratio</td>
<td>Percentage of FVC expired in the first second of maximal expiration</td>
<td>Spirometer</td>
</tr>
<tr>
<td>PEF and PIF</td>
<td>Maximal forced expiration rate from full inspiration and maximal inspiration rate from full expiration</td>
<td>Spirometer</td>
</tr>
<tr>
<td>MVV</td>
<td>Maximal amount of air inhaled and exhaled in 1 min</td>
<td>Spirometer</td>
</tr>
<tr>
<td>MIP and MEP</td>
<td>Pressure generated during maximal inspiration or expiration</td>
<td>Manometer<sup>b</sup></td>
</tr>
</tbody>
</table>

Abbreviations: FEV₁, forced expiratory volume in the first second of expiration; FVC, forced vital capacity; MEP, maximal expiratory pressure; MIP, maximal inspiratory pressure; MVV, maximal voluntary ventilation; PEF, peak expiratory flow; PIF, peak inspiratory flow.

^aSpirometers range in cost from $400 to $5200 depending on extent of function.

^bThe MicroRPM (Respiratory Pressure Meter) manometer (CareFusion [formerly Micro Medical], Basingstoke, UK) costs $1200.

upon testing, impairment of pulmonary muscle function is evident. Assessment of pulmonary function is typically conducted using a spirometer, with the patient performing prolonged (3–6 seconds) and forceful expiratory maneuvers (Table 1). Spirometry tests dynamic pulmonary function parameters such as forced vital capacity (FVC), forced expiratory volume in the first second of expiration (FEV₁), FEV₁/FVC ratio, MVV, and peak expiratory and peak inspiratory flow (PEF and PIF, respectively). However, standard spirometry measurement of pulmonary function values in people with MS are typically normal until there is a 50% or greater loss of respiratory muscle strength. Thus, standard spirometry is not a sensitive measure of respiratory muscle strength in the MS population. In an attempt to modify standard spirometry protocols to increase sensitivity in people with neuromuscular disorders, Altintas et al. studied minimally disabled patients with MS (mean Expanded Disability Status Scale [EDSS] score, 2.9) who had no respiratory complaints. They reported that the difference between FVC in the upright versus supine positions was 7.13% in the subjects with MS, compared with 2.49% in the normal controls. The greater difference for the patients with MS is consistent with previous research conducted in patients with amyotrophic lateral sclerosis. Thus, determining the difference between upright and supine FVC values may be useful in assessing early respiratory impairment in people with MS.

Grasso et al. reported that respiratory impairment was common in people with MS, with a prevalence ranging from nearly 36% in ambulatory patients to nearly 83% in nonambulatory patients. They found that MVV was more sensitive than FVC or FEV₁, as an indicator of respiratory impairment. Thus, MVV and tests of pulmonary muscle strength (MIP and MEP) are strong indicators of early pulmonary muscle impairment in MS.

Respiratory Muscle Assessment

Reduced pulmonary muscle function is observed in individuals with MS in the presence of little or no impairment demonstrated on standard pulmonary function tests. Evaluation of respiratory muscle function early in the course of MS may enable prevention of respiratory complications. Patients with MS who have a combination of reduced maximal respiratory pressures and FVC should be monitored via serial respiratory muscle pressure and FVC tests. A joint statement on the art of respiratory muscle assessment has been
Neurophysiologic Techniques

Neurophysiologic techniques such as magnetic transcranial stimulation, magnetic cervical stimulation, and electrical stimulation of the phrenic nerve at the neck to assess motor evoked potentials (MEPs) and central motor conduction time (CMCT) between the cortex and the diaphragm have been used in a limited number of studies in individuals with MS. Investigators reported prolonged MEPs and CMCTs. Additionally, it was noted that the electrophysiologic study of the diaphragm was abnormal in some patients with MS who exhibited no pulmonary symptoms and had normal pulmonary function.

Assessment Frequency

Assessment of pulmonary muscle function is recommended at initial diagnosis of MS to establish a baseline and then at the time of any pulmonary infection, onset of dyspnea on exertion, or reduction in physical performance. Grasso et al. suggested that patients with cerebellar impairment receive serial evaluation of respiratory function to determine whether impairment is present.

Respiratory Muscle Training

Principles of muscle strength training that apply to limb and trunk muscles also apply to muscles of respiration. A fundamental principle of exercise physiology is that to gain strength, one must use progressive resistance to overload the muscle during exercise. Breathing exercises without resistance are not sufficient to significantly increase respiratory muscle strength. For example, Wiens et al. reported nonsignificant increases in respiratory function following thrice-weekly music therapy emphasizing diaphragmatic breathing and coordination of breath and speech for patients with advanced MS (EDSS scores 7.0–9.5). Typically, pulmonary muscle training is performed using either inspiratory or expiratory muscle pressure threshold load trainers (Tables 2 and 3). Studies comparing the value of inspiratory versus expiratory training in patients with MS have not yet been conducted. The rationale for selecting an inspiratory muscle trainer (IMT) is that weakened inspiration predisposes the respiratory muscles to fatigue and contributes to perceived dyspnea. Inspiratory muscle training also increases MIP and reduces dyspnea (rest and exercise). The rationale for selecting an expiratory muscle trainer (EMT) is to build expiratory force to support productive coughing and voice production. Measurement of respiratory muscle strength should show carryover between
inspiration and expiration, thus benefiting both functions. Some clinicians choose an IMT or EMT based on MIP and MEP values of the individual patient, selecting the device that will strengthen the patient’s weakest muscles. Although large-scale studies have not yet been conducted on the use of pressure threshold load breathing exercises in people with MS, several smaller studies yielded consistent results supporting the use of either inspiratory or expiratory pressure threshold load exercise to improve pulmonary muscle strength across a wide range of disability levels.

Use of either an IMT or an EMT is supported for ambulatory individuals with MS (EDSS scores <6.5). In a study of 46 ambulatory people with MS (EDSS scores 2.5–6.5), Fry et al. trained participants daily for 10 weeks with an IMT device. Significant improvements in MIP (80.9% increase) and nonsignificant increases in MEP (21.4%) and MVV (9.0%) were noted in the IMT-trained participants. Likewise, Chiara et al., who trained 17 ambulatory individuals with MS (EDSS scores 1.5–6.5) 5 days a week for 8 weeks using an EMT device, found significant increases in MEP (37.4% in the mild disability group and 44.1% in the moderate disability group) and nonsignificant increases in MIP.

Use of either an IMT or an EMT is also supported for people with more advanced MS (EDSS scores >6.0). In a study of 15 patients with advanced MS disability (EDSS scores 6.5–9.0), Klefbeck and Hamrah Nedjad administered inspiratory training to 7 of the participants every other day for 10 weeks. Both MIP and MEP values increased significantly from baseline in the trained participants, and MIP values were significantly more improved in the trained than in the control group participants. Two independent studies found

Table 2. Respiratory muscle training protocols in individuals with multiple sclerosis

<table>
<thead>
<tr>
<th>Study</th>
<th>Method used and type of training</th>
<th>No. of subjects</th>
<th>EDSS score</th>
<th>Frequency</th>
<th>Duration</th>
<th>Initial intensity</th>
<th>Sets and repetitions</th>
<th>Basis of training progression advancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olgiati et al., 1989</td>
<td>Resistive (I and/or E)</td>
<td>5 amb 3 w/c</td>
<td>Not specified</td>
<td>Twice daily</td>
<td>4 ± 1 wks</td>
<td>Given mean target pressure, not specified</td>
<td>2 periods of 3–5 min</td>
<td>Not specified</td>
</tr>
<tr>
<td>Smeltzer et al., 1996</td>
<td>PTL (E)</td>
<td>10 T 5 C</td>
<td>6.5–9.5</td>
<td>Twice daily</td>
<td>12 wks</td>
<td>Based on MEP, did not specify value</td>
<td>3 sets of 15 reps</td>
<td>Tolerance to exercise</td>
</tr>
<tr>
<td>Wiens et al., 1999</td>
<td>Music therapy</td>
<td>9 T 10 C</td>
<td>7.0–9.0</td>
<td>Once per day, 3 d/wk</td>
<td>12 wks</td>
<td>Not applicable</td>
<td>Three 30-min sessions/wk</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Gosselink et al., 2000</td>
<td>PTL (E)</td>
<td>9 T 9 C</td>
<td>7.0–9.5</td>
<td>Twice daily</td>
<td>12 wks</td>
<td>60% MEP</td>
<td>3 sets of 15 reps</td>
<td>60% of MEP adapted twice daily, combined with daily physical therapy</td>
</tr>
<tr>
<td>Chiara et al., 2006, 2007</td>
<td>PTL (E)</td>
<td>17 MS 14 HC</td>
<td>1.5–6.5</td>
<td>Once per day, 5 d/wk</td>
<td>8 wks</td>
<td>40% MEP</td>
<td>4 sets of 6 reps</td>
<td>MEP of individual: 40% 1st wk, 60% 2nd wk, 80% 3rd–8th wks</td>
</tr>
<tr>
<td>Klefbeck & Hamrah Nedjad, 2003</td>
<td>PTL (I)</td>
<td>7 T 8 C</td>
<td>6.5–9.0</td>
<td>Twice every other day</td>
<td>10 wks</td>
<td>40–60% MIP</td>
<td>3 sets of 10 reps</td>
<td>MIP and RPE</td>
</tr>
<tr>
<td>Fry et al., 2007</td>
<td>PTL (I)</td>
<td>20 T 21 C</td>
<td>2.5–6.5</td>
<td>Daily</td>
<td>10 wks</td>
<td>30% MIP</td>
<td>3 sets of 15 reps</td>
<td>MIP and RPE</td>
</tr>
</tbody>
</table>

Source: Adapted with permission from Fry et al. Abbreviations: amb, ambulatory; C, control subjects; E, expiratory; EDSS, Expanded Disability Status Scale; HC, healthy controls; I, inspiratory; MEP, maximal expiratory pressure; MIP, maximal inspiratory pressure; MS, multiple sclerosis; PTL, pressure threshold load; RPE, rating of perceived exertion; T, trained subjects; w/c, wheelchair-bound subjects.
Table 3. Commercially available pressure threshold load (PTL) respiratory muscle trainers

<table>
<thead>
<tr>
<th>Trainer</th>
<th>Manufacturer</th>
<th>Models/versions</th>
<th>Resistance</th>
<th>PTL range (cm H₂O)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspiratory Muscle Trainers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspiratory Muscle Trainer (IMT)</td>
<td>Philips Respironics</td>
<td>1</td>
<td>Light</td>
<td>9–41</td>
<td>$225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 units/case</td>
</tr>
<tr>
<td>POWERBreathe</td>
<td>HaB International Ltd.</td>
<td>Plus/3</td>
<td>Light</td>
<td>17–98</td>
<td>$80/unit</td>
</tr>
<tr>
<td>Wellness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sports Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspiratory/Expiratory Muscle Trainers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Expiratory Pressure (PEP)</td>
<td>Philips Respironics</td>
<td>1</td>
<td>Very light</td>
<td>5–21</td>
<td>$225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 units/case</td>
</tr>
<tr>
<td>PowerLung</td>
<td>PowerLung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AireStream</td>
<td></td>
<td></td>
<td>Very light</td>
<td>2–19</td>
<td>$89/unit</td>
</tr>
<tr>
<td>BreatheAir</td>
<td></td>
<td></td>
<td>Light</td>
<td>4–93</td>
<td>$99/unit</td>
</tr>
<tr>
<td>Trainer</td>
<td></td>
<td></td>
<td>Medium</td>
<td>4–95</td>
<td>$109/unit</td>
</tr>
<tr>
<td>Sport</td>
<td></td>
<td></td>
<td>Very heavy</td>
<td>78–678</td>
<td>$119/unit</td>
</tr>
<tr>
<td>Performer Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T343A Teal</td>
<td></td>
<td></td>
<td>Light</td>
<td>$99/unit</td>
<td></td>
</tr>
<tr>
<td>P617B Purple</td>
<td></td>
<td></td>
<td>Medium</td>
<td>$109/unit</td>
<td></td>
</tr>
<tr>
<td>M422T Orange</td>
<td></td>
<td></td>
<td>Very heavy</td>
<td>$119/unit</td>
<td></td>
</tr>
<tr>
<td>Expiratory Muscle Trainers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspire EMST 150</td>
<td>Aspire Products</td>
<td>1</td>
<td>Medium</td>
<td>15–150</td>
<td>$45/unit</td>
</tr>
<tr>
<td>Respi-aide EMT-1</td>
<td>GaleMed Corp</td>
<td></td>
<td>Very light</td>
<td>5–20</td>
<td>$22–27/unit</td>
</tr>
<tr>
<td>Respi-aide EMT-2</td>
<td></td>
<td></td>
<td>Very light</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: cm H₂O, centimeter of water (the unit of pressure measurement used in the PTL trainers).
Note: A list of manufacturers and products included in this table, along with manufacturer websites, appears at the end of the article.

that expiratory training produces pulmonary muscle strength gains in people with advanced MS disability. Smeltzer et al.34 provided expiratory training to 10 of 15 individuals with advanced MS (EDSS scores 6.5–9.5). Participants completed two sessions of training daily for 3 months. The trained participants significantly increased their MEP values, but significant changes in MIP were not observed.34 Likewise, Gosselink et al.35 provided expiratory training to 9 of 18 individuals with advanced MS disability (EDSS scores 7.0–9.5) twice daily for 3 months. The patients’ MIP values increased significantly compared with baseline but were not significantly improved compared with the control group. The MEP values increased, but not significantly, in the EMT group.

In summary, studies find relatively consistent significant increases in strength of trained respiratory muscles (inspiratory or expiratory), with some nonsignificant carryover increases in strength of the nontrained muscles. Other benefits of inspiratory and expiratory training for people with MS identified as secondary outcomes in research studies and/or participant observations include increased frequency of conscious performance of deep breathing,34 deeper respirations,34 less shortness of breath in the supine position,34 stronger voice,34 and improved quality of life secondary to having a stronger voice.36,39 Moreover, benefits extend beyond the respiratory system. Fry-Welch et al.40 noted improved static standing balance and mobility function following inspiratory training in ambulatory individuals with MS.

Respiratory Muscle Trainers

Extensive literature on respiratory muscle training details the advantages and disadvantages of the different types of trainers, including incentive spirometer,41,42 isocapnic hyperpnea,43,44 resistive,45,46 and pressure threshold load devices.47-48 The pressure threshold load trainers are the most highly recommended type of trainer,47,49-51 and have been available since the late 1980s (Figure 2).52 An advantage of the pressure threshold

International Journal of MS Care
the POWERbreathe (HaB International Ltd, Southam, Warwickshire, UK) and the PowerLung (PowerLung, Houston, TX) (Table 3). Costs for the training devices range from $25 to $100 for units commonly used clinically, making this an inexpensive device for home use.

Limitations of Existing Research and Future Research Needs

Limitations in the studies that have examined respiratory muscle training in individuals with MS include limited subject populations (range, 8–46), variable training protocols (ie, intensity, duration, and frequency), and limited documentation of retention of exercise effects if exercise is discontinued. In addition, existing reports mainly focus on impairment outcomes, with very limited research on functional outcomes.

Many additional clinical research questions need to be answered to guide evidence-based clinical treatment of pulmonary muscle impairment in people with MS. Relationships between pulmonary function and physical performance levels must be better delineated. Additional studies addressing optimal training duration, frequency, and intensity and retention of training effects are necessary. Comparisons of inspiratory versus expiratory training and combined inspiratory/expiratory training, as well as comparisons of strength versus endurance and combined strength and endurance protocols, will help more clearly define the most effective pulmonary muscle exercise protocols. Studies outlining any differential effects of training based on type of MS (relapsing remitting, secondary progressive, primary progressive, and progressive relapsing) and disability status (EDSS scores) will help guide clinical decision making in the future.

Trainers is that the resistance remains constant independent of air flowing through the device so that a patient cannot simply breathe more slowly to reduce the amount of resistance. Pressure threshold load levels can also be readily adjusted by the patient to increase the amount of resistance. The devices range in level of resistance provided, with lower resistance offered by the Threshold Inspiratory Muscle Trainer (Phillips Respironics, Murrysville, PA) and higher resistance offered by the POWERbreathe (HaB International Ltd, Southam, Warwickshire, UK) and the PowerLung (PowerLung, Houston, TX) (Table 3). Costs for the training devices range from $25 to $100 for units commonly used clinically, making this an inexpensive device for home use.

Limitations of Existing Research and Future Research Needs

Limitations in the studies that have examined respiratory muscle training in individuals with MS include limited subject populations (range, 8–46), variable training protocols (ie, intensity, duration, and frequency), and limited documentation of retention of exercise effects if exercise is discontinued. In addition, existing reports mainly focus on impairment outcomes, with very limited research on functional outcomes.

Many additional clinical research questions need to be answered to guide evidence-based clinical treatment of pulmonary muscle impairment in people with MS. Relationships between pulmonary function and physical performance levels must be better delineated. Additional studies addressing optimal training duration, frequency, and intensity and retention of training effects are necessary. Comparisons of inspiratory versus expiratory training and combined inspiratory/expiratory training, as well as comparisons of strength versus endurance and combined strength and endurance protocols, will help more clearly define the most effective pulmonary muscle exercise protocols. Studies outlining any differential effects of training based on type of MS (relapsing remitting, secondary progressive, primary progressive, and progressive relapsing) and disability status (EDSS scores) will help guide clinical decision making in the future.

Practice Points

- Pulmonary muscle strength is impaired even in early stages of MS-related disability.
- Standard pulmonary function tests are not sensitive to early changes in pulmonary muscle function. Testing of maximum inspiratory and expiratory pressures should be included in any assessment of pulmonary function in people with MS.
- Resisted inspiratory and expiratory muscle training are effective in increasing pulmonary muscle strength in both early and advanced stages of MS.
Conclusions
Recent research established the presence of pulmonary muscle weakness early in the MS disease process. The results of standard pulmonary function tests typically remain within normal ranges until there is a 50% or greater loss of pulmonary muscle strength. Thus, it is imperative that other forms of pulmonary testing be used early in the disease process. Maximal inspiratory and expiratory mouth pressures are effective measures of this early pulmonary muscle strength impairment in individuals with MS. Patients with any level of MS-related disability can improve their pulmonary muscle strength through resisted inspiratory and/or expiratory muscle training. The training devices are inexpensive and easily used by patients with MS.

Manufacturers of Products Mentioned
Aspire Products (Aspire EMST 150), Gainesville, FL http://www.aspireproducts.org
CareFusion (formerly Micro Medical) [MicroRPM [Respiratory Pressure Meter]], Basingstoke, UK. http://www.micromedical.com.uk
GaleMed Corporation [Respi-aid EMT, not currently available in the United States], Taipei, Taiwan. http://www.galemed.com
HaB International Ltd (POWERbreathe), Southam, Warwickshire, UK. http://www.powerbreathe.com
PowerLung (PowerLung), Houston, TX. http://www.powerlung.com/region/us

Financial Disclosures: The authors have no conflicts of interest to disclose.

References

Call for Abstracts

25th Annual Meeting of the Consortium of Multiple Sclerosis Centers
Palais des Congrès de Montréal, Montreal, Quebec, Canada, June 1–4, 2011

The submission deadline for abstracts is January 10, 2011.

Information on online abstract submission and the meeting can be found on the CMSC Annual Meeting website at http://annualmeeting.mscare.org.

Presenters at the annual CMSC meetings are given preference in the judging for the Robert M. Herndon IJMSc Award, given annually for the best article published in the International Journal of MS Care over the last year. The award carries a $1000 stipend. Robert M. Herndon was the founding editor of IJMSc and currently serves as Editor Emeritus.