Ammonium removal from groundwater using a zeolite permeable reactive barrier: a pilot-scale demonstration

Shengpin Li, Guoxin Huang, Xiangke Kong, Yingzhao Yang, Fei Liu, Guohua Hou and Honghan Chen

ABSTRACT

In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite’s finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH$_4^+$-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH$_4^+$-N was microbially oxidized to nitrate. Any remaining NH$_4^+$-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH$_4^+$-N was consistently removed, and approximately 40% of the influent NH$_4^+$-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH$_4^+$-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH$_4^+$-N removal.

Key words | adsorption, ammonium, denitrification, nitrification, PRB

INTRODUCTION

Nitrogen contamination of the subsurface originates from various industries, wastewater, and agricultural fertilizer use (Malekian et al. 2011). Generally speaking, the main nitrogen contamination species is nitrate (NO$_3^-$-N); however, NH$_4^+$-N can become the main form of nitrogen contamination in some special conditions. Compared with conventional techniques for the remediation of contaminated groundwater, in situ remediation technologies cost less and have fewer deleterious effects (Van Nooten et al. 2008). In situ remediation of nitrogen compounds in the subsurface is possible through the use of a permeable reactive barrier (PRB) (Park et al. 2002; Bastiaens et al. 2005). PRBs offer the potential for low-cost remediation because they take advantage of natural groundwater flow to bring the contaminants in contact with the reactive materials in the barrier (Patterson et al. 2004; Carniato et al. 2012).

The reactive medium used in a barrier varies depending on the contaminants of concern. Zeolites obtained from abundant natural deposits were investigated by many researchers for the purpose of cleaning up wastewaters (Lin et al. 2013; Belviso et al. 2014). Natural zeolite is of special interest for NH$_4^+$-N removal due to its low cost, ease of handling, and suitability for use in PRBs (Wang et al. 2007; Zhang & Bi 2012; Lv et al. 2013). Despite zeolite’s promise for removing NH$_4^+$-N from groundwater, the one obvious disadvantage of zeolite used in a PRB is that it has a finite sorption capacity. Regeneration is possible, but would be a complicated process in situ (Van Nooten et al. 2010). This limitation necessarily requires that zeolite performs dual roles in the PRB by removing NH$_4^+$-N through cation exchange and serving as a surface for the growth of denitrifying bacteria (Green et al. 1996; Lahav & Green 1998; Van Nooten et al. 2010). The concept of zeolite adsorption combined with biological nitrification-denitrification relies on the use of a zeolite-filled buffer compartment to ensure robust NH$_4^+$-N removal that is independent of the level of microbial activity (Green et al. 1996; Lahav & Green 1998; Jung et al. 2004; Van Nooten et al. 2010). Compared to the large number of the laboratory-scale evaluations of bio-zeolite PRBs, very few data on long-term...
and large-scale PRBs, which provide detail on the contamination reactive performance of PRBs, are available in the literature (Phillips et al. 2010; Wilkin et al. 2014).

In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH₄⁺-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound (ORC) was synthesized and added to ensure aerobic conditions in the upper sand layer of the PRB, where the NH₄⁺-N would be microbially oxidized to NO₃⁻; during passage through this layer, the dissolved oxygen in the groundwater would be consumed by the nitrifiers. Any remaining NH₄⁺-N would then be removed abiotically in the zeolite layer. Under these lower redox conditions, nitrite (NO₂⁻) and NO₃⁻ formed during nitrification would be removed by denitrifying bacteria that would colonize the zeolite.

MATERIALS AND METHODS

Materials

The natural clinoptilolite zeolite (1-2 mm) used was obtained from Faku, Liaoning Province, PRC. The chemical composition of the zeolite was: 67.09% SiO₂, 12.44% Al₂O₃, 0.78% Fe₂O₃, 0.26% Na₂O, 1.22% MgO, 8.81% CaO, 1.20% K₂O, and 13.32% other. The zeolite adsorption capacity for ammonium was about 4.74 mg/g.

ORC was made from cement (25%), calcium peroxide (20%), bentonite (10%), sand (15%), and water (30%). The size of ORC was 3 cm in diameter and the oxygen releasing mechanism was: 2CaO₂ + 2H₂O = 2Ca(OH)₂ + O₂ ↑

The particle size of the sand used in the experiment was between 0.5 and 3.5 mm.

Design of pilot-scale PRB

The PRB (6.0 m long, 4.0 m wide, 3.0 m high) was composed of three layers (from the top): the sand layer (0.5–1.0 m) was aimed at retaining suspended solids; the ORC + sand layer (1.0–1.3 m) was used to enhance bacterial nitrification by releasing oxygen to the groundwater; the zeolite layer (1.3–2.5 m) was used to ensure robust NH₄⁺-N removal via physical adsorption and to induce anaerobic conditions to allow for bacterial denitrification by providing a place for microorganisms to reproduce (Figure 1).

The PRB was equipped with nine monitoring wells which were able to obtain samples from each of the three layers of the PRB: at the based of the ORC + sand layer (1.3 m), in the middle of the zeolite layer (1.9 m), and at the bottom of the zeolite layer (2.5 m) (Figure 1).

The goal of the PRB was to achieve the following effluent concentrations: ≤0.5 mg/L NH₄⁺-N, ≤20 mg/L NO₃⁻-N and ≤0.3 mg/L nitrite (NO₂⁻-N).

Operation of pilot-scale PRB

Infiltrating groundwater from the River Hun served as the source water for the pilot-scale PRB. The initial influent concentration of NH₄⁺-N was between 0.3 and 36.6 mg/L without adjusting. The flow rate was about 1 m/d, which was similar to the groundwater velocities in the riparian area.
aquifer of the Hun River in Shenyang, PRC. The operation of the PRB was started in August 2011 and lasted as long as 328 days. The temperature in the PRB was in the range of \(\sim 5^\circ\text{C} \) to \(20^\circ\text{C} \) during the whole operation.

During 0–69 days and 292–328 days, the measurements were done twice a week on average; during 69–292 days the measurements were done once a month, because the temperature was too low to cultivate microorganisms in this period.

Analytical methods

Total elemental analysis was performed by X-ray diffractometry using JADE software (Version 5.0). The concentrations of \(\text{NH}_4^+\)-N and \(\text{NO}_2^-\)-N were determined by a UV-Vis spectrophotometer (HP-8353) at 420 nm and 540 nm, respectively. The concentration of \(\text{NO}_3^-\)-N was determined at 220 and 275 nm also with the UV-Vis spectrophotometer. Dissolved oxygen was measured by a Hach HQ 30d portable dissolved oxygen meter. The pH was determined by a pH meter (Sartorius PB-10).

RESULTS AND DISCUSSION

The assessment of \(\text{NH}_4^+\)-N removal process

Based on the patterns of observed \(\text{NH}_4^+\)-N removal in the PRB, two distinct phases can be described, which are due to nitrifiers needing time to grow and reproduce before contributing to \(\text{NH}_4^+\)-N removal (Kim et al. 2015). During Phase I (days 0 to 292), influent and effluent concentrations of \(\text{NH}_4^+\)-N ranged from 0.3 to 11.1 mg/L and 0.02 to 0.49 mg/L, respectively (Figure 2(a)), while influent and effluent concentrations of \(\text{NO}_3^-\)-N varied from 0.2 to \(\sim 2.3 \) mg/L and 0.5 to 5.0 mg/L, respectively (Figure 2(b)). \(\text{NH}_4^+\)-N concentrations decreased without any obvious increases in \(\text{NO}_3^-\)-N, suggesting that \(\text{NH}_4^+\)-N removal was due to zeolite adsorption only.

During Phase II (days 292–328), corresponding with regional runoff of agricultural fertilizers, the influent concentrations of \(\text{NH}_4^+\)-N increased obviously (Abalos et al. 2014; Montalvo et al. 2014), but with only two values higher than the effluent standards (0.5 mg/L) on days 316 (0.74 mg/L) and 319 (1.43 mg/L) (Figure 2(a)). Compared

![Figure 2](https://iwaponline.com/wst/article-pdf/70/9/1540/470544/1540.pdf)
with the influent, effluent concentrations of NO$_3$-N increased significantly after day 292, varying from 6.4 to 12.2 mg/L (Figure 2(b)), since NO$_3$-N is not a product of either zeolite adsorption or cation exchange. These values suggested that bacterial nitrification occurred in the pilot-scale PRB during this period.

pH is one of the most important parameters controlling the ion exchange process and microbial activity. The pH ranged from 6.4 to 7.9 in the pilot-scale PRB (Figure 2(d)), which is suitable for zeolite to absorb NH$_4$-N (Karadag et al. 2007), and has little effect on the nitrification and denitrification process (Semmens et al. 1977; Vidal et al. 2002).

NO$_2$-N was a minor constituent in the influent at concentrations of 0–1 mg/L over the course of the experiment. Effluent concentrations of NO$_2$-N varied from 0.004 to 0.91 mg/L (Figure 2(c)).

The adsorption process in ammonium removal (Phase I)

The concentrations of nitrogen species measured on days 1, 39, 69, 131, and 292 (from monitoring well No. 5, located in the middle of the PRB) are plotted in Figure 3. As Figure 3 illustrates, the concentrations of both total nitrogen (TN) and NH$_4$-N decreased sharply in the upper half of the zeolite layer. In contrast, NO$_3$-N concentrations exhibited no significant change, because both nitrifiers and nitrate-reducing bacteria were absent or in small numbers in the initial phase of operation of the PRB (Qiu et al. 2012). NO$_2$-N concentrations decreased slightly.

These results indicated that the removal of NH$_4$-N during the first 292 days in the PRB was solely due to zeolite adsorption with no significant evidence of either microbial ammonia oxidation or bacterial nitrate occurring.

Microbial process in ammonium removal (Phase II)

The concentrations of nitrogen species quantified during Phase II (on days 307, 313, 322, 325 and 328) are plotted in Figure 4. In contrast to Phase I, most of the NH$_4$-N removal appears to have occurred in the ORC + sand layer, not in the zeolite layer. The concentrations of

![Figure 3](https://iwaponline.com/wst/article-pdf/70/9/1540/470544/1540.pdf)
NO₂⁻ and NO₃⁻ were increased dramatically near the interface of the ORC + sand and zeolite layers. Since NO₃⁻ and NO₂⁻ are products of neither zeolite adsorption nor cation exchange, some significant fraction of the observed NH₄⁺ removal was due to microbial nitrification (Li et al. 2013).

To simulate the natural groundwater conditions, no additional electron donors were added. However, NO₃⁻ was subsequently removed in the zeolite layer. NO₃⁻ can be degraded to N₂ through denitrification, resulting in the removal of NO₃⁻; the zeolite surface is negatively charged, so NO₃⁻ has little possibility to be absorbed (Zhang & Bi 2011). NO₃⁻ decreased in the zeolite layer without any increase in TN, NH₄⁺, and NO₂⁻, which suggests that bacterial denitrifiers successfully colonized it and reduced the NO₃⁻ to N₂ (Figures 4(c) and 4(d)).

According to patterns observed in the data and illustrated in Figure 4, nitrogen removal in the PRB may be graphically separated into the three vertical sections as follows. Section 1 is the ORC + sand layer (0–1.3 m) where TN is removed and the concentrations of NO₃⁻ increased. Section 2 is the upper section of the zeolite layer (1.3–1.9 m) where additional ammonium removal may occur and the concentrations of NO₃⁻ decreased sharply. Section 3 is the bottom-most layer of zeolite (1.9–2.9 m) where additional ammonium adsorption may occur.

There was sufficient oxygen in Section 1 to support bacterial nitrification (≥ 2 mg/L; (Guo et al. 2013) as evidenced by the consistent formation of both NO₂⁻ and NO₃⁻ (Figures 4(c) and 4(d)). Since not all of the NH₄⁺ was oxidized to nitrite or nitrate in Section 1, some of the NH₄⁺ removal may be attributed to adsorption. Examining the data from day 322, the removal of NH₄⁺ and TN was 23.06 and 13.66 mg/L, respectively. The increased concentrations of NO₃⁻ and NO₂⁻ were 9.39 mg/L and 0.01 mg/L, respectively. A nitrogen mass balance shows that the amount of NH₄⁺ (23.05 mg/L) removed is nearly equal to the sum of the TN removed (13.66 mg/L) and the NO₃⁻ and NO₂⁻ formed (9.38 + 0.02 mg/L). This means that about 40% of the influent NH₄⁺ being converted to nitrite and nitrate in Section 1, and about 60% of the NH₄⁺ removal was due to sorption. Overall, these results indicated that NH₄⁺ removal

Figure 4 | Changes in concentrations of (a) TN, (b) ammonium, (c) nitrite and (d) nitrate in the three layers of the pilot-scale PRB during Phase II (292–328 days).
in Section 1 was due to a combination of adsorption and bacterial nitrification.

The oxygen released in Section 1 was largely consumed by the nitrifying bacteria, resulting in lower redox conditions in the subsequent layers of the PRB which, in turn, favors denitrifying bacteria that reduce nitrate to nitrogen gas (Guerrero et al. 2013; Paulo et al. 2013). In Section 2, not all of the observed TN removal may be accounted for as nitrite and nitrate: some TN removal may be attributed to adsorption. Again, examining data obtained on day 322, nitrogen mass balance calculations indicate that the amount of TN removed (8.13 mg/L) is equal to the amount of NH$_4$-N removed (1.96 mg/L) plus the amount of NO$_2$-N (0.03 mg/L) and NO$_3$-N (6.16 mg/L) reduced. These results suggest that both adsorption and microbial denitrification occur in Section 2, although most of the nitrogen removal is due to bacterial nitrate reduction.

Section 3 exhibits additional removal of both NH$_4$-N (1.06 mg/L) and NO$_3$-N (Figures 4(b) and 4(d)). The nitrogen mass balance conducted on day 322 indicates that the TN removed (2.37 mg/L) is equal to the amount of NH$_4$-N removed (1.06 mg/L) plus the amount of nitrate that is reduced (1.31 mg/L). These data suggest that adsorption and denitrification processes occur in Section 3 to achieve nearly complete removal of nitrogen species in the groundwater.

During the 328 days’ operation of the PRB, ~40–98% of the incoming NH$_4$-N was removed over a wide range of influent concentrations (0.3–36.6 mg/L) (Figure 5(a)); however, that means the removal rate was much greater (>90%) and more consistent at all concentrations greater than 0.3 mg/L. A nitrogen mass balance suggests that about 60% of the observed NH$_4$-N removal may be attributed to adsorption in the ORC + sand layer (Section 1). About 40% of the influent NH$_4$-N was microbially oxidized to nitrate, but only after colonization by nitrifying bacteria (after ~300 days of operation; Figure 5(b)). Because of the microbial activities, the life of zeolite was extended and achieved a sustainable role in NH$_4$-N removal. Nitrate removal by denitrifying bacteria was evident in both the upper (Section 2) and lower (Section 3) layers of the zeolite, but again only after nitrate-reducing bacteria had successfully colonized the media.

CONCLUSIONS

In this study, a pilot-scale PRB was designed to remove NH$_4$-N from groundwater. More than 90% of NH$_4$-N was removed over a wide range of influent concentrations, with adsorption, nitrification and denitrification all contributing to the in situ remediation of nitrogen species.

After some 300 days of operation, about 40% of the influent NH$_4$-N was converted to nitrite and nitrate through nitrification; zeolite contributed to ~60% of the observed removal of NH$_4$-N through adsorption; zeolite also supported the growth and activity of the denitrifying bacteria resulting in as much as 60% of the nitrate removal which formed in the PRB through bacterial ammonia oxidation.

Based on these results, it is concluded that NH$_4$-N removal from groundwater through bacterial nitrification and adsorption to zeolite in a PRB is a valuable approach for groundwater management. It requires refinement, but has the advantages of immediate ammonium removal followed by more sustainable processes that employ naturally occurring microbial communities.

![Figure 5](https://iwaponline.com/wst/article-pdf/70/9/1540/470544/1540.pdf)
ACKNOWLEDGEMENTS

This work was supported by the Fundamental Research Funds for the Central Universities (2652013024), the National Program of Control and Treatment of Water Pollution (2009ZX07424-002), and the Natural Science Foundation of China (41272268). We appreciate Xiaopeng Qin and Jianfei Ma for their good suggestions and help in early operation of the experiment.

REFERENCES

First received 21 May 2014; accepted in revised form 15 September 2014. Available online 29 September 2014