PROLIFERATION AND DIFFERENTIATION OF BONE MARROW CELLS ON TITANIUM PLATES TREATED WITH A WIRE-TYPE ELECTRICAL DISCHARGE MACHINE

Saburo Kakuta, DDS, PhD
Kennichi Miyaoka, DDS
Shinnya Fujimori, DDS, PhD
Won Sik Lee, DDS, PhD
Takashi Miyazaki, DDS, PhD
Masao Nagumo, DDS, PhD

KEY WORDS
Titanium plate
Electric discharge machine
Bone marrow cell
Proliferation
Differentiation

For successful dental implants, it is necessary to obtain satisfactory osteointegration at the site of both the cortical and trabecular bones in the jaw. Bone marrow stromal cells differentiate into osteoblast-lineage cells and have an important role in bone remodeling. In this experiment, the responsiveness of bone marrow cells to a titanium plate with a rough surface was compared with that of a titanium plate with a smooth surface. The rough surface was created by treating with a wire-type electrical discharge machine, and the smooth plate was produced by polishing with 1.500-grade emery paper. The results indicated that, though bone marrow cells proliferated on both plates, the proliferation pattern and cell growing time on the plates were different. While the cells on the smooth plate proliferated along the grooves produced by polishing, the cells on the rough plate proliferated randomly and more rapidly. As bone marrow cells consisted of heterogeneous cell populations involving hematopoietic cells, we collected bone marrow mesenchymal stromal cells that proliferated on plastic dishes and studied the proliferation and differentiation of these cells. Stromal cells on the rough plate more actively proliferated than those on the smooth plate. In long-term culture, the cells on the rough plate showed higher alkaline phosphatase activity and produced cell nodules. The cells on the smooth plate were stripped off the plate without nodule formation. These results indicated that bone marrow stromal cells on the rough plate could more rapidly proliferate and differentiate into osteoblast-lineage cells compared with those on the smooth plate.

INTRODUCTION

Osteointegration is a major determinant of success for dental implants. Many factors, such as composition or the surface architecture of dental material and bone cell responsiveness of recipients, participate in this process. Pure titanium (Ti) is one of the most frequently used implant materials due to its excellent biocompatibility. Moreover, Ti is very versatile and
can be prepared in many different shapes without affecting its biocompatibility. Martin et al. reported that the surface roughness of titanium plates profoundly affected proliferation and differentiation of osteoblast-like cells (MG63). We developed a titanium plate with a rough surface by treating with a wire-type electrical discharge machine (W-EDM) and compared the affinity of osteoblast-like cells of the rough plate with that of the smooth plate. Cells observed on the plates more rapidly proliferated and differentiated on the rough surface than on the smooth surface. However, Cochran et al. observed the attachment and proliferation of periodontal cells on the smooth and rough surfaces of titanium plates and reported that these cells tended to attach more rapidly to the smooth surface. Another fundamental factor is the responsiveness of the jaw bones. To complete osteointegration, it is important to obtain sufficient compatibility in both the cortical and trabecular bones in the jaws. Although in cases with thin cortical bone and dense trabecular bone, satisfactory osteointegration was obtained, a very high failure rate for osteointegration occurred in cases with thin cortical bone and low-density trabecular bone. At the bone marrow site of the long bone, a high number of osteoblast-lineage mesenchymal stromal cells are present. Some researchers have reported that bone marrow mesenchymal stromal cells differentiated into osteoblast-like cells and produced bone-like cell nodules in long-term cultures. In recent investigations concerning biomaterial in vitro, primary cultured osteoblasts or established osteoblast-like cells have been used. Since the origin of osteoblasts is mesenchymal stromal cells, it is important to investigate the relationship between implant material and bone marrow cells. In this study, we investigated the proliferation and differentiation of bone marrow stromal cells on a titanium plate with a rough surface and compared them with those on a titanium plate with a smooth surface.

Materials and Methods

Preparation of titanium plates

Two types of titanium plates with different surface architecture were prepared from pure titanium (KS 50, Kobe Steel) according to methods described previously. One was a titanium plate with a rough surface (rough plate), which was treated using a wire-type electric discharge machine (LS 350X, Japax) and trimmed to 10 × 10 × 1.0 mm³. The machine used to produce the rough plate was adjusted to 6.5 μs off (pulse off time) and 0.65 μs on (pulse on time) at 15 amps Iₚ (peak current) and 90 V (non-load voltage). The other plate had a smooth surface (smooth plate), which was prepared by polishing with 1.500-grade emery paper. The mean height and standard deviation of roughness (Rₘₚ) of the four individual plates in each group was 20.5 ± 1.56 μm for the rough plates and 0.80 ± 0.14 μm for the smooth plates. The surface produced by electric discharge exhibited a pear-like appearance under scanning electron microscopy and appeared like an accumulation of various sizes of dish-like concavities. However, linear stripes indicating shallow grooves—produced by using the emery paper—were detected on the surface of the smooth plates (Fig 1).
Preparation of rat bone marrow stromal cells

Rat bone marrow stromal cells were prepared according to the method of Maniopoulou et al. In brief, bone marrow cells were collected from the tibia of four Sprague-Dawley male rats that were 8 weeks old. The rats were sacrificed by cervical dislocation, and their tibias were dissected free of soft tissues under aseptic conditions and placed in a medium (α-MEM; Gibco BRL) containing 32 U/mL of penicillin (Meiji, Japan) and 50 µg/mL of streptomycin (Meiji). The proximal and distal ends were cut off, and bone marrow tissue from the midshaft was flushed using 18-gauge syringes containing α-MEM until the marrow cavity appeared blanched (about six times). This suspension was then passed through 20–22-gauge syringes several times to produce a largely single-cell suspension. Finally, bone marrow cells were adjusted to a density of 5 × 10^6/mL in α-MEM containing 10% fetal calf serum (Gibco BRL). Aliquots of 10 mL of bone marrow cell suspension were placed on a titanium plate and 10% fetal calf serum (Gibco BRL). Aliquots of 10 mL of bone marrow cell suspension were plated on 100 × 20 mm² tissue culture dishes (Corning) and were cultured in an atmosphere of 100% humidity, 5% CO₂ and 37°C. After 4 days in the primary culture, nonadherent cells were removed by changing to a fresh medium, and thereafter the medium was changed every 3–4 days. At a confluence from the subconfluent stage (about 2 weeks), the adherent stromal cells were collected via treatment with phosphate buffered saline (PBS) containing 0.25% trypsin (Gibco BRL) and 0.2% EDTA (Sigma, St Louis, MO) and were resuspended at a density of 5 × 10^5/mL in α-MEM containing 10% fetal calf serum.

Cell culture and plating

One milliliter of bone marrow cells (5 × 10^6) or dish-adherent mesenchymal stromal cells (5 × 10^6) suspended in α-MEM containing 10% fetal calf serum were seeded on a titanium plate placed in a 24-well plate (Corning) and were cultured in a CO₂ incubator for several weeks. The culture medium was changed every 3–4 days.

Assessment of cell proliferation and differentiation

Cells that proliferated on each plate were treated with 0.002% fluorescein diacetate (FDA, Sigma) in PBS, according to the method described by Weinstein et al., and were observed with fluorescent microscopy. The cell numbers on the plate were evaluated by staining the attached cells with 0.2% crystal violet in 2% ethanol. Briefly, after washing the cells with PBS six times to remove excess dye, they were solubilized with 1% sodium dodecyl sulfate (SDS; Wako, Japan) and the density was measured with a spectrophotometer (Dynatech MR5000). On the whole, optical density values of 1 × 10^5 cells/mL corresponded to 1.94 at 540 nm.

The differentiation of mesenchymal stromal cells on the plate was estimated by measuring the alkaline phosphatase (alp-ase) activity of cells and by observing cell nodule formation with FDA. For the differentiation experiment, 5 mM β-glycerophosphate and 200 µg/mL ascorbic acid were added to the medium on day 7 of culture. These agents enhanced alp-ase expression, nodule formation, and mineralization in bone marrow cells, chondroblasts, and osteoblast-like cells in vitro. The cells on the plate were solubilized with 1.5 M Tris buffer (pH 9.5) containing 1% Triton X-100, and a small aliquot of the solution was utilized for an alp-ase assay. Five millimolar p-nitrophenyl phosphate (Sigma) as a substrate was utilized for measurement of this enzyme assay. Alp-ase activity was expressed as nanomoles of p-nitrophenol (p-NP) formed/mg protein/minute. Trichloroacetic acid (TCA) with 10% final concentration was added to the residual solution to precipitate cell protein components. The precipitant was solubilized with 0.1 N NaOH, and the protein content was determined using a Bio Rad Protein Assay Kit (Bio Rad, CA).

Statistical analysis

Results are expressed as the mean ± standard deviation (SD) of six plates. The findings were analyzed statistically using the Student’s t-test. Significant differences were considered to exist when p < 0.01.

Results

Proliferation of bone marrow mesenchymal stromal cells and differentiation into osteoblast-lineage cells

Though mesenchymal stromal cells that differentiate into osteoblast-lineage cells are contained in bone marrow cells, a large population of bone marrow cells consists of hematopoietic cells. Therefore, stromal cells that proliferated on the culture dishes were collected, and the proliferation and differentiation of those cells on each plate were investigated. Stromal cells on both plates were able to proliferate actively, although the extent of proliferation was different. The cell numbers on the rough plate were almost twice those on the smooth plate on day 6 (Fig 4). In order to study the differentiation into osteoblast-lineage cells from stromal cells, alp-ase and nodule formation were investigated. While the alp-ase activity of cells on both plates was low on day 7, after the addition of β-glycerophosphate and ascorbic acid, the en-
FIGURE 2. Fluorescein micrographs of cells on the rough plates (A, B, C) and the smooth plates (D, E, F). A and D, 7-day culture; B and E, 14-day culture; C and F, 28-day culture (A, B, D, and E, original magnification x3100; C and F, original magnification x40).

FIGURE 3. Proliferation of bone marrow cells on the rough plate and the smooth plate. M, Rough plate; R, smooth plate.

Enzyme activity increased four- to sixfold 7 days later. The enzyme activity of cells on days 7 and 14 on the rough plate was two- to threefold higher than that on the smooth plate (Table 1). FDA staining on day 21 showed that cell nodules were clearly formed on the rough plate (Fig 5A). However, as cells on the smooth plates were stripped off the plates in the long culture, cell nodules could not be seen on the plates (Fig 5B). In this experiment, four individual plates in each group were observed. Cell nodules were detected on three rough plates, but we could not detect nodules anywhere on the four smooth plates because part of the cells detached along the grooves produced on the plates.

DISCUSSION

To obtain satisfactory osteointegration, the surface roughness of the dental implant is an important factor. The surface roughness of titanium plates treated
with W-EDM is relatively homogeneous and reproducible compared with other rough plates. Moreover, it is possible to control the roughness up to an R_{max} of 20 μm by changing the electrical conditions of the machine, as described in Table 2. Previously, we reported that osteoblast-like cells (MC3T3-E1) on plasma-coated plates ($R_{\text{max}} = 31.4$ μm) or plates treated with W-EDM ($R_{\text{max}} = 20.5$ μm) showed similar responsiveness in the proliferation and differentiation on both plates. However, the cells on smooth plates ($R_{\text{max}} = 0.80$ μm) polished with 1.500-grade emery paper were significantly fewer than those on both rough plates. Further, the cells on flat glass plates ($R_{\text{max}} = 0.19$ μm) were fewer than those on smooth plates. In this experiment, we investigated the efficacy of the rough plates treated with W-EDM using bone marrow cells.

While bone marrow cells consist of heterogeneous cell populations, the progenitors of osteoblast-lineage cells are present. In a 5-year retrospective clinical study, Jaffin and Berman classified jaws into four types based on the cortical bone thickness and the density of the trabecular bone. Their studies showed that, in the group with very thin cortical bone with low-density trabecular bone, 35% of dental implants failed to osteointegrate versus only 3% in the other bone-quality types. These results suggest that the osteoinductive potential of bone marrow stromal cells is an important factor necessary for successful osteointegration. Many investigators showed the formation of bone-like cell nodules using the long-term culture of bone marrow stromal cells. Ozawa and Kasugai reported that bone marrow stromal cells on hydroxylapatite, glass ceramic, or titanium plates were able to proliferate and differentiate into osteoblast-like cells. The present study confirmed that rat bone marrow stromal cells proliferated and formed cell nodules on titanium plates.

It is said that the surface architecture of a plate has significant effects on the orientation of cell proliferation. Brunette reported that the long axis of most fibroblasts was found to be parallel with the grooves produced on the titanium surfaces, but fibroblasts cultured on plasma-sprayed rough surfaces were randomly arranged. The surface grooves of the titanium plate also controlled the attachment of epithelial cells. In this experiment, the plate surface polished with 1.500-grade emery paper was relatively smooth, and grooves of $R_{\text{max}} = 0.80$ μm were produced. The plate treated with W-EDM exhibited a roughness of $R_{\text{max}} = 20.5$ μm. The bone marrow cells on the smooth plate proliferated along the grooves produced by polishing, similar to fibroblasts and epithelial cells. The cells on the rough plate treated with W-EDM were randomly oriented in comparison with those on the smooth plate. The proliferation of bone marrow cells on both plates was different. Cells on rough plates as well as MC3T3-E1 cells proliferated more rapidly than those on smooth plates. These results suggest that proliferation of bone marrow cells may be self-regulated, depending on the surface architecture of the titanium plate used.

In long-term bone marrow cultures, stromal cells express alp-ase activity and form cell nodules. An increase in the enzyme activity and nodule formation are generally known as markers of differentiation into osteoblast-lineage cells. Ozawa and Kasugai reported that rat bone marrow stromal cells increased alp-ase activity and formed mineralized cell nodules on dental implant materials in long-term cultures. Indeed, the alp-ase activity of cells that had proliferated on a titanium plate increased when cells...
FIGURE 5. Long-term culture of bone marrow stromal cells. The cell nodule produced on the rough plate (A). The cells on the smooth plate detached without nodules (B) (original magnification ×40).

| Working conditions of the electrical discharge machine (W-EDM) and surface roughness of titanium plates * |
|--|------------------|------------------|------------------|------------------|------------------|
| | R_{max} (μm) | SD (μm) | τ_{on} (μsecond) | τ_{off} (μsecond) | I_p (amps) | $V_{\text{no load}}$ (volts) |
| W-EDM | A | 7.7 | 0.6 | 0.35 | 5.0 | 10 | 80 |
| | B | 11.8 | 0.9 | 0.85 | 7.5 | 90 | 80 |
| | C | 17.5 | 1.1 | 0.85 | 7.0 | 110 | 80 |
| | D | 21.9 | 1.0 | 0.85 | 7.0 | 110 | 80 |
| | Plasma coated | 30.1 | 6.9 | | | | |

* τ_{on}, pulse on time; τ_{off}, pulse off time; I_p, peak current; $V_{\text{no load}}$, voltage (Miyazaki et al15).

were cultured with medium containing β-glycerophosphate and ascorbic acid. Ascorbic acid and β-glycerophosphate are important agents for alp-ase expression, nodule formation, and mineralization of osteoblast-like cells21, chondroblasts,22 and bone marrow cells23 in vitro. Comparing cells on the smooth and rough plates, the enzyme activity of cells on the rough plates was higher than that on the smooth plates. Cell nodules were clearly observed on the rough plate in long-term culture. However, though the cells on the smooth plate proliferated sufficiently, we could not find cell nodules because of cell detachment from the smooth plates. The exact reason why cells on the smooth plate were stripped from the plate in long-term culture is unclear. The interaction between the topography of the plate surface and extracellular matrix produced by bone marrow stromal cells may be involved. Thomas and Cooks26 reported that rough-surfaced implants yielded both greater shear strengths and larger direct bone apposition, whereas smooth surface implants exhibited various degrees of fibrous encapsulation. Bowers et al27 described significantly higher levels of cellular attachment on rough surfaces with irregular morphologies compared to smooth surfaces. Indeed, Martin et al28 reported that the surface roughness of the plate profoundly affected the matrix synthesis of osteoblast-like cells. On the rough plate, the matrix may be able to tightly bind to its surface, whereas, as the roughness
of the smooth plate polished by 1.500-
grade emery paper was 0.8 μm, the
binding force between the plate and
the matrix produced by its cells was
probably weak. As a result, even if cell
nodules were formed on the smooth
plate, cells may be easily stripped off
the smooth plate. This may be a reason
why cell nodules could not be found
on the plate.

The roughness produced by W-EDM
is relatively homogeneous and repro-
ducible. Bone marrow stromal cells
proliferated and differentiated into
osteoblast-lineage cells on the rough
plate. Furthermore, the machine used
can control the surface roughness up to
20 μm. Therefore, it is an effective de-
vice in producing the optimal surface
roughness of dental implants needed
to obtain satisfactory osteointegration.

REFERENCES

1. Williams DF. Biomaterials and
biocompatibility. In: Fundamental

2. Holgers K, Roupe G, Tjellstrom
A, Bjurstern L. Clinical, immunological
and bacteriological evaluation of ad-
verse reactions to skin-penetrating ti-
nium implants in the head and neck

3. Rae T. Cell biochemistry in rela-
tion to the inflammatory response to
foreign materials. In: Fundamental

4. Meachim G, Pedley R. The tissue
response at implant site. In: Fundamen-

5. Martin JY, Schwartz TW, Hum-
ert TW, et al. Effect of titanium sur-
face roughness on proliferation, differ-
entiation, and protein synthesis of hu-
mn osteoblast-like cells (MG 62). J

6. Martin JY, Dean DD, Cochran DL,
Simpson J, Boyan BD, Schwartz TW.
Proliferation, differentiation, and pro-
tein synthesis of human osteoblast-like
cells (MG 63) cultured on previously
used titanium surfaces. Clin Oral Impl

7. Fujimori S. Surface characteriza-
tion of titanium plates with different
surface treatment and cellular prolifera-
tion and expression of osteoblast-
like cells in vitro on their surfaces. J
Japanese Soc Dent Mater Devices. 1995;14:
155–168.

HP, Buser D. Attachment and growth
of periodontal cells on smooth and
rough titanium. Int J Oral Maxillofac

9. LeGeros RZ, Craig RG. Strategies
to affect bone remodeling: osteointe-
grination. J Bone Miner Res. 1993;
8(Suppl):583–596.

10. Jaffin RA, Berman CL. The ex-
cessive loss of Branemark fixtures in
young bone: a 5-year analysis. J

11. Caplan AI, Dennis JE. Mesen-
chymal stem cells: progenitors, proge-
ney, and pathway. J Bone Miner Res.

12. Kamalia N, McCulloch GAG, Te-
enbaum HC, Limebach H. Dexameth-
asones recruitment of self-renewing os-
eto progenitor cells in chick bone mar-
row stromal cell cultures. Blood. 1992;
79:320–326.

13. Maniopououlou C, Sodeck C,
Melcher AH. Bone formation in vitro
by stromal cells obtained from marrow

14. McCulloch CAG, Stugurese A,
Hugues F, Melcher AH, Aubin JE. Os-
eteogen progenitor cells in rat bone
marrow stromal cell cultures. Blood. 1992;
1906–1911.

15. Miyazaki T, Fujimori S, Lee WS,
Itahashi H. Micromorphometry of tai-
nium surfaces prepared by wire cut elec-
tric discharge machining. J Japanese

16. Weinstein JN, Yoshikami S, Hen-
kart P, Blumenthal R, Hagins WA.
Lipo-some-cell interaction: transfer and
intracellular release of trapped fluores-

17. Zachachuk CM, Drysdale B,
Mayer MM, Shin HS. Macrophage me-
diated cytoxicity: role of a soluble mac-
rophage cytotoxic factor similar to lymphtoxin and tumor necrosis factor.

18. Golub EE, Schattsneider S, Berthold P, Burk A, Shapiro IM. Induc-
tion of chondrocyte vesiculation. J Biol

of implant materials (hydroxyapatite,
glass-ceramics, titanium) in rat bone
marrow stromal cell culture. Biomateri-

20. Leboy PS, Vaias L, Uschumann
B, Golub EE, Adams SL, Pacifici M. As-
corobic acid induces alkaline phospho-
tase, type X collagen and calcium de-
position in cultured chick chondro-
17286.

21. Bellows CG, Heersch JN, Aubin
JE. The effects of fluoride on osteoblast

22. Malaval L, Modrowsky D, Gupta
AK, Aubin JE. Cellular expression of
bone-related proteins during in vitro
ostegenesis in rat bone marrow stromal
cell culture. J Cell Physiol. 1994;140:
552–572.

23. Brunette DM. The effects of im-
plant surface topography on the be-
behavior of cells. Int J Oral Maxillofac

24. Cheroudi B, Gould TRL, Brun-
nette DM. Effects of a grooved tai-
nium-coated implant surface on epithe-
liial cell behavior in vitro and in vivo. J

25. Cassiede P, Dennis JE, Ma E,
Caplan AI. Osteochondrogenic poten-
tial of marrow mesenchymal progeni-
tor cells exposed to TGF-β or PDGF-BB
by assay in vivo and in vitro. J Bone

26. Thomas K, Cooks S. An evalua-
tion of variables influencing implant
fixation by direct bone apposition. J Bio-

27. Bowers KT, Keller JC, Randolph
BA, Wick DG, Michaels CM. Optimiza-
tion of surface micromorphology for
enhanced osteoblast responses in vitro.
Int J Oral Maxillofac Implants. 1992;7:
302–310.