This article focuses on the materials used for the regeneration, rather than repair, of the osseous support needed to anchor both teeth and implants. Once the bone was supportive, but now it is insufficient and must be restored. Specifically, the article examines different materials that aid in regeneration, as well as ones that do not. The pros and cons of osteoinduction and osteoconduction are compared. Autogenous, allographic, alloplastic, and xenographic materials are delineated and their intended purpose is described. These materials build the foundation of osseous support toward a functional future.

INTRODUCTION

Bone grafting therapy has become an integral part of dentistry. Patients are becoming more aware of grafting as a treatment modality and expect better predictability, fit, function, and esthetics. Today, with the introduction of advanced bone grafting techniques and the use of sophisticated bone replacement graft materials, it is possible to increase the volume, width, and height of bone in deficient areas to regenerate the tissues supporting questionable teeth and to permit the placement of implants in ideal positions and angulations, which will result in more acceptable and predictable restorations.

Bone replacement graft materials have played an important role in regenerative dentistry for many years. At present we are being introduced to a host of new technology that will continue to improve the predictability and success rates of grafting procedures. There are four basic divisions of bone grafts: autogenous, allographic, alloplastic, and xenographic.

The ideal bone replacement graft material (BRGM) has always been autogenous bone.1–4 This material forms bone by the processes of osteogenesis, osteoinduction, and osteoconduction. Osteogenesis is the mechanism of forming bone directly from osteoblasts. Osteoinductive materials are capable of inducing the transformation of mesenchymal cells into osteoblasts, thereby enhancing bone growth. Osteoconduction is the process that permits bone apposition from existing bone.

Autogenous bone is derived from the individual for whom the graft is intended. It has long been considered the gold standard of BGRM. It consists of two components. The first is a natural anatomical structure for scaffolding cellular invasion and for graft and host site support. The second offers a component of primarily type I collagen that provides pathways for vascularity and resilience. The vitality of such grafts may vary in their duration, some lasting a shorter duration than desired. Such grafts are harvested from the surgical patient from whom a second surgical wound site must be used. The use of autogenous bone, however, offers the promise of high levels of success while
avoiding the possibilities of antigenicity.

Allografts are tissues taken from individuals of the same species as the hosts. There are three main divisions: (1) frozen, (2) freeze-dried, and (3) freeze-dried demineralized. They come in different forms: particulate, gels, and putties. A major advantage of their use is that the material is readily available without the requirement of a secondary surgical site. They provide a source of type I collagen, which is the sole organic component of bone. However, they do not produce the inorganic calcium or scaffolding necessary for bone regeneration. Allographic bone must be processed to guarantee safety.

Alloplasts are synthetic. They contribute to the repair of osseous defects and to the enhancement of osseous in-growth. The chemical composition, physical form, and differences in surface configuration result in varying levels of bioreabsorbability. The varying nature of available commercial graft materials (porosity, geometries, differing solubilities and densities) will determine the resorption of these calcium phosphate–based graft materials.

Xenografts are derived from other species. They are materials with their organic components totally removed. With their removal, concern about immunological reactions becomes nonexistent. The remaining inorganic structure provides a natural architectural matrix as well as an excellent source of calcium. The inorganic material also maintains the physical dimension of the augmentation during the remodeling phases.

Suppliers, manufacturers, and users of BRGMs have been striving to meet the standards set by those who advocate the use of autogenous bone. For the past several decades, synthetic hydroxyapatites were used when adequate amounts of autogenous bone were not available. Synthetic, dense, nonresorbable hydroxyapatite is osteoconductive and biocompatible and permits bone apposition from adjacent bone. It does not form bone, and it will not increase the volume of vital bone in a deficient area; therefore, synthetic hydroxyapatite has limited indications. One use is augmentation for the placement of conventional dentures. However, because this dense material neither resorbs nor remodels, implant placement through a grafted site is virtually impossible, thus further limiting its value.

Synthetic hydroxyapatite (tricalcium phosphate [TCP]) is also available in a resorbable form. As it resorbs, a readily available source of calcium becomes available in sites that have osteogenic potential. It is an osteoconductive material composed of very small, nonfused crystals, which yield cumulatively an extremely high surface area. It is a material of choice in 4 and 5 wall defects such as extraction sockets. Without grafting, such areas often will undergo facial ridge resorption, resulting in loss of the buccolingual dimension of the ridge.

Surgeons welcomed the introduction of xenografts containing calcium phosphate bone replacement. Xenografts such as anorganic bovine-derived bone material (ABM) offered the mechanical and architectural components of bone that had been lacking in the synthetics. Because this material supplies a natural form of hydroxyapatite, it provides the readily available source of calcium that is so essential for bone formation. This material also fails to satisfy the standards set by those of autogenous bone because it does not have the organic, cellular component. To be effective in the process of bone regeneration, as with the synthetics, it must be placed in an osteogenic environment.

Combining the ABM with demineralized freeze-dried bone allograft (DFDBA) will satisfy the requisite formula of 2 components that have the potential to encourage the formation of natural bone. DFDBA is derived from human cadaver bone. It must be thoroughly screened, tested, and processed to eliminate any donor disease that might threaten the health of the recipient.

Research has shown dramatic variability in the osteoinductive properties of DFDBA. Some donor bone has shown no activity at all and simply provided a source of type I collagen. Osteoinduction, which can be demonstrated by bioassay analysis, offers a high probability of stimulating the growth of bone cells. But even the highest-quality DFDBA will not satisfy the 2-component model required to stimulate the formation of a mineral component (TCP), which must be added to satisfy the demands of this function.

In the past score of years, clinicians have learned to use the BGRMs that most satisfy the needs of specific sites, patients, and treatment plans. Combinations of materials are used that are chosen from a wide variety of synthetics, xenografts, and allografts, often in conjunction with tissue-regenerative barrier membranes, all with the common goal of stimulating the formation of autogenous bone.

As a result of research on the use of recombinant bone morphogenetic proteins (BMP) and tissue-derived growth factors for osseous regeneration, these materials have been positioned as the definitive answer for future osseous regeneration. BMPs are osteoinductive compounds that encourage new bone formation. At least 7 structurally unique BMPs have been identified that can induce bone formation as well as accelerate the process of bone regeneration. BMPs act as a signal in initiating and regulating specific tissue formation. This activity leads to a series of developmental processes that include chemotaxis, proliferation, and differentiation, which result in the transient formation of cartilage (endochondral bone formation) and the production of living bone tissue. At this time, both the technology and the production of the material are quite expensive. The effectiveness of BMPs in inducing new bone formation is in part contingent on delivery of these mole-
cules in a predictable manner. Several different materials that include both natural and synthetic polymers and bioceramics have been evaluated as potential carriers for BMP. To date, collagen has shown the most promise. However, because of the unpredictable nature of collagen metabolism, large levels of variability in the clinical effectiveness of BMP can be expected. Although BMPs hold promise as an advanced means for bone regeneration, their arrival in the marketplace has been long delayed. The latest reports suggest that approval for their use in humans in the United States may still be 2–3 years in the future.

Incorporation affecting the activity of cellular processes into the design of biomaterials has been approached in additional allied efforts. In October 1999, an alternate method was approved by the Food and Drug Administration. It was based on the use of natural osteogenic phenomena. Scientists and clinicians have long recognized the importance of collagen as a biomaterial because of its singular role as a major component of bone. The primary function of collagen is to act as tracks on which cells can move. Whereas collagen influences the cellular processes, the hydroxylapatite provides the structural and morphological support required for cell attachment. The advances in molecular modeling techniques have allowed a close examination of the collagen molecule. Detailed analyses have revealed that a 15-residue amino acid sequence within a chain of type I collagen is responsible for its cell-binding functions. This discovery led to the isolation and production of a synthetic material called P-15. As a first step, to mimic the physiological nature of bone, a composite of P-15 and natural anorganic bone mineral (ABM) was examined. ABM/P-15 is a synthetic, collagen-like agent that imitates autogenous bone. The inorganic/mechanical component, ABM, is composed of calcium phosphate and duplicates the natural anatomic structure of autogenous bone necessary for cellular invasion. The organic component is represented by P-15. The synthetic 15-amino-acid peptide, which repeats the cell-binding domain of type I collagen, modulates cell bonding, migrations, proliferation, and differentiation.

This material, PepGen P-15 (CeraMed, Lakewood, Colo), provides a tissue-engineered hospitable biomimetic habitat for cells and serves as a bone-like substitute for autogenous bone grafts. In clinical studies, PepGen P-15 demonstrated an increased expression of growth factors TGFβ, the agents associated with osteodifferentiation. PepGen P-15 has been demonstrated and clinically shown to have predictable benefits over other currently marketed bone graft replacement materials (Figures 1 and 2).

The research and development of bone replacement graft materials is promising and continues to approach the production of the ultimate material. In the interim, the BRGM that most closely resembles the standard awarded to autogenous bone should be the practitioner’s first choice.

Acknowledgments

The author wishes to acknowledge E. Burger, B. Atkinson, and J. Zeizer for their assistance in the preparation of this article.

Journal of Oral Implantology 5
REFERENCES

26. Froum SJ, Stahl SS. Human intrabony healing responses to the placement of tricalcium phosphate ce-

