Growing Surfactant Waves in Thin Liquid Films Driven by Gravity

Thomas P. Witelski, Michael Shearer, and Rachel Levy

The dynamics of a gravity-driven thin film flow with insoluble surfactant are described in the lubrication approximation by a coupled system of nonlinear PDEs. When the total quantity of surfactant is fixed, a traveling wave solution exists. For the case of constant flux of surfactant from an upstream reservoir, global traveling waves no longer exist as the surfactant accumulates at the leading edge of the thin film profile. The dynamics can be described using matched asymptotic expansions for $t \to \infty$. The solution is constructed from quasistatically evolving traveling waves. The rate of growth of the surfactant profile is shown to be $O(\sqrt{t})$ and is supported by numerical simulations.

1 Introduction

The dynamics of thin liquid films on solid substrates have been studied extensively in a variety of contexts, including gravity-driven flows [4, 12, 22, 31], spin-coating [30], and flows driven by strong surface tension [1, 25, 26]. Under lubrication theory, the governing equations for free-surface Stokes flow of thin films of viscous fluids can be reduced to a single nonlinear evolution equation for the surface height, $h = h(x, t)$ [26]. When surface tension is significant, the equation is fourth-order. Marangoni surface stresses are driving forces created by variations in the coefficient of surface tension. These forces can be generated by thermal [2, 23], electrical [19], or chemical means [20]. Flows driven by Marangoni stresses have been found to yield interesting instabilities and new kinds.

Received 30 June 2006; Revised 11 October 2006; Accepted 30 October 2006
of waves [2, 5, 14, 21]. Chemical Marangoni stresses can be generated by the presence of surfactants (surface active agents), which typically decrease surface tension; nonuniform distributions of surfactant molecules create such surface stresses [3, 13, 14]. Insoluble surfactants are transported by the fluid flow at the free surface, leading to a coupled PDE system for the concentration of surfactant and the film height [3, 9, 27–29] (see Figure 1.1).

In a series of recent numerical studies, Edmonstone, Matar, and Craster [6, 7] considered one-dimensional flow with surfactant down an inclined plane, and explored the stability to transverse perturbations. An interesting observation arising from their study is that when surfactant is supplied from an upstream reservoir, it accumulates at the leading edge of the flow, resulting in a steady increase of the maximum surfactant concentration (see Figure 1.2). Motivated by these observations, we present an analysis of this problem that determines the evolution of the surfactant profile. Our work builds on the results of [16, 17] to explain the structure of solutions in terms of traveling waves of a simplified problem in which capillarity and other regularizing influences are neglected. One result emerging from these studies is that the flow on an inclined plane is significantly different from the spreading of fluid on a horizontal surface [13, 14, 20, 27–29].

Model equations. Let \(h = h(x, t) \geq 0 \) be the nondimensional height of the free surface of the fluid film, and let \(\Gamma = \Gamma(x, t) \geq 0 \) denote the scaled concentration of insoluble surfactant on the free surface, where \(x \) is the position measured down the inclined plane. The
system of governing equations is \([6, 7, 16, 17, 27]\)

\[
\begin{align*}
\frac{\partial h}{\partial t} + \left(\frac{1}{3} h^3 \right)_x - \left(\frac{1}{2} h^2 \Gamma_x \right)_x &= \beta \left(\frac{1}{3} h^3 h_x \right)_x, \\
\frac{\partial \Gamma}{\partial t} + \left(\frac{1}{2} h^2 \Gamma \right)_x - (h \Gamma \Gamma_x)_x &= \beta \left(\frac{1}{2} h^2 \Gamma h_x \right)_x + \delta \Gamma_{xx}.
\end{align*}
\]

(1.1a) (1.1b)

We consider this system on the half line \(x \geq 0\) with boundary conditions

\[
\begin{align*}
h(0, t) &= h_L, & h(x \to \infty, t) &= h_R, \\
\Gamma(0, t) &= \Gamma_L, & \Gamma(x \to \infty, t) &= 0.
\end{align*}
\]

(1.2a) (1.2b)

The terms with coefficients \(\beta, \delta\) on the right-hand side regularize the underlying transport equations. In this model, we have omitted fourth-order regularizing capillarity terms. The role of these terms will be shown to have a weak influence on the wave structures studied here, as will be described in a forthcoming paper \([17]\).

We restrict attention to the case \(h_L > h_R\) in which an advancing front moves down the inclined plane, into a precursor film with height \(h_R\). The precursor film will typically be very thin compared to the upstream film, that is, \(h_L \gg h_R\). The problem statement is completed by specifying initial conditions

\[
h(x, 0) = h_*(x) \geq h_R, \quad \Gamma(x, 0) = \Gamma_*(x) \geq 0.
\]

(1.3)
Integrating (1.1b) over the domain yields the rate of growth of the total surfactant mass, I, in terms of the flux set by the boundary conditions at $x = 0$,

$$\frac{dI}{dt} = \frac{d}{dt} \left(\int_0^\infty \Gamma(x, t) \, dx \right) = \frac{1}{2} h_t^2 \Gamma_L. \quad (1.4)$$

If $\Gamma_L = 0$, then the mass of surfactant is conserved for all times, that is, $dI/dt = 0$; this is sometimes called the constant volume (of surfactant) case [6, 7]. For constant $\Gamma_L > 0$ the mass of surfactant grows linearly in time, that is, $I(t) = (1/2) h_t^2 \Gamma_L (t + t_*)$, where the constant t_* is related to the mass of the initial data. The boundary condition can be interpreted as describing a reservoir with an unlimited supply of surfactant which maintains the constant surfactant concentration Γ_L at $x = 0$ (see Figure 1.2).

For $\beta = \delta = 0$ (1.1a) and (1.1b) form a coupled hyperbolic-degenerate parabolic system [28] that sustains wave-like solutions with finite propagation speed. While sharing elements with models for wave propagation in hyperbolic conservation laws and traveling waves in parabolic equations [10, 18, 32] such thin-film/surfactant systems have novel features that make them the focus of continuing mathematical analysis [3, 9, 17, 27–29].

In this article, we focus on the influence of the surfactant boundary condition parameter $\Gamma_L \geq 0$; the results and analysis depend on an understanding of the special case $\Gamma_L = 0$, in which the total mass of surfactant in the system is fixed. In Section 2, we review and generalize the weak traveling wave solution found in [16] for $\Gamma_L = 0$. In Section 3, a quasistatically growing traveling wave is constructed via matched asymptotics; it describes the dynamics for $\Gamma_L > 0$. In particular, a simple $O(\sqrt{t})$ self-similar growth of the long-time surfactant distribution is predicted by asymptotics, and verified by results from numerical simulations of (1.1a) and (1.1b).

2 Traveling waves for $\Gamma_L = 0$ with $\beta = \delta = 0$

In the absence of regularization (i.e., $\beta = \delta = 0$) system, (1.1a), and (1.1b) have traveling wave solutions, as described by [16]. Here we summarize the analysis from [16], as it provides the starting point for our study of the current problem.

Consider steady profile traveling wave solutions with speed s,

$$h(x, t) = \overline{h}(\eta), \quad \Gamma(x, t) = \overline{\Gamma}(\eta), \quad \eta = x - st. \quad (2.1)$$
Substituting (2.1) into (1.1a) and (1.1b) and integrating the resulting system of ODEs once in η yields

\begin{align}
-s h + \frac{1}{3} h^3 - \frac{1}{2} h^2 \frac{df}{d\eta} &= \frac{1}{3} \beta h^3 \frac{df}{d\eta} - k_h, \\
-s \Gamma + \frac{1}{2} h^2 \Gamma - \frac{d\Gamma}{d\eta} &= \frac{1}{2} \beta h^2 \Gamma \frac{df}{d\eta} + \delta \frac{d\Gamma}{d\eta} - k_{\Gamma},
\end{align}

(2.2a, 2.2b)

where \(k_h, k_{\Gamma}\) are constants of integration. Imposing the asymptotic boundary conditions \(h(\eta \rightarrow -\infty) \rightarrow h_L\) and \(\Gamma(\eta \rightarrow -\infty) \rightarrow \Gamma_L\) in (2.2a) with the assumption that \(h', \Gamma' \rightarrow 0\) for \(|\eta| \rightarrow \infty\), we find

\[s = \frac{1}{3} (h_L^2 + h_R h_L + h_R^2) > 0, \quad k_h = \frac{1}{3} h_L h_R (h_L + h_R) > 0.\]

(2.3)

Furthermore, if the surfactant profile satisfies \(\Gamma(\eta \rightarrow \pm\infty) = 0\) then (2.2b) forces \(k_{\Gamma} = 0\).

For \(\beta = \delta = 0\), the solution is a weak solution of (2.2a) and (2.2b) in which \(h(\eta)\) and \(\Gamma'(\eta)\) are piecewise constant (see Figure 2.1) [16]:

\[
\begin{align*}
\overline{h}(\eta) &= \begin{cases}
 h_L, & \eta < \eta_1, \\
 h_1, & \eta_1 < \eta < 0, \\
 h_2, & 0 < \eta < \eta_2, \\
 h_R, & \eta_2 < \eta,
\end{cases} \\
\Gamma'(\eta) &= \begin{cases}
 0, & \eta < \eta_1 \\
 G_1, & \eta_1 < \eta < 0, \\
 G_2, & 0 < \eta < \eta_2, \\
 0, & \eta_2 < \eta.
\end{cases}
\end{align*}
\]

(2.4)

The values of the four constants \(\{h_j, G_j\}\) for \(j = 1, 2\) in (2.4) are determined by satisfying coupled algebraic jump conditions at \(\eta = \eta_0, \eta_1, \eta_2\). In [16, 17] it is shown that the values \(h_1, h_2\) satisfying \(0 \leq h_R < h_2 < h_L < h_1\) are given by the positive real roots of the polynomial equation

\[h^3 - 6sh + 12k_h = 0.\]

(2.5)

These roots exist if and only if the ratio of downstream to upstream film heights is below a threshold:

\[0 \leq \frac{h_R}{h_L} < \frac{1}{2} (\sqrt{3} - 1).\]

(2.6)

The surfactant slopes \(G_1 > 0, G_2 < 0\) are then given by

\[G_1 = \frac{(h_1 - h_2)(2h_1 + h_2)}{6h_1}, \quad G_2 = -\frac{(h_1 - h_2)(h_1 + 2h_2)}{6h_2}.\]

(2.7)
Figure 2.1 The weak traveling solution (2.4): (a) the piecewise constant \(h(\eta) \) profile, (b) the piecewise constant \(\Gamma'(\eta) \) profile, and (c) the piecewise linear profile for \(\Gamma(\eta) \) (2.8). For imposed boundary conditions \(h_L = 1 \) and \(h_R = 0.1 \), (2.5), (2.7), and (2.9) yield the values \(h_1 \approx 1.3787, h_2 \approx 0.2019, G_1 \approx 0.4210, G_2 \approx -1.7316, \eta_1 \approx -2.3753, \eta_2 \approx 0.5775.\)
The surfactant profile is continuous and piecewise linear [16], consequently, integrating the solution for \(\Gamma'(\eta) \) subject to the condition \(\Gamma(0) = 1 \) yields the solution

\[
\Gamma(\eta) = \begin{cases}
0, & \eta \leq \eta_1, \\
1 + G_1\eta, & \eta_1 \leq \eta \leq 0, \\
1 + G_2\eta, & 0 \leq \eta \leq \eta_2, \\
0, & \eta_2 \leq \eta,
\end{cases}
\] (2.8)

where continuity of \(\Gamma(\eta) \) at \(\Gamma = 0 \) determines the values \(\eta_1, \eta_2 \) to be

\[
\eta_1 = -\frac{1}{G_1} < 0, \quad \eta_2 = -\frac{1}{G_2} > 0.
\] (2.9)

Observe that the surfactant distribution is compactly supported and has total mass

\[
\bar{\Gamma} = \int_{-\infty}^{\infty} \Gamma d\eta = \frac{1}{2} (\eta_2 - \eta_1) = \frac{6(h_1 + h_2)}{(h_1 + 2h_2)(2h_1 + h_2)}. \quad (2.10)
\]

From the geometry of Figure 2.1(c), \(\bar{\Gamma} \) is the area of the triangular profile \(\Gamma(\eta) \).

Remarks 2.1. (1) In the forthcoming article [17], it will be shown that this solution is structurally stable with respect to regularizations introduced by diffusive transport of surfactant \((\delta > 0) \), diffusive transport of bulk fluid due to gravitational body forces \((\beta > 0) \), and capillarity (the effects of surface tension). These regularizations are shown to leave \(h_1, h_2 \) and \(G_1, G_2 \) essentially unchanged; their effects are localized to the neighborhoods of the points \(\eta = 0, \eta_1, \eta_2 \).

(2) If the precursor thickness \(h_R \) approaches zero, we find (from [17]) that \(h_2 \to 0 \) and \(h_1 \to \sqrt{2}h_1 \). Consequently, from (2.7), \(G_2 \to -\infty \) (a shock in the surfactant profile at \(\eta = 0 \)) while \(G_1 \) remains finite. From (2.9), \(\eta_2 \to 0 \); and hence the \(h_2 \) plateau in the film thickness vanishes, while the surfactant profile approaches a sawtooth wave.

2.1 Scale-invariant structure of the traveling wave

The condition \(\Gamma(0) = 1 \) determining the maximum surfactant concentration is an arbitrary normalization. This condition can be imposed at \(\eta = 0 \) thanks to translation invariance of the PDEs (1.1a) and (1.1b). The maximum value itself can be set to any positive constant, \(\Gamma_{\text{max}} \equiv m > 0 \). In [16] it was noted that the solutions of (1.1a) and (1.1b) with
\(\beta = \delta = 0 \) are invariant under the continuous one-parameter scaling \(h \rightarrow h, \Gamma \rightarrow m\Gamma, x \rightarrow x/m, t \rightarrow t/m. \) Consequently, up to translation invariance, the general traveling wave solution of (1.1a) and (1.1b) with \(\beta = \delta = 0 \) subject to boundary conditions (1.2a) and (1.2b) with \(\Gamma_L = 0 \) is

\[
h(x, t) = \Gamma\left(\frac{x - st}{m}\right), \quad \Gamma(x, t) = m\Gamma\left(\frac{x - st}{m}\right)
\]

for any \(m > 0. \)

Note that the trivial case of no surfactant (\(\Gamma \equiv 0 \)) corresponds to the singular case of (2.11) with \(m = 0, \)

\[
\begin{aligned}
\bar{h}_0(\eta) &= \begin{cases}
\bar{h}_L, & \eta < 0, \\
\bar{h}_R, & 0 < \eta,
\end{cases} \\
\bar{\Gamma}_0(\eta) &= 0.
\end{aligned}
\]

The wave speed given by (2.3) is independent of \(m \geq 0. \) For \(m = 0, \) this is to be expected from the fact that (2.12) is the shock wave solution of the decoupled equation \(h_t + ((1/3)h^3)_x = 0, \) a scalar conservation law. We can therefore interpret the influence of the surfactant as modifying the shape of the surfactant-free shock profile (2.12), effectively broadening the width of the shock structure through the introduction of the \(h_1 \) and \(h_2 \) plateau regions. In the limit of vanishing surfactant concentration, \(\Gamma_{\text{max}} \rightarrow 0, \) we observe that \(\eta_2 - \eta_1 \rightarrow 0, \) so although \(h_1, h_2 \) are independent of \(\Gamma_{\text{max}}, \) solution (2.11) collapses to solution (2.12), shrinking the plateau with height \(h_1 \) to zero width.

It is noteworthy that solution (2.11) depends upon having upstream and downstream film heights below the critical ratio (2.6). If \((1/2)(\sqrt{3} - 1) < h_R/h_L < 1, \) then a different solution emerges from PDE simulations, even though the surfactant-free solution is still a single monotonic traveling wave. The structure of the new solution is the subject of current investigation.

3 Dynamics for \(\Gamma_L > 0 \) with \(\beta, \delta > 0 \)

We now focus on understanding the role of the boundary condition parameter \(\Gamma_L \) in determining the dynamics, as in the simulation with \(\Gamma_L > 0 \) shown in Figure 1.2.

If \(\Gamma_L = 0, \) then the total amount of surfactant is conserved for all times. If \(\beta = \delta = 0 \) and we have a traveling wave solution (2.11) for the surfactant profile, then the value of \(m \) is determined by the mass of the initial condition \(\Gamma_*(x) \) (1.3),

\[
I = \int_0^\infty \Gamma_*(x)dx = m^2 \int \Gamma(\xi)d\xi = m^2 I
\]

\((3.1) \)
with \(\Gamma \) given by (2.10). More generally, we expect that the traveling wave solution (2.11) is structurally stable and attracting for \(t \to \infty \) from a broader set of initial data and small positive \(\beta, \delta \).

If \(\Gamma_L > 0 \), then there are no smooth bounded traveling wave solutions of (2.2a) and (2.2b) satisfying upstream and downstream boundary conditions. To see this, we note that the upstream condition implies \(k \Gamma = ((1/2)h_L^2 - s) \Gamma_L \), whereas the downstream boundary condition gives \(k \Gamma = 0 \). For \(\Gamma_L > 0 \) these are consistent only in the special case \(s = (1/2)h_L^2 \); from (2.3), this yields the condition \(h_R/h_L = (1/2)(\sqrt{3} - 1) \), the threshold value from (2.6). This leads to the trivial solution \(h = \text{constant} \) as the only bounded traveling wave at this speed. But this solution conflicts with the boundary conditions, \(h_L > h_R \), so it is not acceptable. Consequently, the solution of (1.1a) and (1.1b) in this case must take a different form; we will turn to the use of matched asymptotics to construct the solution.

The behavior observed in numerical simulations in Figure 1.2 suggests that the solution with \(\Gamma_L > 0 \) still resembles the traveling wave solution (2.11). However, the \(\Gamma \) profile evolves, suggesting that the maximum of \(\Gamma \) should be generalized to be a time-dependent increasing function, \(m(t) \), to be used in (2.11). We now present analysis to support this description.

3.1 Approximate global solution for \(t \to \infty \)

Motivated by the above discussion, we consider a change of variables that allows for time-dependence in the maximum of \(\Gamma \) and in the speed of propagation. All solutions of (1.1a) and (1.1b) can be written in the form

\[
\begin{align*}
\tilde{h}(x, t) &= \tilde{h}(\zeta, t), \quad \Gamma(x, t) = m(t)\tilde{\Gamma}(\zeta, t), \quad \zeta = \frac{x - x_0(t)}{m(t)}, \\
\end{align*}
\]

where the functions \(x_0(t), m(t) \) must be determined. Substituting (3.2) into (1.1a) and (1.1b) yields the new governing PDEs:

\[
\begin{align*}
\tilde{h}_t - \tilde{x}_0(t)\tilde{h}_\zeta - m'(t)\tilde{h}_\zeta + \left(\frac{1}{3}\tilde{h}^3\right)_{\zeta} + \left(\frac{1}{2}\tilde{h}^2\tilde{\Gamma}\right)_{\zeta} &= \frac{\beta}{m(t)}\left(\frac{1}{3}\tilde{h}^3\tilde{h}_\zeta\right), \\
\tilde{\Gamma}_t - \tilde{x}_0(t)\tilde{\Gamma}_\zeta - m'(t)\tilde{\Gamma}_\zeta + m'(t)\tilde{\Gamma} + \left(\frac{1}{2}\tilde{h}^2\tilde{\Gamma}\right)_{\zeta} - (\tilde{h}\tilde{\Gamma}\tilde{\Gamma})_{\zeta} &= \frac{\beta}{m(t)}\left(\frac{1}{2}\tilde{h}^2\tilde{\Gamma}\tilde{h}_\zeta\right) + \frac{\delta}{m(t)}\tilde{\Gamma}_{\zeta\zeta}.
\end{align*}
\]
For concreteness, in numerical simulations, $x_0(t)$ will be defined by the position of the maximum of $\Gamma(x, t)$. Figure 3.1 shows that in this moving reference frame, h, Γ exhibit a well-defined growth. To depict the scaled forms \tilde{h}, $\tilde{\Gamma}$, the same profiles are plotted in the forms (3.2) in Figure 3.2 with $m(t)$ replaced by the numerical result $\Gamma_{\text{max}}(t) = \max_x \Gamma(x, t)$.

Plotted in this form, the profiles indeed appear to approach the traveling wave solution, (2.4) and (2.8), as $t \to \infty$. This behavior can be obtained directly from (3.3a) and (3.3b) subject to the following assumptions.

1. As $t \to \infty$, the rescaled solutions \tilde{h}, $\tilde{\Gamma}$ converge to quasisteady profiles that are independent of t: $\tilde{h} \to \tilde{h}(\zeta)$, $\tilde{\Gamma} \to \tilde{\Gamma}(\zeta)$.
2. The maximum of the surfactant profile grows slowly (sublinearly) with time,

\[m(t) = O(t^\alpha), \quad t \to \infty \text{ with } 0 < \alpha < 1. \] (3.4)

3. The propagation speed $x_0'(t)$ remains bounded for all times and approaches a positive constant: $x_0'(t) \to \tilde{s} > 0$, as $t \to \infty$.

Assumption (1), supported by Figure 3.2, suggests that the \tilde{h}_t, $\tilde{\Gamma}_t$ terms in (3.3a) and (3.3b) can be neglected to yield equations involving only ζ-derivatives of \tilde{h}, $\tilde{\Gamma}$. From assumption (2), $m(t) \to \infty$ and $m'(t) \to 0$ as $t \to \infty$. Consequently, the terms on the
right-hand sides of (3.3a) and (3.3b) will vanish since $\beta/m \to 0$ and $\delta/m \to 0$. Thus regularization offered by these terms becomes negligible for long times. Similarly, the terms on the left-hand sides multiplied by $m'(t)$ become negligible (with the mild assumption that ζh, $\zeta \Gamma$ are bounded as $|\zeta| \to \infty$). Using assumption (3), the resulting equations for $t \to \infty$ can be integrated once in ζ to yield

$$-\frac{s}{3}h + \frac{1}{3}h^3 - \frac{1}{2}h^2 \frac{d\Gamma}{d\zeta} = -k_h, \quad (3.5a)$$

$$-\frac{s}{2} \Gamma + \frac{1}{2} h^2 \Gamma - \frac{1}{2} h \frac{d\Gamma}{d\zeta} = -k_{\Gamma}, \quad (3.5b)$$

where k_h, k_{Γ} are constants of integration. Suitable boundary conditions corresponding to (1.2a), (1.2b) are given by

$$\tilde{h}(\zeta \to -\infty) = h_L, \quad \tilde{h}(\zeta \to \infty) = h_K, \quad (3.5c)$$

$$\tilde{\Gamma}(\zeta \to -\infty) = 0, \quad \tilde{\Gamma}(\zeta \to \infty) = 0. \quad (3.5d)$$

The boundary condition on $\tilde{\Gamma}(\zeta \to -\infty)$ follows from $\tilde{\Gamma}(\zeta \to \infty) = \Gamma_L/m(t) \to 0$ as $t \to \infty$. As a result, the influence of the boundary condition Γ_L does not enter in the leading order problem (3.5a) and (3.5b) for $t \to \infty$. At this point, we observe that problem (3.5a) and (3.5b) reduces to that of Section 2 (2.2a) and (2.2b) and we have the leading order solution for $t \to \infty$,

$$\tilde{h}(\zeta, t) \sim \tilde{h}(\zeta), \quad \tilde{\Gamma}(\zeta, t) \sim \tilde{\Gamma}(\zeta), \quad x'(t) \sim s. \quad (3.6)$$

Returning to the original PDE system (1.1a) and (1.1b) on the domain $x > 0$, assumption (2) is justified by considering the evolution of the mass of surfactant. Figure 1.2 suggests that the surfactant profile with $\Gamma_L > 0$ can be approximated by a uniform layer with $\Gamma = \Gamma_L$ together with a growing triangular profile (2.8), scaled as in (2.11) by $m(t)$. With respect to calculating the mass of surfactant, this approximate description of $\Gamma(x, t)$ can be expected to yield a vanishingly small relative error as $t \to \infty$. Hence for long times, $I(t)$ is given by

$$I(t) = \int_0^\infty \Gamma dx \approx \Gamma_L s(t + t_0) + \frac{1}{2} \Gamma_L^2 |\eta_1| + m^2(t) \int_{\eta_1}^{\eta_2} \Gamma(\eta) d\eta, \quad (3.7)$$

where t_0 is a constant related to initial conditions. The first term on the right of (3.7) is the surfactant in the uniform Γ_L layer with length increasing at a rate equal to the
The long-time solution profiles from Figure 3.1 rescaled according to (3.2). Dashed lines show the traveling wave solution (2.4), (2.8). Insets show details of the evolution near \(\eta_1 \approx -2.375 \), given by (2.9).

propagation speed of the advancing triangular wave (asymptotically \(x'_0 \sim s \)). The second term is a finite contribution from the region joining the uniform layer to the triangular profile. Substituting (3.7) into (1.4) yields

\[
\frac{dl}{dt} \approx \Gamma \frac{dm^2}{dt} + s\Gamma_L = \frac{1}{2} h_L^2 \Gamma_L.
\]

Using (2.3), we obtain

\[
m(t) \sim \left(\frac{\Gamma_L}{6l} \left(h_L^2 - 2h_R h_L - 2h_R^2 \right) \right)^{1/2} \sqrt{t + t^*}, \quad t \to \infty.
\]

Consequently, the second assumption, (3.4), is verified with \(\alpha = 1/2 \).\(^1\) Observe that the condition that the coefficient of (3.9) be real requires that \(1 - 2r - 2r^2 > 0 \), where \(r \) is the ratio \(r = h_R/h_L \). The resulting condition on this ratio is \(0 < r < (1/2)(\sqrt{3} - 1) \), precisely coinciding with the condition (2.6) for the existence of steady profile waves [16]. Figure 3.3 shows excellent agreement between the prediction (3.9) and the results of the numerical simulations.

\(^1\)Note that the traveling wave solution (3.6) could also be expected for time-dependent boundary conditions, \(\Gamma_L(t) = O(t^\gamma) \) if \(0 \leq \gamma < 1 \). For \(\gamma = 1 \), the \(m'(t) \) terms on the left-hand sides of (3.3a) and (3.3b) must be retained, which would lead to a new class of self-similar solutions.
Growing Surfactant Waves in Thin Liquid Films Driven by Gravity

In summary, we have shown that for long times, the solutions approach growing traveling waves,

\[h(x, t) \sim \frac{x - x_0(t)}{m(t)}, \quad \Gamma(x, t) \sim \frac{x - x_0(t)}{m(t)} \quad (3.10) \]

Some further comments are appropriate at this point. First, for large times, when the influence of the boundary conditions at \(x = 0 \) are weak, the traveling wave solutions of (1.1a) and (1.1b) should be invariant with respect to spatial translations, \(x \rightarrow x + \epsilon_1 \) for any real \(\epsilon_1 \). But secondly, from the autonomous equations (3.5a) and (3.5b), the long time growing solutions (3.2) should also be invariant with respect to translations in their spatial variable, \(\zeta \rightarrow \zeta + \epsilon_2 \) for some \(\epsilon_2 \). Combining these observations, we note that the general form for the moving reference frame for \(t \rightarrow \infty \) is

\[x_0(t) \sim st - \epsilon_2 m(t) - \epsilon_1 \quad \Rightarrow \quad \frac{dx_0}{dt} \sim s - \epsilon_2 m'(t) \sim s. \quad (3.11) \]

This validates the third assumption. See Figure 3.4(a) for numerical evidence supporting (3.11). If \(x_0(t) \) is known, then from (3.2) the positions defining the region of support of the dominant distribution \((\eta_1, \eta_2) \) are given by

\[x_1(t) = x_0(t) + \eta_1 m(t), \quad x_2(t) = x_0(t) + \eta_2 m(t), \quad (3.12) \]

see Figure 3.4(b).
One final remaining issue is that while (3.10) suggests that \(\Gamma(x, t) = 0 \) for \(x < x_1(t) \), it is clear from Figure 1.2 that \(\Gamma \sim \Gamma_L > 0 \). This is resolved in the next subsection via boundary layer analysis.

3.2 Boundary layer structures at the jump discontinuities \(\eta_1 \) and \(\eta_2 \)

The limit \(1/m \to 0 \) in (3.3a) and (3.3b) eliminated the regularization given by the second-order terms on the right-hand sides of those equations. This is a singular perturbation [11, 15] of the full system for \(t \to \infty \); and hence the weak solution (3.10) should be interpreted as a leading order outer solution. In particular, it is not uniformly valid for all \(\zeta \); at points where jump discontinuities occur in \(\tilde{h}(\zeta), \overline{\Gamma}(\zeta) \), the influence of the higher-order terms may strongly influence the local structure of the solution, see insets in Figure 3.2.

In this section, we use matched asymptotics to construct boundary layer solutions as inner expansions of the solution in the neighborhoods of the shocks at \(\eta_1 \) and \(\eta_2 \). These inner solutions can be combined with (3.10) and a boundary layer at \(\eta = 0 \) (considered in Section 3.3) to yield a uniformly valid approximate solution.

Define \(\epsilon = 1/m \to 0 \) as a small parameter for the limit \(t \to \infty \). Consider a small neighborhood of the shock at \(\zeta = \eta_1 \), defined by \(\zeta = \eta_1 + \epsilon^\lambda y \) with \(\lambda > 0 \) to be determined and \(y = O(1) \). The profile \(\tilde{h} \) remains finite and bounded, so the quasisteady solution...
should take the form \(\tilde{h} = \hat{h}(y) + O(\epsilon) \). Similarly, we expect that for \(\zeta \leq \eta_1 \) the scaled surfactant is of the order \(\Gamma \approx \Gamma_L/m = O(\epsilon) \), hence the solution should be \(\Gamma = c\Gamma(y) + O(\epsilon^2) \). Substituting these into (3.3a) and (3.3b) and balancing the dominant terms determines the scaling to be \(\lambda = 1 \) and (after integrating in \(y \)) yields the leading order equations:

\[
- \left[\tilde{s}_1 + \eta_1 m'(t) \right] \hat{h} + \frac{1}{3} \hat{h}^3 - \frac{1}{2} \hat{h}^2 \frac{d\hat{h}}{dy} = \frac{1}{3} \beta \hat{h}^3 \frac{d\hat{h}}{dy} - k_{h,1}, \tag{3.13a}
\]

\[
- \left[\tilde{s}_1 + \eta_1 m'(t) \right] \hat{\Gamma} + \frac{1}{2} \hat{\Gamma}^2 \hat{\Gamma} - \hat{h} \frac{d\hat{h}}{dy} = \frac{1}{2} \beta \hat{h}^2 \hat{\Gamma} \frac{d\hat{h}}{dy} + \delta \frac{d\hat{\Gamma}}{dy} - k_{\Gamma,1}, \tag{3.13b}
\]

where the \(k \)'s are constants and we have removed the assumption from (3.6) that the speed \(\tilde{s}_1 \) is known. Note that the \(m'(t) \) terms are formally higher-order terms as \(t \to \infty \), but we retain them in (3.13a) and (3.13b) to help indicate the fact that the boundary layer solution is slowly varying in time and has speed different from \(\chi'_0(t) \) (see (3.12)). Neglecting this weak variation, observe that (3.13a) and (3.13b) take the same form as the traveling wave equations (2.2a) and (2.2b). Hence the boundary layer solution is also a traveling wave, see Figure 3.5. One difference, however, is that the solutions of (3.13a) and (3.13b) are subject to only the left boundary conditions \(\hat{h}(y \to -\infty) \to h_L, \hat{\Gamma}(y \to -\infty) \to \Gamma_L \) which determine the constants of integration for \(t \to \infty \) to be

\[
k_{h,1} = \tilde{s}_1 h_L - \frac{1}{3} h_L^3, \quad k_{\Gamma,1} = \tilde{s}_1 \Gamma_L + \frac{1}{2} h_L^2 \Gamma_L. \tag{3.13c}
\]

In contrast to (2.3), note that the speed \(\tilde{s}_1 \) has not yet been determined.

An analogous set of boundary layer equations can be obtained in the neighborhood of \(\eta_2 \) with \(\eta_1 \) replaced by \(\eta_2 \) and different constants for \(k_{h,2} \) and \(k_{\Gamma,2} \), \(\tilde{s}_2 \) determined by the boundary conditions \(\hat{h}(y \to \infty) \to h_R, \hat{\Gamma}(y \to \infty) \to 0 \),

\[
k_{h,2} = \tilde{s}_2 h_R - \frac{1}{3} h_R^3, \quad k_{\Gamma,2} = 0. \tag{3.14}
\]

The traveling wave structure of these solutions are shown in Figure 3.6. The need for this boundary layer is not as apparent as for (3.13a), (3.13b), and (3.13c) since the outer solution (3.10) is compatible with the boundary conditions for \(y \to \infty \). However, like the solution at \(\eta_1 \), this solution at \(\eta_2 \) gives the structure defining the smooth transition from one level of \(h \) to another, \(h_2 \to h_R \) \((h_L \to h_1 \text{ at } \eta_1) \), and from one slope of \(\Gamma \) to another, \(\Gamma' = G_2 \to \Gamma' = 0 \) \((\Gamma' = 0 \to \Gamma' = G_1 \text{ at } \eta_1) \).

With respect to system (3.3a) and (3.3b) the inner solutions exhibit sharpening features with the widths of the boundary layers decreasing as \(t \to \infty \) (see insets in Figure 3.2). However, under the rescaling appropriate to the boundary layers, we observe...
that these solutions are quasisteady traveling waves. Moreover, the boundary layer scaling essentially returns the system to the original form (1.1a) and (1.1b) with $y \sim x$, $\hat{h} \sim h$, and $\hat{\Gamma} \sim \Gamma$. Consequently, while for $\Gamma_1 > 0$ the solution is not globally a traveling wave, traveling wave solutions still accurately describe h, Γ locally in these boundary layers (see Figures 3.5, 3.6).
3.3 Boundary layer at \(\eta = 0 \)

As described above, on the \(\zeta = O(1) \) lengthscale, for \(m \to \infty \), the solution approaches (3.6) and appears to have jump discontinuities in \(\tilde{h}, \tilde{\Gamma} \) at \(\zeta = 0 \). Like the behavior at \(\eta = \eta_1, \eta_2 \), the presence of higher-order regularization smooths the solution over a narrow boundary layer at \(\zeta = 0 \). However, the structure at \(\eta = 0 \) is different than in the other boundary layers because here \(\Gamma = O(m) \to \infty \) whereas \(\Gamma = O(1) \) near \(\eta_1, \eta_2 \).

To characterize the boundary layer at \(\eta = 0 \), where \(\Gamma \) reaches its maximum, \(m(t) = \Gamma_{\text{max}}(t) \), we use the ansatz

\[
h(x, t) \sim \tilde{h}(\eta), \quad \Gamma(x, t) \sim m(t) + \tilde{\Gamma}(\eta), \quad \eta = x - st,
\]

where \(\tilde{h}, \tilde{\Gamma} = O(1) \) on \(O(1) \) bounded neighborhoods of \(\eta = 0 \) as \(m(t) \to \infty \). Note that \(\tilde{\Gamma}(0) = 0 \) from the definition of \(\Gamma_{\text{max}} \). Substituting this ansatz into the original governing equations (1.1a) and (1.1b), the traveling wave equation (2.2a) for \(\tilde{h}(\eta) \) is recovered at leading order from (1.1a),

\[
-s \tilde{h} + \frac{1}{3} \tilde{h}^3 - \frac{1}{2} \frac{d\tilde{h}}{d\eta} = \frac{1}{3} \beta \tilde{h}^2 \frac{d\tilde{h}}{d\eta} - c_h.
\]

Substituting into (1.1b) and using (3.4) for \(t \to \infty \), we obtain the dominant balance at \(O(m) \),

\[
\frac{1}{2} \frac{d\tilde{h}}{d\eta} = \frac{1}{3} \beta \frac{d\tilde{h}}{d\eta} - c_\Gamma.
\]

Note that the influence of the regularization by surface diffusion, associated the parameter \(\delta \) is not present in (3.16a) and (3.16b). On the other hand, the parameter \(\beta > 0 \) is essential in determining the structure of the boundary layer. In contrast, both \(\beta \) and \(\delta \) were present in the (3.13a) and (3.13b) boundary layer equations.

Applying the boundary conditions at \(\eta \to \pm \infty \) and using the result from [16] that

\[
s = \frac{1}{6}(\tilde{h}_1^2 + \tilde{h}_1 \tilde{h}_2 + \tilde{h}_2^2),
\]

we obtain \(c_\Gamma = -s \) and \(c_h = \tilde{h}_1 \tilde{h}_2 (\tilde{h}_1 + \tilde{h}_2)/12 = k_h \), see (2.3). Consequently, (3.16a) and (3.16b) can be rewritten as the autonomous system

\[
\frac{dh}{d\eta} = \frac{(\tilde{h} - \tilde{h}_1)(\tilde{h} - \tilde{h}_2)(\tilde{h} + \tilde{h}_1 + \tilde{h}_2)}{\beta \tilde{h}^3}, \quad \frac{d\Gamma}{d\eta} = \frac{2s(\tilde{h} - h_*)}{\tilde{h}^2},
\]
where the constant h_* defines the film thickness at $\eta = 0$, $\hat{h}(0) = h_*$, where $\hat{\Gamma}(0) = 0$ ($\Gamma = \Gamma_{\text{max}}$),

$$h_* = \frac{3h_1 h_2 (h_1 + h_2)}{2(h_1^2 + h_1 h_2 + h_2^2)}.$$ \hspace{1cm} (3.19)

As expected, these equations describe a unique smooth solution connecting $h \rightarrow h_1$ to $h \rightarrow h_2$ and $\Gamma' \rightarrow G_1$ to $\Gamma' \rightarrow G_2$, see Figure 3.7.

3.4 Matching and overall structure

As $t \rightarrow \infty$ since the influence of quasistatic evolution becomes weak, it is valid to treat the outer solution (3.6) and the boundary layers as steady traveling waves to leading order. Consequently, the results of [16] may be applied directly to carry out the asymptotic matching of the boundary layers to the outer solution. Notably, it is found that the leading order wave speeds are identical,

$$s = \hat{s}_1 = \hat{s}_2.$$ \hspace{1cm} (3.20)

for s given by (2.3). Briefly, matching the boundary layer at η_1 to the outer solution (3.10) requires finding a solution of (3.13a) and (3.13b) that satisfies $\hat{h}(y \rightarrow \infty) \rightarrow h_1$ and $\hat{\Gamma}(y \rightarrow \infty) \rightarrow \infty$ with $\hat{\Gamma}'(y \rightarrow \infty) \rightarrow G_1$. Substituting these into (3.13b) yields $-\hat{s}_1 + (1/2)h_1^2 h_1 G_1 = 0$, similar to [16]. It is notable that this algebraic matching condition, and likewise the one obtained from (3.13a) are independent of Γ_L. The consequence is that to leading order, despite the fact that the outer solution is a self-similar growing
profile (3.10), for long times the overall solution (outer and boundary layers) can be understood in terms of a single traveling wave with speed s.

4 Discussion and conclusions

The presence of a finite mass of insoluble surfactant on a film moving down an inclined substrate introduces new structure to the leading edge of the fluid film. Provided that the threshold condition (2.6) holds, despite the new structure of the film, the solution propagates with the same speed as if there were no surfactant.

When surfactant is continually supplied from upstream, the solution is no longer a traveling wave. While a well-defined wave speed is maintained, in the frame of reference moving with that speed, the solution exhibits a self-similar growing form for $t \to \infty$; similar behavior has been observed in other thin film problems [8, 24]. We have been able to obtain expressions for the accumulation of surfactant and leading order asymptotic forms for the film and surfactant profiles subject to relatively few assumptions on the dynamics. While the arguments presented here are not rigorous, the approaches considered could provide good starting points for further analyses of this problem.

In forthcoming work [17], further analysis of the traveling wave (2.4) will be presented: structural stability with respect to regularization and the limits of $\beta \to 0, \delta \to 0$ and weak fourth-order capillary effects, as well as other questions of stability. It is worth noting again that the solutions presented here depend on the threshold condition (2.6). Above this threshold, for example in the case of an initially flat film, the form of solutions is not known, and numerical simulations suggest that more complicated dynamics take place [16]. Further work on this problem is being pursued [17].

Acknowledgments

We thank the referee for incisive questions and helpful suggestions that improved the article. Parts of this research were presented by MS at the IPAM workshop on thin films and fluid interfaces. We thank the organizers and IPAM for an enjoyable and productive meeting. The first and third authors were supported by NSF Grants DMS-0239125 CAREER and DMS-0244498 FRG. The second author was supported by NSF Grant DMS-0244491 FRG.

References

