Identification of Pain-Reduction Strategies Used by Community-Dwelling Older Persons

Lisa C. Barry,1 Thomas M. Gill,2 Robert D. Kerns,3,4,5,6 and M. Cary Reid7

Departments of 1Epidemiology and Public Health, 2Internal Medicine, 3Neurology, 4Psychiatry, and 5Psychology, Yale University School of Medicine, New Haven, Connecticut. 6VA Connecticut Healthcare System, West Haven, Connecticut. 7Division of Geriatrics and Gerontology, Weill Medical College, Cornell University, New York.

Background. The types of methods used by older persons to reduce chronic pain have not been adequately characterized. In this cross-sectional study of older persons with chronic nonmalignant pain, we sought to identify strategies perceived as effective in reducing pain and to ascertain factors associated with their use.

Methods. Participants included 272 community-dwelling persons aged 73 years or older. Information regarding participants’ sociodemographic, clinical, psychological, and pain status was collected. Strategies perceived as effective in reducing pain were identified using a qualitative approach. Similar methods (e.g., “takes acetaminophen when necessary” and “uses Tramadol daily”) were grouped into specific pain-reduction categories (e.g., analgesic medication use). Logistic regression analysis was used to identify associations between participant-related factors and the four most prevalent pain-reduction strategies.

Results. Participants had a mean (standard deviation) age of 80.9 (5.1) years and were mostly female (69%). Overall, 248 (91%) participants reported at least one effective strategy for reducing pain; the mean number of strategies per participant was 2.7 (range = 1–6). The four most prevalent pain-reduction strategies were analgesic medication use (reported by 59% of participants), activity restriction (38%), hot and/or cold modalities (28%), and exercise (23%). Although most participants reported at least one effective pain-reduction strategy, 60% rated their pain as “quite a bit” or “extremely” bothersome. In logistic regression analysis, no factor (including age and gender) was independently associated with any of the prevalent pain-reduction strategies.

Conclusions. Despite the fact that most participants perceived several pain-reduction strategies as effective, 60% reported experiencing substantial pain. Research of older persons with chronic pain is warranted to determine whether changes in the way existing pain-reduction strategies are administered can improve the management of pain or if more efficacious strategies are needed.

Among older persons, chronic pain is a common (1–5) and often disabling condition (6–9). Efficacious treatments for older persons with chronic pain, however, remain inadequately defined. To date, few studies have examined the efficacy of pharmacologic or nonpharmacologic therapies for chronic pain in older persons (10,11). Expanding the number of older persons with chronic pain enrolled in clinical trials of pain therapies is therefore important. In addition, generating knowledge regarding the types of methods used by older persons to reduce pain could inform future intervention efforts.

Prior studies (12,13) have demonstrated a high prevalence of analgesic medication use in community-dwelling older persons with chronic pain, but did not inquire about the effectiveness of this treatment approach. Nonpharmacologic strategies such as massage, prayer, and cold were perceived as helpful in reducing musculoskeletal pain in at least two prior studies (14,15). However, these investigations may not have captured the full range of methods used by older persons to treat pain because each inquired about a limited number of strategies. At least two studies (16,17) of older persons with chronic pain used qualitative research methods and found that exercise, massage, and home remedies such as dietary modifications were also perceived as effective pain-reduction strategies. However, the generalizability of these findings is uncertain because of the small samples sizes (16,17).

The objective of this study was to identify—using qualitative research methods—strategies perceived as effective in reducing chronic pain in a large sample of community-dwelling older persons. We also sought to determine whether specific participant characteristics including demographic, psychosocial, and pain-relevant variables were associated with the most commonly reported pain-reduction strategies.

Methods

Study Population

Participants were members of the Precipitating Events Project (PEP). This ongoing prospective cohort study is designed to elucidate the epidemiology of disability and recovery among 754 community-dwelling persons aged 70 years or older (18). PEP exclusion criteria included the need for personal assistance in any of four key activities of daily living (ADLs)—bathing, dressing, walking inside the house, and transferring from a chair; significant cognitive impairment with no available proxy (18); inability to speak English; diagnosis of a terminal illness with a life expec-
tancy of less than 12 months; and plans to move out of the
New Haven area during the next 12 months. The assembly
of the cohort has been described in detail elsewhere (18).
The Human Investigation Committee at Yale University ap-
proved the study.

The current study used data collected as part of
scheduled, 36-month follow-up assessments that were
conducted by trained research nurses in participants’ homes.
Prior to study inclusion, the research nurses underwent an
in-depth training process that included hands-on training
with a veteran interviewer and weekly in-service training
sessions that provided ongoing quality assurance. To
supplement the training, a detailed manual of operations
including the study procedures, eligibility criteria, instru-
ment coding, and flow of information was provided to each
research nurse. Of the 656 PEP nondecedents, 626 (95%)
completed a home-based assessment. Participants were
screened for chronic pain (19) by asking, “During the past
12 months, have you experienced pain/discomfort on most
days of every month for at least 3 months in a row?” The
272 (43%) participants who answered “yes” formed the
analytic sample for the current study.

Data Collection

Assessment of participant characteristics.—Demographic
data included age, gender, race, educational level, and living
situation. Medical comorbidity was determined by inquiring
about the presence of 12 self-reported, physician-diagnosed
chronic conditions (18). Participants’ cognitive function was
assessed with the Folstein Mini-Mental State Examination
(MMSE) (20). Although participants were independent in
four basic ADLs at enrollment, substantial disability de-
veloped over time (21). Information on participants’
functional status was obtained by inquiring about their self-
reported ability to perform seven basic and five instrumental
ADLs (21). For each ADL task, participants were asked, “At
the present time, do you need help from another person to
complete the task?” Participants who did not need help were
asked, “At the present time, do you have difficulty with the
task?” Each task was scored as “0” for no help and no
difficulty, “1” for difficulty but no help, and “2” for help
regardless of difficulty (21). Then, a summary ADL disability
score was calculated for each participant (range = 0–24).

Given the strong association between pain and depression
in older persons (22), the 11-item Center for Epidemiologic
Studies Depression (CES-D) scale (23) was used to assess
for depressive symptomatology. Participants were considered
to have significant depressive symptomatology if they had
transformed CES-D scores of 16 or greater (24). Functional
self-efficacy was assessed with a slightly modified version of
Tinetti’s Self-Efficacy scale (25). Participants were asked to
rate their level of confidence in their ability to perform each
of 10 activities (e.g., bathing, dressing) required for
functional independence on a five-level scale, ranging from
not at all (score = 0) to completely (score = 4). Functional
self-efficacy scores ranged from 0 to 40.

Ascertainment of participants’ pain status and pain-
reduction strategies.—Participants were first asked to
identify their site(s) of pain after being shown a list of 18
anatomic locations; they could report up to a maximum of
five chronic pain sites. Those participants reporting more
than two sites (e.g., hip, lower back, and neck) were asked
to identify the two sites that most limited their daily
activities. Pain duration, bothersomeness of pain, and pain-
related disability data were ascertained for these two sites
only, as described below. Information regarding partic-
pants’ pain duration, bothersomeness, and related disability
was also obtained for participants who reported one or two
sites of chronic pain. For pain duration, we asked, “How
long (in months) has your [specific pain site] been a
problem?” To determine bothersomeness of pain, we
asked, “During the past month, how bothersome has your
[specific pain site] been?” (26). Responses included “Not
at all,” “A little bit,” “Moderately,” “Quite a bit,” and
“Extremely.” To assess for pain-related disability, we
asked, “During the past month, how many days did you cut
down on your usual activities because of your [specific pain
site]?” (27). Responses were coded categorically as “0
days,” “1–10 days,” and “≥11 days.” For the 158
participants who provided data on two chronic pain sites,
the higher reported value for each variable (i.e., duration,
bothersomeness, and pain-related disability) from either
pain site was used in the analyses. For example, a participant
who reported knee pain for 2 years and back pain for 5 years
was considered to have a pain duration of 5 years.

To identify strategies perceived as effective in reducing
pain, participants were asked: “What have you found to be
the most effective way(s) to reduce your pain?” Participants’
open-ended responses were transcribed in their
entirety. Probes were used to help clarify participants’
responses. Participants could report up to three methods to
reduce their pain for each of the two pain sites (when
applicable), for a maximum of six methods.

Analyses

Two investigators (L.B. and C.R.) analyzed the qualita-
tive data using content analysis (28), where meaningful
phrases were identified and grouped into categories of
effective treatments based on similarities and differences in
the texts. The investigators first independently reviewed the
qualitative data and identified similar responses (e.g., “I
take acetaminophen if the pain is bad” and “I take oxycodone
four times a day” (analgesic medication use); “I stretch” and “I
walk” (exercise); “I avoid activities that require bending or
twisting” and “I lie down and rest” (activity restriction);
and “I wear a knee brace” and “I use a back support
(assistive/prosthetic/orthotic devices). The category of
cognitive methods included self-initiated distractions, atti-
attitudes, or practices that were used by participants to reduce
STRATEGIES USED BY OLDER PERSONS TO TREAT CHRONIC PAIN

Table 1. Characteristics of Study Participants (N = 272)

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>80.9 (5.1)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>189 (69)</td>
</tr>
<tr>
<td>White race, n (%)</td>
<td>249 (92)</td>
</tr>
<tr>
<td>Education in y, mean (SD)</td>
<td>11.8 (2.8)</td>
</tr>
<tr>
<td>Living alone, n (%)</td>
<td>122 (45)</td>
</tr>
<tr>
<td>Medical/Functional</td>
<td></td>
</tr>
<tr>
<td>No. of chronic conditions, mean (SD)</td>
<td>2.3 (1.3)</td>
</tr>
<tr>
<td>Folstein MMSE score, mean (SD)</td>
<td>26.5 (3.0)</td>
</tr>
<tr>
<td>ADL disability score, mean (SD)</td>
<td>18.1 (5.3)</td>
</tr>
<tr>
<td>Psychological</td>
<td></td>
</tr>
<tr>
<td>Depressive symptoms,* n (%)</td>
<td>99 (36)</td>
</tr>
<tr>
<td>Functional self-efficacy score, mean (SD)</td>
<td>26.7 (9.6)</td>
</tr>
<tr>
<td>Pain</td>
<td></td>
</tr>
<tr>
<td>No. of pain sites, mean (SD)</td>
<td>2.2 (1.3)</td>
</tr>
<tr>
<td>Site most limiting daily activities, n (%)</td>
<td>91 (33)</td>
</tr>
<tr>
<td>Lower back</td>
<td>91 (33)</td>
</tr>
<tr>
<td>Knees</td>
<td>67 (25)</td>
</tr>
<tr>
<td>Legs</td>
<td>50 (18)</td>
</tr>
<tr>
<td>Hips</td>
<td>40 (15)</td>
</tr>
<tr>
<td>Shoulders</td>
<td>35 (13)</td>
</tr>
<tr>
<td>Bother soreness, n (%)</td>
<td></td>
</tr>
<tr>
<td>Not at all</td>
<td>2 (1)</td>
</tr>
<tr>
<td>A little bit</td>
<td>27 (10)</td>
</tr>
<tr>
<td>Moderate</td>
<td>79 (29)</td>
</tr>
<tr>
<td>Quite a bit</td>
<td>131 (48)</td>
</tr>
<tr>
<td>Extreme</td>
<td>32 (12)</td>
</tr>
<tr>
<td>Duration in y, n (%)</td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>34 (13)</td>
</tr>
<tr>
<td>1–10</td>
<td>171 (63)</td>
</tr>
<tr>
<td>>10</td>
<td>65 (24)</td>
</tr>
<tr>
<td>Restricted activity days due to pain in past mo, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>131 (48)</td>
</tr>
<tr>
<td>1–10</td>
<td>84 (31)</td>
</tr>
<tr>
<td>≥11</td>
<td>56 (21)</td>
</tr>
</tbody>
</table>

*Participants with Center for Epidemiologic Studies Depression scores ≥16 were classified as having depressive symptoms.

**Participants could report up to two pain sites that most limited their daily activities.

ADL = activities of daily living.

Table 2. Strategies Perceived as Effective for Reducing Chronic Pain

<table>
<thead>
<tr>
<th>Strategy</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesic medication use</td>
<td>146 (59)</td>
</tr>
<tr>
<td>Activity restriction</td>
<td>94 (38)</td>
</tr>
<tr>
<td>Hot/cold modalities</td>
<td>69 (28)</td>
</tr>
<tr>
<td>Exercise</td>
<td>56 (23)</td>
</tr>
<tr>
<td>Assistive/prosthetic/orthotic devices</td>
<td>24 (10)</td>
</tr>
<tr>
<td>Physical therapies</td>
<td>18 (7)</td>
</tr>
<tr>
<td>Cognitive method</td>
<td>7 (3)</td>
</tr>
<tr>
<td>Alters body position</td>
<td>7 (3)</td>
</tr>
<tr>
<td>Complementary medicine</td>
<td>5 (2)</td>
</tr>
<tr>
<td>Other*</td>
<td>18 (7)</td>
</tr>
</tbody>
</table>

* Includes surgery (n = 4), makes dietary modifications (n = 2), visits podiatrist (n = 1), sleeps (n = 1), puts wedge of tissue between toes (n = 1), keeps going (n = 1), gets chicken cartilage injection in knee (n = 1), sits in a soft seat/uses a cushion (n = 3), prays a lot (n = 1), slows down pace of walking (n = 1), pauses in the activity that causes discomfort/waits until pain goes away (n = 2).

**Participants were classified as 0. Age in years and gender were included in all models. Additional variables were included in a regression model if they were associated in bivariate analyses with the pain-reduction strategy of interest at the p < .05 level.

Results

Cohort members with (n = 272) versus those without chronic pain (n = 354) were more likely to report the presence of two or more chronic conditions (73% vs 62%, p < .01), and have a higher mean body mass index (27.4 vs 25.8, p < .01), an increased prevalence of depressive symptoms (37% vs 19%, p < .01), and a lower mean functional self-efficacy score (26.7 vs 29.4, p < .01). Participants in the analytic sample, i.e., those with chronic pain, had a mean (standard deviation) age of 80.9 (5.1) years (range = 73–99) and were mostly female (Table 1). A total of 119 discrete strategies perceived as effective in reducing pain were reported (see Appendix).

The specific categories of pain-reduction strategies and their corresponding frequencies are shown in Table 2. Among the participants (n = 248) who identified one or more pain-reduction strategies using chi-square or Fisher’s exact tests for categorical variables and t tests for continuous variables. To identify factors independently associated with one or more of the four pain-reduction strategies, we constructed separate logistic regression models, one model for each pain-reduction strategy. The dependent variable in each model was coded in a binary manner. For example, in the model for analgesic medication use, participants who reported as effective one or more of the analgesics listed in the Appendix were classified as 1, and all remaining participants were classified as 0. Age in years and gender were included in all models. Additional variables were included in a regression model if they were associated in bivariate analyses with the pain-reduction strategy of interest at the p < .05 level. Statistical tests were two-tailed, and p values less than .05 were considered statistically significant in the logistic models. Hosmer and Lemeshow tests were used to determine the goodness-of-fit of each model. Supplementary logistic regression analyses were performed using a stepwise selection method to determine if the models’ goodness-of-fit was improved by creating more parsimonious models. All analyses were performed using SAS version 8.2 (SAS Institute, Cary, NC).

The transcribed data were reviewed on several occasions to ensure that all of the reported methods had been identified and suitably classified into categories that were created only after reviewing all of the transcribed data. The individual categories are hereafter referred to as pain-reduction strategies.

Descriptive statistics were calculated for participants’ demographic, medical/cognitive, psychological, and pain-related factors. To determine whether participants’ characteristics were associated with the four most frequently reported pain-reduction strategies (defined as having a prevalence of 20% or greater in the sample), the following analytic approach was used. A threshold prevalence of 20% was selected to enhance our ability to identify potential associations. Bivariate associations were first examined for all of the candidate factors listed in Table 1 and the four
shown that activity restriction, when used as a means of "cutting down on one’s activities" can provide short-term benefits. Although it may be intuitive that "resting" or "cutting restriction to be an effective pain-reduction strategy. A substantial minority of participants perceived activity restriction as effective pain-reduction strategy. Of note, the use of the other pain-reduction strategies. Analgesic medication use was the most frequently cited pain-reduction strategy. About a quarter of our participants perceived one or more exercises as an effective means of treating their pain. Given the documented benefits of exercise in the management of degenerative musculoskeletal disorders, efforts are needed to determine how best to increase the use of this pain-reduction strategy among older persons with chronic pain. Certain pain-reduction strategies perceived as effective in prior investigations, including the use of cognitive methods and complementary medicine, were infrequently endorsed in this study. These findings may reflect participants’ unawareness of, or unwillingness to try, these strategies. Because participants were not questioned about previously used therapies, it is possible that they had tried the strategies in the past, but discarded them due to a lack of efficacy. Alternatively, participants may have used cognitive methods for managing (or coping with) their pain, but did not consider them formal "treatments" and therefore failed to report them. Prior research has demonstrated that older persons with chronic pain use cognitive methods to cope with pain and perceive the strategies to be effective (33), but may use fewer cognitive strategies as compared to nonelderly persons with chronic pain (34).

Our results are generally consistent with two recent quantitative studies of pain-management strategies used by older persons. In contrast, two qualitative studies found that older persons used medications as a "last resort," preferring home remedies and other self-care strategies such as rest and hot and/or cold modalities instead. These discrepant findings may be explained by variations in study location (i.e., United States vs Australia and Canada) and interview technique (i.e., individual vs focus groups).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Analgesic Medication Use</th>
<th>Activity Restriction</th>
<th>Hot/Cold Modalities</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>0.97 (0.92–1.03)</td>
<td>1.01 (0.96–1.06)</td>
<td>0.97 (0.92–1.03)</td>
<td>1.04 (0.98–1.11)</td>
</tr>
<tr>
<td>Female (vs male)</td>
<td>1.08 (0.59–1.98)</td>
<td>1.07 (0.60–1.89)</td>
<td>1.93 (0.97–3.84)</td>
<td>0.92 (0.48–1.78)</td>
</tr>
<tr>
<td>≥ 2 (vs <2) chronic conditions</td>
<td>1.23 (0.67–2.27)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CES-D score ≥16 vs <16</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.50 (0.23–1.08)</td>
</tr>
<tr>
<td>Functional self-efficacy score (0–40)</td>
<td>0.99 (0.95–1.02)</td>
<td>—</td>
<td>—</td>
<td>1.04 (1.00–1.09)</td>
</tr>
<tr>
<td>No. of pain sites (1–5)</td>
<td>1.26 (1.00–1.58)</td>
<td>—</td>
<td>0.21 (0.98–1.50)</td>
<td>—</td>
</tr>
<tr>
<td>Bothersomeness of pain (1–5)</td>
<td>1.09 (0.77–1.53)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Duration of pain, y</td>
<td>—</td>
<td>1.00 (1.00–1.00)</td>
<td>1.00 (1.00–1.00)</td>
<td>—</td>
</tr>
<tr>
<td>Days of restricted activity due to pain (vs 0)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1–10</td>
<td>19 (0.64–2.23)</td>
<td>—</td>
<td>—</td>
<td>0.86 (0.42–1.77)</td>
</tr>
<tr>
<td>≥11</td>
<td>1.85 (0.81–4.21)</td>
<td>—</td>
<td>—</td>
<td>0.68 (0.26–1.77)</td>
</tr>
</tbody>
</table>

Notes: Results are presented as adjusted odds ratios with corresponding 95% confidence intervals. Each of the four models included age, gender, and those variables associated with the dependent variable in bivariate analyses at the p < .10 level: 1) two or more chronic conditions, functional self-efficacy score (p = .08), number of pain sites (p < .01), bothersomeness of pain score (p < .01), and number of restricted activity days (p = .02) — analgesic medication use; 2) duration of pain (p = .03) — activity restriction; 3) number of pain sites (p = .01) and duration of pain (p = .09) — hot cold modalities; and 4) presence of depressive symptoms (p < .01), functional self-efficacy score (p < .01), and restricted activity days (p = .05) — exercise. Hosmer and Lemeshow goodness-of-fit statistics: analgesic medication use χ² = 8.89, p = .37; activity restriction χ² = 4.37, p = .82; hot/cold modalities χ² = 4.83, p = .77; and exercise χ² = 3.12, p = .93.
Additional research is warranted to characterize further the practices of diverse samples of older persons with chronic pain regarding analgesic medication use.

Perhaps the most significant finding of this study is that, although the vast majority of participants perceived several pain-reduction strategies to be effective, 60% rated their pain as quite a bit or extremely bothersome during the month preceding the study. These contradictory findings may have several explanations. First, a strategy that produces small or even transient reductions in pain may be considered “effective” by older persons with chronic pain, i.e., expectations regarding treatment efficacy may be low. Second, it is possible that the potency or frequency of use of a given strategy, as well as the proficiency with which it was administered, was not adequate to meaningfully reduce participants’ pain. Third, untoward side effects associated with the use of certain strategies (e.g., analgesic medications) may hinder effective pain relief. These results underscore the need for additional research to better characterize the ways in which older persons use the various strategies, as well as their attitudes, thoughts, and beliefs regarding the treatments.

Identifying patient-level factors associated with the perceived efficacy of various pain-reduction strategies could inform future intervention efforts. Although the results from the logistic regression models in the current study were generally in the expected directions, e.g., participants with versus those without depressive symptoms were less likely to report exercise as an effective pain-reduction strategy, no independent associations were identified between the participant-level variables and the four most commonly reported pain-reduction strategies. Other factors including ethnicity and type of chronic pain may be associated with perceived efficacy of various treatments (35), but were not examined in the current study.

Our study has several limitations. Because the study sample was mostly white and female, our findings may not be generalizable to other populations of older persons. Participants may have failed to report pain-reduction strategies deemed socially unacceptable (e.g., using alcohol to treat pain). It is possible that the perceived efficacy of the pain-reduction strategies varies according to the etiology of an older person’s chronic pain. However, these potential relationships could not be determined, because we did not inquire about self-reported causes of chronic pain. In addition, although the nurse interviewers received extensive training in questionnaire administration, we did not assess inter-rater reliability. Finally, the current study used a recommended pain measure, i.e., level of pain bothersomeness, but did not ascertain data on participants’ intensity of pain. It is possible that perceptions of treatment efficacy are associated with intensity (as opposed to bothersomeness) of pain.

Conclusion

Although the vast majority of participants perceived several pain-reduction strategies to be effective, 60% reported experiencing substantial pain. Further research of older persons with chronic pain is warranted to determine whether changes in the way existing pain-reduction strategies are administered can improve the management of pain or if more efficacious strategies are needed.

Acknowledgments

As a doctoral student, Dr. Barry was supported by National Institute on Aging (NIA) training grant T32AG000153. Dr. Barry currently is supported by NIA training grant T32AG019134. Dr. Reid is a Paul Beeson Physician Faculty Scholar in Aging Research, and his work is also supported by a Robert Wood Johnson Foundation Generalist Physician Faculty Scholar Award. This work was funded in part by grants from the Patrick and Catherine Weldon Donaghue Medical Research Foundation and by the NIA (RO1AG17560). Dr. Gill is the recipient of a Midcareer Investigator Award in Patient-Oriented Research (K24AG021507) from the NIA.

Address correspondence to Dr. Cary Reid, Division of Geriatrics and Gerontology, Weill Cornell Medical Center, 525 East 68th Street, Box 39, New York, NY 10021. E-mail: mcc2004@med.cornell.edu

References

APPENDIX: TAXONOMY OF PAIN-REDUCTION STRATEGIES

1. Analgesic Medication Use

 - **Acetaminophen products**
 - Excedrin
 - Tylenol
 - Acetaminophen product, type not specified

 - **Aspirin products**
 - Anacin
 - Baby aspirin
 - Bayer aspirin

 - **Opioids**
 - Darvocet
 - Fentanyl patch
 - Morphine sulfate
 - Oxycodeone/Roxicodone
 - Oxycontin
 - Percocet/Endocet
 - Acetaminophen with codeine
 - Acetaminophen with hydrocodone

 - **COX-1 inhibitors**
 - Advil
 - Aleve
 - Trilisate
 - Daypro
 - Lodine
 - Meclofenamate
 - Motrin
 - Naproxen
 - Orudis
 - Relafen
 - Clinoril

 - **COX-2 inhibitors**
 - Celebrex
 - Vioxx

 - **Anticonvulsants**
 - Neurontin

 - **Other analgesics**
 - Ultram

2. Activity restriction

 - Decreases activities
 - Stops activities altogether
 - Restricts certain movements
 - Cuts down on amount of walking/avoids walking long distances
 - Gets in bed and lies down
 - Avoids activities that require bending or twisting
 - Rests/takes it easy
 - Sits down
 - Uses affected limb as little as possible
 - Avoids lifting heavy objects
 - Stays off of feet/keeps off them/doesn’t walk or put pressure on affected part
 - Elevates affected part
 - Does not stand for long periods

3. Hot/cold modalities

 - Takes hot bath/shower
 - Uses heating pad/hot towel/hot water bottle/hot compress
 - Uses hydrocallator pack heater
 - Applies herbal warm pack
 - Takes a sauna
 - Applies Icy Hot patch
1. Gets in sun for warmth
 Applies heat (type not specified) to back
 Uses heat, type not specified
 Applies ice/ice pack
 Uses ice then heat
 Cools off feet
 Applies cool cloth to affected part

4. Exercise
 Does activities/movements with hands
 Stays active
 Moves around
 Does shoulder exercises
 Keeps limber
 Does exercises prescribed by physical therapist/podiatrist/chiropractor
 Does exercises with yardstick
 Walks
 Gardens
 Does aquatic therapy
 Stretches
 Swims
 Exercises, type not specified

5. Assistive/prosthetic/orthotic devices
 Uses knee brace/support
 Wears back brace/support
 Uses abdominal belt
 Uses walker to help with ambulation
 Wears soft neck collar
 Wears splint or brace on hand or wrist
 Wears wool gloves
 Wears fitted shoes/special shoes/larger fitting shoes
 Uses lumbar pillow in lift chair
 Uses electric bed
 Uses knee pillows
 Wears stockings
 Uses four-wheeled walker when walking outdoors
 Uses chair lift
 Applies pressure (with Ace bandage) to affected area
 Wears orthotic shoes
 Sits in high back chair and applies pressure to back using pillow

6. Physical therapies
 Gets massage therapy
 Undergoes physical therapy
 Rubs affected part
 Uses vibrating pillow
 Uses hand vibrator
 Gets massage via massage mattress
 Gets moist heat therapy from physical therapist
 Uses transcutaneous electrical nerve stimulator (TENS)
 Gets ultrasound therapy
 Uses over-the-door cervical traction kit

7. Cognitive coping
 Ignores pain by keeping busy/doesn’t think about the pain
 Gets used to the pain on an emotional basis
 Goes outside
 Does crossword puzzles, reads, listens to music, watches television, thinks of a good chess game
 Meditates

8. Alters position
 Changes position/finds a good position
 Rolls from one side to another
 Does not lie on right side in bed

9. Complementary medicine
 Visits chiropractor
 Uses magnetic pad

10. Other
 Has surgery
 Makes dietary modifications
 Prays a lot
 Got chicken cartilage injection in knee
 Pauses in the activity that causes discomfort/waits until pain goes away
 Sits in soft seat/sits on a cushion
 Visits podiatrist
 Sleeps
 Puts tissue between toes
 Keeps going
 Slows down pace of walking