THE EFFECTS OF DEMOGRAPHIC FACTORS, FAMILY BACKGROUND, AND EARLY JOB ACHIEVEMENT ON AGE AT MARRIAGE

Dennis P. Hogan
Community and Family Study Center, University of Chicago, Chicago, Illinois 60637

Abstract—National data for ever-married men aged 20 to 65 in March 1973 are utilized to estimate least squares and log-linear structural equation models of age at marriage. We demonstrate that most characteristics of family background (including both the family structure and its socioeconomic standing) are irrelevant in their effect on age at marriage. Intercohort trends are not explicable with reference to the changing socioeconomic, ethnic, or nativity compositions of the cohorts. Regional differences in age at marriage have persisted over the years in only slightly diminished form and cannot be explained by reference to the nativity, ethnic, or socioeconomic compositions of the regions. Early job status relates only weakly to age at marriage. Only those activities that are time-consuming or otherwise disruptive of the smooth operation of normal life-cycle processes during the transition from adolescence to adulthood (such as college attendance and service in the military) seriously affect the age at which a man marries.

INTRODUCTION

First marriage is perhaps the most important life-cycle transition made by American males in their movement from adolescence to adulthood (Panel on Youth, 1974). Marriage marks the formation of a new nuclear family (a family of procreation) and, ordinarily, the loosening of ties with the family of origin. Understanding the timing of first marriage, therefore, is an important step toward the development of a middle-range theory of the transition from adolescence to adulthood.

Changes in marital status are the result of a complex process, as noted by the Taeubers (U.S. Bureau of the Census, 1971, pp. 324–326):

The continuities and changes in the marital status of the age groups at times and over time suggest that marital decisions and relationships are conditioned by the forces of continuity and change in the culture and economy. . . . [Marriage] which defines status and role in living in so many aspects of social functioning and individual advance in present and future years, is itself largely influenced if not determined by the forces that conditioned achievement and status in past periods. . . . The milieu of areas of residence, communities, institutions, and amenities may condition the generations in diverse ways.

Studies of the determinants of age at marriage, as well as the consequences of age at marriage for marital stability and socioeconomic achievement, have occupied the attention of demographers, sociologists, psychologists, and others. [See Voss (1975) for a full review and critique of these studies.]

Birth cohort and, to a lesser extent, ethnic ancestry are two important demographic factors determining an individual’s age at marriage. Carter and Glick (1970, chapter 4) report that, among whites, the foreign stock (foreign-born
and native-born of foreign parentage) generally have a later age at marriage than the native-stock population. Among the foreign-born, the Irish have the latest age at marriage (29.4 years for men) and the Spanish surname population the earliest (25.6 years for men). This pattern is variously attributed to native customs brought with the migrants, the selection of late-marriers as migrants, and the disruptive effects of migration on life-cycle patterns (Carter and Glick, 1970, pp. 90–91).

Carter and Glick (1970, p. 40) relate the long-term decline in the age at which men marry to a declining percentage of foreign stock in the population, as well as to a secular increase in the proportion of the population ever-marrying. Increasingly, marriage seems to be occurring during a preferred age range, with first marriage at the older ages becoming progressively less common (Carter and Glick, 1970, p. 40; Winsborough, 1975). Such trends in age at marriage have differentially characterized blacks and whites (Farley, 1970, p. 141):

Between 1890 and 1930, there was an increase in youthful marriages. The Depression had less effect upon age at marriage among Negroes, but in the following decade, the increase in early marriage was apparently greater among whites. Since 1960, there has been a trend toward older age at marriage among both whites and Negroes.

The decline in the proportion of successive birth cohorts that are resident in rural areas is a countervailing factor to the trend toward an earlier age at marriage. Carter and Glick (1970, chapter 4), for example, report finding a uniform downward gradient of age at marriage by type of residence (central city or urbanized area, urban fringe, other urban, rural non-farm, and rural farm), with rural residents marrying about a year earlier than urban residents.

Similarly, Southern residents have tended to marry earlier than other men, while Northeastern residents commonly marry rather late. Taeuber and Taeuber (U.S. Bureau of the Census, 1971, p. 298) see two trends in regional differences in the marital status of the population: (a) "... the movement toward uniformity in the marital status of the population, whatever the region of residence," particularly during the period from 1940 to 1960, and (b) "... the persistence, even accentuation, of the differences of the Northeast from the other regions of the country." This second trend is attributable to the higher proportion single in the Northeast at any age and to the later age of marriage characteristic of residents of the region. Because such differentials are by current residence, the extent to which they result from selective migration is unclear.

Socioeconomic differentials in age at marriage have also been extensively documented, with men with higher educations and better jobs generally reporting a later age at marriage (Carter and Glick, 1970). Again, the difficulty with such evidence is the questionable order of causation: a later age at marriage may also enhance a man’s schooling or job prospects (Voss, 1975, chapter 5). Furthermore, Carter and Glick (1970) have noted that men who drop out of school without completing a degree have poorer marriage prospects and a generally later age at marriage. Finally, men who serve in the military are characterized by a later age at marriage. While this is due, in part, to the selectivity of single men into the military service, it is also due to the lower age-specific marriage rates of men while in the military (Winsborough, 1976).

Many theoretical arguments regarding the effects of family structure (a broken home, number of siblings, and sib position) and the socioeconomic standing of the family of origin have been circulated with little or no attempt at empirical confirmation (Voss, 1975). What evidence is available suggests that favorable socioeconomic conditions in the family of origin tend to delay an early marriage.

The evidence summarized here clearly indicates the sorts of people who have married early and the characteristics of
Factors Affecting Age at Marriage

those who have married relatively late. No
test of a causal model of the age at mar­riage process for a national sample of men
is currently available. Such a model must
include controls for demographic charac­teristics such as birth cohort and ethnic
ancestry, while simultaneously assessing
the impact of socioeconomic origins. By
specifying a model in which the socioeco­nomic and demographic factors more
clearly precede first marriage, we are able
to avoid many of the problems of uncer­tain causal ordering. The simultaneous
control for demographic factors and fac­tors descriptive of socioeconomic back­ground permits a more exact assessment
of the net effects of each hypothesized de­terminant than was possible with the
cross-tabular analysis of census data.

DATA AND METHODOLOGY

The data for this analysis are drawn
from the 1973 “Occupational Changes in
a Generation” Survey (OCG-II), which
was carried out in conjunction with the
March demographic supplement to the
Current Population Survey (Featherman
and Hauser, 1975). In 1973, the eight-page
OCG questionnaire was mailed out six
months after the March CPS and was fol­lowed by mail, telephone, and personal
inquiries. The respondents, comprising 88
percent of the target sample, included
more than 33,500 men aged 20 to 65 in
the civilian, noninstitutional population.
Also, blacks and persons of Spanish ori­gin
were sampled at about twice the rate
of whites, and almost half of the black
men were interviewed personally.

Our attention in this paper is directed
toward an analysis of the demographic,
family background, and early job achieve­ment factors that condition a man’s age at
marriage. Elsewhere, we have examined
the patterning of timing of first marriage
as it relates to the timing of completion of
schooling and beginning of first full-time
job (Hogan, forthcoming). An early mar­riage (as well as a marriage that precedes
the completion of schooling and/or the
beginning of a first job) increases rates of
marital instability among these men (Ho­gan, forthcoming). An early age at mar­riage also depresses a man’s economic at­tainments in a career, quite apart from the
disadvantages experienced by such men
because of their poorer educations
(Coombs and Freedman, 1970; Coombs et
al., 1970).

We begin with the estimation of least­squares linear regression models of age at
first marriage on the socioeconomic and
demographic factors discussed above. The
population of analysis includes all ever­married men aged 20 to 65 in March 1973
but includes additive controls for birth
cohort to partial out the effects of exoge­nous trends in age at marriage from trends
due to changing demographic or socioeco­nomic compositions of the cohorts in­volved. These models are estimated sepa­rately for Anglos (non black men of non­Spanish ancestry), men of Spanish an­cestry, and blacks. Such a control for eth­nic ancestry permits an assessment of the
degree to which the determinants of age at
marriage for these three groups differ, if,
in fact, they differ at all.

A second step in the analysis estimates
the same models for Anglos separated
into ten-year birth cohorts. This proce­dure is intended to allow for the identifi­cation of any cohort interactions in the
way the various familial and socioeco­nomic variables affect age at marriage.
The separate analysis by birth cohort per­mits the circumvention of problems in­volving changing age at marriage by co­hort, the truncation of the upper end of
the age at marriage distribution for those
youngest cohorts who have not yet com­pleted the life cycle, and any difficulties
with selectivity due to differential mortal­ity at the older ages.

Similar models of the age at marriage
process for each birth cohort were esti­mated for blacks and men of Spanish ori­gin (Hogan, 1976, chapter 4). These mod­els indicated no substantial differences in
the age at marriage process among the
birth cohorts. This is true even when com­paring the youngest cohort (aged 20 to 25)
with the older cohorts of men who were largely through their marriage experience. Consequently, to conserve space, the age at marriage regressions for each ethnic group are presented here combining all men aged 20 to 65; the separate cohort regressions are presented only for the Anglos. The inclusion of the youngest birth cohort in these models does not significantly affect the results reported here for the total population of each ethnic group.

Finally, log-linear models of the determinants of marriage at age 22 or younger will be estimated, incorporating the independent variables proved most important in the linear regression models. The specification of the models to examine the factors conditioning a man for early marriage also avoids the problems, inherent in the original linear regression models, that are due to the distributional characteristics of the age at marriage variable. These log-linear models permit an exact test for the presence of non-linearities in the effects of the independent variables and for interactions among the independent variables in their effects on age at marriage.

Before continuing further with the analysis, a discussion of possible specification errors involved in these models is in order. The OCG-II study includes information on region of birth and size of place of residence at age 16, as well as region and size of place of residence in 1973. Unfortunately, date of migration from place of origin to an intermediate place of residence to current residence is not ascertained. This prevents the estimation of the effects of migration on age at marriage, since it cannot be determined whether the move occurred prior to or following marriage. We have chosen to include only the variables region of birth and size of place of origin in the models, since they are the only variables that clearly characterize the residence of a man prior to his marriage. Frequently in our interpretation of the results of the models, we will speculate about the possible role of migration in the findings; because of the specification problems mentioned, such interpretations should be regarded as tentative hypotheses requiring future test.

A basic assumption of these models is that education, first job status, and military service each influence age at marriage but are not reciprocally affected by it. The simultaneous equation models of Voss (1975) indicate that, while marriage is delayed somewhat by an additional year of schooling, an early marriage has rather little reciprocal effect on years of schooling completed, at least for the 1957 cohort of Wisconsin high school seniors.

The inclusion of the military service variable in these models is more problematic. On an age-specific basis, unmarried men undoubtedly have a higher rate of entry into the armed forces than do married men, both as a result of a higher propensity to enlist and a greater likelihood of being drafted. On the other hand, a later age at marriage will characterize men in the military, because they are exposed to relatively unfavorable marriage markets, reducing their age-specific marriage rates to a level below that of civilians (Winsborough, 1976). The length of military service varies, as does the location of the base at which a man is stationed and the branch of the armed services in which he serves (i.e., National Guard, Army, Navy, etc.). All of these factors condition the marriage market that will, in turn, affect the age at which a man marries.

The interrelationships of age at marriage and military service are consequently much more complex than indicated by our simple causal model which posits age at marriage as being partly determined by the presence or absence of any military service experience. We include military service in our models despite the apparent misspecification involved, because its relationship with age at marriage is too interesting to be neglected. Because of the specification errors involved, we will refrain from interpreting the military service relationship with age at marriage as being causal. When the regression models reported here were esti-
mated without the inclusion of military service, the estimated effects of the other variables differed only slightly. In part, this is because military service experience is only weakly related to socioeconomic standing (Fligstein, 1976).

SOCIOECONOMIC BACKGROUND AND AGE AT FIRST MARRIAGE

The means and standard deviations for all variables are displayed in Table 1. The linear regression models presented in Table 2 indicate that the socioeconomic standing of a man’s family of origin has very little effect on his age at first marriage. Father’s education and occupational status, mother’s education, and family income have no effect on the timing of marriage. A farm background delays marriage by about 0.4 years among Anglos, but the pattern is unclear among other men who are Spanish and black.

Growing up in a family in which the respondent reports that both of his parents were present “most of the time up to age 16” is of no consequence for age at marriage. Other models not shown here indicate that the sex and familial relationship of the head of a nonintact household likewise have no effect on a man’s age at marriage (Hogan, 1976, Table 4-4). On the other hand, growing up in a home in which the head of the household (regardless of sex) was not usually in the labor force delays marriage about one-half year among Anglos and perhaps by a full year among blacks. Such a delay in marriage may result from a man’s responsibilities for the financial support of his family or because of filial obligations to care for an ill or disabled parent or grandparent. Number of brothers and sisters and a man’s birth position among siblings are irrelevant characteristics in regard to his age at marriage (see Hogan, 1976, Table 4-4).

The delaying effect of a farm background on marriage is somewhat surprising in that the literature reviewed earlier indicates that men currently engaged in farming, on average, married earlier than other men. Migrants from farms may be selective of men who marry late, leaving behind a residual pool of men who marry early. In addition, the dislocation effects of migration from the farm may be sufficiently great to delay a man’s marriage.

While these estimated effects are net of a man’s own early socioeconomic attainments, reduced-form regression models indicate that the total effects of such family background variables are equally trivial. Apart from the brief delays in marriage...
Table 2.—Regression Analysis of Age at First Marriage on Demographic, Family Background, and Early Achievement Variables, by Ancestry, for Ever-Married U.S. Males Born 1907-1952

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Anglos</th>
<th></th>
<th></th>
<th>Spanish</th>
<th></th>
<th></th>
<th>Blacks</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>$se(b)$</td>
<td>b</td>
<td>$se(b)$</td>
<td>b</td>
<td>$se(b)$</td>
<td>b</td>
<td>$se(b)$</td>
<td>b</td>
</tr>
<tr>
<td>Birth cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907-1916</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1917-1926</td>
<td>-.044</td>
<td>.128</td>
<td>-.322</td>
<td>.700</td>
<td>-.799</td>
<td>.433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1927-1936</td>
<td>-.194</td>
<td>.129</td>
<td>-.185</td>
<td>.660</td>
<td>-.171</td>
<td>.453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1937-1946</td>
<td>-.417</td>
<td>.161</td>
<td>-.532</td>
<td>.669</td>
<td>-.254</td>
<td>.471</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1947-1952</td>
<td>-.656</td>
<td>.161</td>
<td>-.657</td>
<td>.792</td>
<td>-.555</td>
<td>.576</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact family</td>
<td>.147</td>
<td>.119</td>
<td>.314</td>
<td>.460</td>
<td>.164</td>
<td>.306</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siblings</td>
<td>.002</td>
<td>.017</td>
<td>-.05</td>
<td>.068</td>
<td>.007</td>
<td>.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family head not in labor force</td>
<td>.419</td>
<td>.180</td>
<td>-.330</td>
<td>.621</td>
<td>.941</td>
<td>.521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's education</td>
<td>.015</td>
<td>.015</td>
<td>-.04</td>
<td>.063</td>
<td>.057</td>
<td>.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father's occupation</td>
<td>.004</td>
<td>.002</td>
<td>.001</td>
<td>.012</td>
<td>-.011</td>
<td>.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm origin</td>
<td>.398</td>
<td>.109</td>
<td>.504</td>
<td>.456</td>
<td>-.228</td>
<td>.328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother's education</td>
<td>-.033</td>
<td>.016</td>
<td>.067</td>
<td>.066</td>
<td>-.011</td>
<td>.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family income</td>
<td>.001</td>
<td>.001</td>
<td>-.002</td>
<td>.003</td>
<td>.000</td>
<td>.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place of birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>-.489</td>
<td>.099</td>
<td>-.120</td>
<td>.538</td>
<td>1.048</td>
<td>.503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>.683</td>
<td>.103</td>
<td>1.161</td>
<td>1.086</td>
<td>1.293</td>
<td>.706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central and western U.S.</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign</td>
<td>3.190</td>
<td>.195</td>
<td>2.183</td>
<td>.505</td>
<td>4.942</td>
<td>.982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military service</td>
<td>1.338</td>
<td>.086</td>
<td>.453</td>
<td>.462</td>
<td>1.120</td>
<td>.300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>.091</td>
<td>.019</td>
<td>.118</td>
<td>.063</td>
<td>.065</td>
<td>.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever worked</td>
<td>-.456</td>
<td>.228</td>
<td>-1.393</td>
<td>.741</td>
<td>-1.474</td>
<td>.801</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First job</td>
<td>.009</td>
<td>.002</td>
<td>.008</td>
<td>.011</td>
<td>-.013</td>
<td>.009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>.173</td>
<td>.198</td>
<td>.123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>24.199</td>
<td>26.196</td>
<td>25.392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Age at first marriage is the dependent variable. Unstandardized (metric) coefficients are shown. The b coefficient is interpreted as the change in age at marriage (in years) resulting from a one unit change in the independent variable. See Table 1 for definitions of the independent variables.

- $p<.05$.
- $p<.01$.

Marriage experienced by men growing up in a farming family or in a family in which the head does not work, socioeconomic background simply does not influence the timing of marriage either directly or indirectly. Previous studies have shown that socioeconomic background and attainments stratify men into marriage markets that produce socioeconomic homogamy in mating (Blau and Duncan, 1967; Carter and Glick, 1970). Our results indicate that the average ages at marriage of men in the different socioeconomic marriage markets are about the same.
Factors Affecting Age at Marriage

Region of birth is an important determinant of the timing of marriage, with the patterns in the expected direction. Among Anglos, birth in the Northeast delays marriage on the average about eight months compared to men from the Central and Western United States, whereas men born in the South marry about one-half year earlier. Among blacks, a Southern birth has the net effect of delaying marriage by about one year compared to men born in the Central and Western regions. The delaying effect of a Southern birth on age at marriage of blacks is another example of the possible dislocation effects of migration on marriage, since many of these men undoubtedly migrated to the North or West prior to marriage. The effects of region of birth among native-born men of Spanish ancestry show no clear patterns, but foreign-born men of Spanish ancestry marry about two years later than other men. The patterns are equally noteworthy for Anglo and black men of foreign birth whose marriages occur about three and five years later, respectively, in comparison with men born in the Central and Western United States.

Gross regional differentials in age at marriage thus cannot be accounted for by the differing compositions, with respect to socioeconomic status, farm background, education, and status of first job, of the men born in those regions. Other models not presented here indicate that controls for nativity (first or second generation) and paternal ethnic ancestry (German, Irish, other Northern and Western European, Italian, Polish, Russian, Spanish, other Southern and Eastern European, or non-European) do not diminish regional differentials in age at marriage (see Hogan, 1976, Tables 4-4, 4-5, 4-9, and 4-10). These findings eliminate many of the usual factors suggested to account for regional differentials in age at marriage (see, for example, Carter and Glick, 1970).

Perhaps marriage markets are differently structured in the regions in a fashion that permits earlier marriage in the South and delays marriage in the Northeast, but such marriage markets must be based on a social or demographic dimension not controlled for in our models. Alternatively, subcultural differences in preferred age at marriage among the regions may be creating the differentials in marriage age observed here, but such subcultures must exist apart from size of community, socioeconomic position, and ethnic ancestry. The religious composition of the regions is one subcultural dimension perhaps influential in determining preferred age at marriage or a man's position in the marriage market that we have not been able to control for here.

The trend among the birth cohorts toward a younger age at marriage persists within each ethnic ancestry group (Anglo, Spanish, black), net of controls for their socioeconomic compositions. The trend among successive birth cohorts toward a progressively younger age at marriage is not explicable simply by reference to changing socioeconomic or nativity compositions of the cohorts. (Intercohort trends toward a later age at marriage among those men born 1947–1952 are not in evidence here, since we are dealing only with men first married by March 1973, truncating the marriage regime of this cohort.)

Early socioeconomic attainments do bear a modest relationship to age at marriage. An additional year of schooling delays marriage about one month among each of the groups. When the analysis is restricted to birth cohorts born after 1927, the delaying effect of an additional year of schooling is about 0.2 years. The log-linear models discussed below demonstrate the nonlinear nature of this relationship (a college education being the crucial factor). First job status is positively related to age at marriage among Anglos—a ten-point increase in job status is associated with a one-month delay in marriage. Finally, service in the military is associated with more than a one-year delay in marriage among Anglo and black men.

These same findings generally apply to each birth cohort when the models are estimated separately by ten-year birth cohorts for men of Anglo ancestry. The
Table 3.—Regression Analysis* of Age at First Marriage on Demographic, Family Background, and Early Achievement Variables, by Birth Cohort, for Ever-Married U.S. Males of Anglo Ancestry Born 1907–1952

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact family</td>
<td>.536</td>
<td>.093</td>
<td>-.034</td>
<td>.095</td>
<td>.010</td>
</tr>
<tr>
<td>Siblings</td>
<td>.048</td>
<td>-.015</td>
<td>-.023</td>
<td>.025</td>
<td>.010</td>
</tr>
<tr>
<td>Family head not in labor force</td>
<td>.686</td>
<td>.628</td>
<td>.196</td>
<td>-.075</td>
<td>.456</td>
</tr>
<tr>
<td>Father's education</td>
<td>.033</td>
<td>.031</td>
<td>-.009</td>
<td>.021</td>
<td>.005</td>
</tr>
<tr>
<td>Father's occupation</td>
<td>-.001</td>
<td>.007</td>
<td>.001</td>
<td>.004</td>
<td>-.001</td>
</tr>
<tr>
<td>Farm origin</td>
<td>.553</td>
<td>.205</td>
<td>.388</td>
<td>.352(^b)</td>
<td>.055</td>
</tr>
<tr>
<td>Mother's education</td>
<td>.013</td>
<td>-.102(^c)</td>
<td>-.016</td>
<td>-.001</td>
<td>.024</td>
</tr>
<tr>
<td>Family income</td>
<td>.001</td>
<td>.002</td>
<td>-.001</td>
<td>-.000</td>
<td>.002</td>
</tr>
<tr>
<td>Place of birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>-.949(^c)</td>
<td>-.563(^b)</td>
<td>-.441(^b)</td>
<td>-.303(^b)</td>
<td>-.044</td>
</tr>
<tr>
<td>Northeast</td>
<td>.680(^b)</td>
<td>.801(^c)</td>
<td>.886(^c)</td>
<td>.437(^c)</td>
<td>.331(^b)</td>
</tr>
<tr>
<td>Central and western U.S.</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Foreign</td>
<td>3.453(^c)</td>
<td>3.244(^c)</td>
<td>3.882(^c)</td>
<td>2.391(^c)</td>
<td>.972(^c)</td>
</tr>
<tr>
<td>Military service</td>
<td>2.810(^c)</td>
<td>.266</td>
<td>1.417(^b)</td>
<td>1.183(^c)</td>
<td>.968(^c)</td>
</tr>
<tr>
<td>Education</td>
<td>-.009</td>
<td>-.045</td>
<td>.194(^c)</td>
<td>.226(^c)</td>
<td>.213(^c)</td>
</tr>
<tr>
<td>Ever worked</td>
<td>-.979</td>
<td>-.004</td>
<td>-.541</td>
<td>-.400</td>
<td>-.743(^c)</td>
</tr>
<tr>
<td>First job</td>
<td>.014</td>
<td>.014(^c)</td>
<td>.004</td>
<td>.005</td>
<td>.001</td>
</tr>
</tbody>
</table>

\(R^2\) | .075 | .035 | .089 | .125 | .147 |

\(^a\) Age at first marriage is the dependent variable. Unstandardized (metric) coefficients are shown. The \(^b\) coefficient is interpreted as the change in age at marriage (in years) resulting from a one unit change in the independent variable. See Table 1 for definitions of the independent variables.

\(^b\) \(p<.05\).

\(^c\) \(p<.01\).
Factors Affecting Age at Marriage

main observations are that differences according to region of birth do decline over time but persist in attenuated form for both the Northeast and the South. [The persistence of the impacts of a Southern and of a Northeastern birth is somewhat at variance with the observations of the Taeubers (U.S. Bureau of the Census, 1971, p. 298) regarding gross regional differences in age at marriage.]

As mentioned earlier, an additional year of schooling delays marriage only among those men born after 1927. These men, of course, are those among whom a college education is more common, and, as the log-linear analysis will demonstrate, college education is the crucial differentiating factor.

Finally, military service has the usual association with age at marriage for every birth cohort except that of 1917–1926. A very high proportion of this birth cohort served in the military during World War II (Winsborough, 1975). The selectivity into the service of men who marry late would thus be decreased. Men of this birth cohort may also have been more likely to marry while in the military than were men of other birth cohorts, insofar as nearly all of the eligible males of this cohort served in the armed forces (and, thus, did not face a disadvantageous marriage market relative to other men of the same cohort).

Let us summarize our findings to this point. Characteristics of family of origin, both relating to the structure of the family and its socioeconomic standing, have little import for the age at which a man leaves that family to form a family of procreation. A farm background, the labor force participation of the head of the family of origin, and the status of the first job do have small relationships with age at marriage, but, while the first two factors delay marriage, a first job of low status hastens it. Activities that consume periods of time during the transition to adulthood, such as an additional year of schooling, service in the military, and immigration from abroad, delay marriage. The age at which a man marries is also subject to a secular trend specific to the cohort into which he is born. This trend varies by region of birth.

LOG-LINEAR MODELS OF THE DETERMINANTS OF AN EARLY MARRIAGE

As a final step in the analysis, we estimate a series of log-linear modified regression models. (Consult Goodman, 1970, 1971, 1972, 1976, or Bishop et al., 1975 for discussions of log-linear models.) To do so, we shift our research focus slightly: whereas in the linear regression analysis our interest was in describing the size of the delay or advance in marriage age due to various background factors, the issue in the log-linear analysis will be the extent to which an early marriage (defined here as marriage at age 22 or less) is more probable, given certain demographic or socioeconomic characteristics. Such an analysis is analogous to the traditional demographic techniques of studying differentials in age-specific marriage rates. The log-linear specification of this analysis permits tests for statistical significance, provides exact parameters for the magnitude of the effects of each independent variable, and provides a ready method of testing for interactions among the independent variables.

The log-linear models of the determinants of an early marriage incorporate the independent variables that are most relevant according to the linear regression models. Besides birth cohort and ethnic ancestry (Anglo/Spanish/black), these independent variables include region of birth, size of place of residence at age 16 (rural farm and rural nonfarm/urban origin), education, and military service. Birth cohort is by far the most important factor influencing the likelihood of an early marriage—i.e., nearly half (46.6 percent) of the total association of the independent variables with age at marriage are accounted for by the net effects of birth year (Table 4). Military service, education, and region of birth each account for
Table 4.—Log-Linear Models of Selected Family Background and Early Achievement Determinants of Early Marriage, for Ever-Married U.S. Males Born 1907-1952

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Notation</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>δ</th>
<th>χ^2 / df</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Baseline model: [H] [CSAEV]</td>
<td>4410.02</td>
<td>1199</td>
<td>.000</td>
<td>17.70</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>B. Full additive structural model: [HC] [MR] [MS] [MA] [MSE] [MV] [CSAEV]</td>
<td>854.25</td>
<td>1184</td>
<td>>.5</td>
<td>6.13</td>
<td>19.37</td>
<td></td>
</tr>
<tr>
<td>C. Direct effects net of all other direct effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. [HV]</td>
<td>456.74</td>
<td>1</td>
<td>.000</td>
<td>2.56</td>
<td>10.36</td>
<td></td>
</tr>
<tr>
<td>2. [MS]</td>
<td>463.26</td>
<td>4</td>
<td>.000</td>
<td>3.32</td>
<td>10.50</td>
<td></td>
</tr>
<tr>
<td>3. [MS]</td>
<td>41.66</td>
<td>2</td>
<td>.000</td>
<td>0.19</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>4. [MS]</td>
<td>0.01</td>
<td>1</td>
<td>>.5</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>5. [MR]</td>
<td>469.98</td>
<td>3</td>
<td>.000</td>
<td>2.02</td>
<td>10.66</td>
<td></td>
</tr>
<tr>
<td>6. [HC]</td>
<td>2053.31</td>
<td>4</td>
<td>.000</td>
<td>7.11</td>
<td>46.56</td>
<td></td>
</tr>
<tr>
<td>D. Gross effect of each three-way parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. [MCA]</td>
<td>66.97</td>
<td>12</td>
<td>.000</td>
<td>0.24</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>2. [MCA]</td>
<td>41.72</td>
<td>8</td>
<td>.000</td>
<td>0.19</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>3. [MCE]</td>
<td>46.39</td>
<td>16</td>
<td>.000</td>
<td>0.30</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>4. [MCV]</td>
<td>66.31</td>
<td>4</td>
<td>.000</td>
<td>0.17</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>5. [MRS]</td>
<td>24.17</td>
<td>3</td>
<td>.000</td>
<td>0.17</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>6. [MEV]</td>
<td>32.32</td>
<td>4</td>
<td>.000</td>
<td>0.21</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>E. Net effect of each three-way parameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. [MCA]</td>
<td>27.55</td>
<td>12</td>
<td>.000</td>
<td>0.20</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>2. [MCA]</td>
<td>34.85</td>
<td>8</td>
<td>.000</td>
<td>0.20</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>3. [MCE]</td>
<td>31.24</td>
<td>16</td>
<td>.012</td>
<td>0.30</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>4. [MCV]</td>
<td>35.51</td>
<td>4</td>
<td>.000</td>
<td>0.28</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>5. [MRS]</td>
<td>20.68</td>
<td>3</td>
<td>.000</td>
<td>0.15</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>6. [MEV]</td>
<td>26.31</td>
<td>4</td>
<td>.000</td>
<td>0.26</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>F. Full structural model: [MCA] [MCE] [MCV] [MRS] [MEV] [CSAEV]</td>
<td>644.08</td>
<td>1137</td>
<td>>.5</td>
<td>4.71</td>
<td>14.60</td>
<td></td>
</tr>
</tbody>
</table>

a- The notation indicates those marginal tables that are fit (i.e., used to predict cell frequencies) under that model. M = age at marriage (0-12, 13-22, 23-65); C = birth cohort (1947-1952, 1937-1946, 1927-1936, 1917-1926, 1907-1916); R = region of birth (South, Northeast, Central and West, foreign); S = size of place of residence at age 16 (urban, rural); A = ancestry (Anglo, Spanish, Black); E = years of education (0-8, 9-11, 12, 13-15, 16-17+); V = military service (nonveteran, veteran).

b- Only interactions significant (p<.001) net of full additive structural model are shown.

c- The effect of each interaction net of the full additive structural model and the other three-way parameters from panel D.

d- χ^2 is the likelihood ratio chi-square statistic.

e- df are the degrees of freedom.

f- p is the probability level that the chi-square statistic is due to chance.

g- δ is the index of dissimilarity between the observed sample frequencies and the expected frequencies obtained with that model.

h- χ^2 / df is the percent of the baseline (total) chi-square accounted for by the chi-square statistic of that model. In panels A, B, and F, this term refers to the amount of association unexplained by the model shown. In panels C, D, and E, it refers to the amount of association explained by the parameter shown.

about 10 percent of the total association of the variables with age at marriage, net of the effects of other independent variables and the interrelationships among the independent variables. There are statistically significant differences in age at marriage by ethnic ancestry, but this component of association is of lesser importance. Net of the effects of the other variables, rural origin has no direct effect on the likelihood of an early marriage. The full structural equation model incorporating the direct effects of each of the independent variables accounts for 80 percent of the total association of the variables with age at marriage; the remaining 20 percent of association is due to all second and higher order interactions among the independent variables and age at marriage (Table 4). This model reduces the conditional uncertainty of the probability of an early marriage by 12.8 percent (Table 5).

While this partition of association indicates the relative magnitude of the total effects of these variables, the odds ratios...
Factors Affecting Age at Marriage

and log-odds ratios of the structural equations (Table 5) describe the nature of the effects. (The independent variable has no effect when \(\beta = 0.0 \) and \(\gamma = 1.0 \). A value of \(\beta > 0.0 \) and \(\gamma > 1.0 \) indicates that the independent variable increases the probability of a marriage at age 22 or younger, whereas a value of \(\beta < 0.0 \) and \(\gamma < 1.0 \) indicates that the independent variable decreases the likelihood of an early marriage.) Both the gross impact of each variable and the consequence of each variable net of the other variables are shown. The gross effects are analogous to a comparison of the rates of marriage at age 22 or younger among the categories of that variable without reference to any other factors; the net parameters are equivalent to marriage rates that have been standardized for the influences of all other independent variables.

The observed monotonic tendency toward a younger age at marriage is slightly enhanced by controls for the other independent variables. The successive birth cohorts experienced a progressively

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Gross Effects</th>
<th>Full Additive Structural Modela</th>
<th>(\beta = \ln \gamma)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\beta = \ln \gamma)</td>
<td>(\gamma)</td>
<td>(\beta = \ln \gamma)</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>NAb</td>
<td>NA</td>
<td>-.229</td>
<td>.795</td>
</tr>
<tr>
<td>Birth cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1937-1946</td>
<td>.135</td>
<td>1.144</td>
<td>.194</td>
<td>1.214</td>
</tr>
<tr>
<td>1927-1936</td>
<td>-.184</td>
<td>.832</td>
<td>-.054</td>
<td>.948</td>
</tr>
<tr>
<td>1917-1926</td>
<td>-.593</td>
<td>.553</td>
<td>-.487</td>
<td>.614</td>
</tr>
<tr>
<td>1907-1916</td>
<td>-.996</td>
<td>.369</td>
<td>-1.252</td>
<td>.286</td>
</tr>
<tr>
<td>Ancestry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglo</td>
<td>-.019</td>
<td>.981</td>
<td>.172</td>
<td>1.188</td>
</tr>
<tr>
<td>Spanish</td>
<td>-.017</td>
<td>.983</td>
<td>.115</td>
<td>1.122</td>
</tr>
<tr>
<td>Black</td>
<td>.036</td>
<td>1.037</td>
<td>-.288</td>
<td>.750</td>
</tr>
<tr>
<td>Region of birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>.498</td>
<td>1.646</td>
<td>.560</td>
<td>1.751</td>
</tr>
<tr>
<td>Northeast</td>
<td>-.101</td>
<td>.904</td>
<td>.024</td>
<td>1.024</td>
</tr>
<tr>
<td>Central and western U.S.</td>
<td>.278</td>
<td>1.320</td>
<td>.348</td>
<td>1.417</td>
</tr>
<tr>
<td>Foreign</td>
<td>-.675</td>
<td>.509</td>
<td>-.932</td>
<td>.394</td>
</tr>
<tr>
<td>Size of place of residence at age 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>-.076</td>
<td>.927</td>
<td>.001</td>
<td>1.001</td>
</tr>
<tr>
<td>Rural</td>
<td>.076</td>
<td>1.079</td>
<td>-.001</td>
<td>.999</td>
</tr>
<tr>
<td>Years of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-8</td>
<td>-.025</td>
<td>.975</td>
<td>.260</td>
<td>1.297</td>
</tr>
<tr>
<td>9-11</td>
<td>.315</td>
<td>1.370</td>
<td>.388</td>
<td>1.474</td>
</tr>
<tr>
<td>12</td>
<td>.197</td>
<td>1.218</td>
<td>.131</td>
<td>1.140</td>
</tr>
<tr>
<td>13-15</td>
<td>.072</td>
<td>1.075</td>
<td>-.090</td>
<td>.914</td>
</tr>
<tr>
<td>16-17+</td>
<td>-.558</td>
<td>.572</td>
<td>-.690</td>
<td>.502</td>
</tr>
<tr>
<td>Military service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>.312</td>
<td>1.366</td>
<td>.364</td>
<td>1.429</td>
</tr>
<tr>
<td>Yes</td>
<td>-.312</td>
<td>.732</td>
<td>-.364</td>
<td>.695</td>
</tr>
</tbody>
</table>

a- These estimated effects are net of the associations among the independent variables. The parameters shown refer to the estimated odds of first marriage at age 22 or younger versus first marriage at age 23 or older.
b- Not applicable due to different intercepts for each set of coefficients shown below.
c- Additive logged parameters
d- Multiplicative gamma parameters.
e- This model results in a 12.79 percent reduction in the conditional uncertainty of marriage age. The maximum reduction obtainable with this set of independent variables is 15.87 percent.
younger age at marriage, with the differences between cohorts showing clear signs of deceleration over time. For example, men born in the 1917–1926 cohort are 2.15 times (.614/.286 = 2.15) more likely to marry early than those men born 1907–1916. The 1927–1936 cohort has early marriage rates 54 percent higher (.948/.614 = 1.54) than those born in the 1917–1926 cohort, but the rates of the 1937–1946 cohort are only 28 percent higher than those of the 1927–1936 cohort. (The extremely large odds characterizing the youngest cohort is artifactual, since many men in that cohort will eventually marry after age 22 but have not yet done so, the survey date of observation truncating their exposure to such a risk.)

Regional differences in marriage rates are enhanced with standardization for the other variables. The net marriage rates of Southerners before age 23 are 71 percent higher than those of men born in the Northeast, while other native-born men experience rates 38 percent above those of the Northeastern-born. Foreign-born men are 2.6 times more likely to marry after age 22 than are the Northeasterners. Without controls, men growing up in rural areas are about 16 percent more likely to marry early than are men from urban areas, but this relationship disappears with controls for the other independent variables.

In gross comparisons, blacks have rates of early marriage about 6 percent higher than those of the whites, but, when compositional differences are controlled, blacks are 58 percent more likely than whites to marry late. Among the whites, the Anglos and Spanish ancestry men have virtually identical rates, both with and without controls for other factors.

The expected inverse relationship of educational level with early marriage rates is more clear-cut when the differences due to birth cohort and the other independent variables are controlled. The only exception is the reversal of the pattern between men with some high school education and those with only grade school education. This reversal is probably accounted for both by the poor marriage market prospects faced by men with only a grade school education and by the selectivity of high school dropouts from among the married adolescent population. While high school dropouts have higher early marriage rates than men with greater or lesser educational attainments, there is no special tendency to early marriage among men with only one to three years of college. Such men have early marriage rates 25 percent lower than high school graduates but 82 percent higher than college graduates. The major differences in marriage rates, thus, are between the rates for men with completed college educations and those for all men of less education, though there is an inverse relationship between early marriage rates and level of education among all men except those with only a grade school education.

Net of the effects of the other variables, veterans are twice as likely as nonveterans to marry after age 22. This differential marriage rate by veteran status varies by a man's birth cohort and by his education, net of all other second-order interactions (Table 4, Panel E). An examination of these interactions (Hogan, 1976, Figures 4-2 and 4-4) indicates that the lower early marriage rates among veterans are especially pronounced for men who finished high school or have only some college training but are less than expected among college graduates. While military service is a time-consuming activity which may lead to the postponement of marriage, as does continued attendance in college, the lesser effects of military service on early marriage rates among college graduates are related to the fact that veterans can take advantage of G.I. Bill benefits. For example, a college student receiving veteran's benefits may be better able to afford marriage during college than a new veteran of the same age. The lower rates of early marriage among veterans characterize all birth cohorts except that of 1917–1926. As mentioned above, an extremely high proportion of the 1917–1926 birth cohort served in the military and so experienced marriage market dislocations.
Factors Affecting Age at Marriage

Among men born in that cohort, therefore, military service was not particularly selective of men who marry late.

Size of place of origin does not affect marriage rates among the entire population when we standardize for the other variables. But men born in the Northeast who grow up in urban areas experience higher early marriage rates than expected under the structural equation model incorporating all direct effects, whereas foreign-born men who grow up in urban areas are especially likely to marry late (Table 4, Panel E; see also Hogan, 1976, Figure 4-3). Men born in the Northeast and growing up in an urban area are probably characterized by relatively low rates of migration (between regions and/or from a place of one size to a place of another size) prior to marriage. Experiencing none of the dislocation effects associated with migration, such men have especially early ages at marriage. Conversely, men who are foreign-born often were born in rural areas. Migrating to an urban area of the United States prior to age 16, they would experience the dislocation effects of both international-to-urban and rural-to-urban migration. Doubly disadvantaged, these men marry relatively late.

The remaining interaction (Table 4, Panel E) indicates that the Anglo and Spanish ancestry men have essentially identical trends toward higher early marriage rates, with the exception of the 1927-1936 birth cohort, among whom the men of Spanish ancestry married later. Blacks in the oldest cohorts had a higher early marriage rate than did the whites, but by the cohort of 1937-1946 the rate of early marriage among whites exceeded that among blacks (see Hogan, 1976, Figure 4-1). These cohorts of late marrying blacks probably experienced especially high rates of out-migration from the South prior to marriage, perhaps disrupting their marriage markets.

SUMMARY AND CONCLUSION

That this analysis has not discovered the major determinants of the age at which a man marries is apparent from the low levels of explained variance of our models. However, the analysis has been successful in discounting several theories about the social determinants of age at marriage and in suggesting new directions that the development of a theory of the marriage process should take. We have demonstrated that characteristics of family background (including both the family structure and its socioeconomic standing) are in large part irrelevant in the determination of age at marriage. Growing up in a family in which the head did not usually work or coming from rural (farm) origins are the only two characteristics of the family of origin that delay marriage.

Intercohort trends in age at marriage are not explicable with reference to the changing socioeconomic, ethnic, or nativity composition of the cohorts. Regional differences in age at marriage have persisted over the years in only slightly diminished form; neither the nativity and ethnic compositions of the population of each region nor differing socioeconomic compositions account for these regional differences.

Only those activities which are time-consuming or otherwise disruptive of the smooth operation of normal life-cycle processes during the transition from adolescence to adulthood seriously affect the age at which a man marries. For example, a man who continues his education past the adolescent years by attending college is less likely to marry early than is a man who does not go on to college, but the delaying effect of an additional year of schooling is insufficient to prevent substantial numbers of such men from marrying prior to completing college (Hogan, forthcoming). Military service is selective of single men (those who marry relatively late) but is also sufficiently disruptive of marriage markets to reduce age-specific marriage rates and, thus, on the average, delay marriage for a year or longer. In contrast, the socioeconomic status of a man's first job has little effect on the timing of his marriage.

These findings suggest a perspective
that views prolonging education, being in
the military service, and being a working
husband as competing roles into which
the adolescent reaching adulthood must
allocate his time. Some decisions are made
for him, as in the case of a man drafted
into the military. Other decisions are vol­
untary, for example, the decision to enlist
in the armed forces or to attend college
(assuming the necessary funds are avail­
able). Geographic migration (which often
accompanies a decision to enter one of
these competing roles) may further dis­
rupt the smooth operation of the life-cycle
transition, increasing the difficulty of
finding a suitable mate. For example, a soldier
stationed in a remote base or a new, un­
settled immigrant from abroad may find
himself (at least temporarily) in an unfa­
vorable marriage market. In
consequence,
he is more likely than other men to expe­
rance delays in first marriage.

To further advance our understanding
of the process of the transition from ado­
lescence to adulthood, future research
should focus on the relative timing of en­
trances to and exits from school, of mili­
tary service induction and discharge, and
of the beginnings of careers. The age-spe­
cific marriage rates of men following dif­
ferent sequences in the relative timing of
these transition events need to be more
fully explored. The life history data neces­
sary for such analyses have already been
collected for a number of small or areally­
restricted samples, but the many possible
routes to adulthood necessitate either
large samples or the use of simplifying
assumptions. (For examples of possible
research designs, see Featherman and
Carter, 1975; Davis and Bumpass, 1976;
Elder, 1974; Ornstein, 1976; Wins­
borough, 1975, 1976; and Hogan, forth­
coming.) The findings of this paper sug­
gest that, at least in the early stages of the
development of models of the transition
of men from adolescence to adulthood,
characteristics of the family of origin (in
particular socioeconomic characteristics)
can be safely ignored.

ACKNOWLEDGMENTS

The research reported here is an out­
growth of a dissertation written at the
University of Wisconsin-Madison, under
the supervision of Professor David L.
Featherman. I gratefully acknowledge his
suggestions and assistance, as well as the
comments provided by Hal Winsborough,
Ami Tsui, and the anonymous reviewers.
This research has been supported by Na­
tional Science Foundation Grant GI31604, “Occupational Changes in a Gen­
eration-II,” and by NIH Training Grant
GMO1190. Computing facilities at the
University of Wisconsin were supported
by NICHD Grant IPOI-HD05875. I
also wish to thank the Manuscrpt Unit of
the Community and Family Study Center
for their assistance in the preparation of
this manuscript. Any opinions, findings,
conclusions, or recommendations are
solely those of the author and do not nec­
essarily reflect the views of the agencies
supporting this work.

REFERENCES

Bishop, Yvonne M. M., S. E. Fienberg, and P. W. Holland. 1975. Discrete Multivariate Analysis:
Theory and Practice. Cambridge, Mass.: The
M.I.T. Press.

Blau, Peter M., and O. D. Duncan. 1967. The Amer­
ican Occupational Structure. New York: John
Wiley and Sons.

Carter, Hugh, and P. C. Glick. 1970. Marriage and
Divorce: A Social and Economic Study. Cam­
bridge, Mass.: Harvard University Press.

Pregnancy, Childspacing, and Later Economic

———. R. Freedman, J. Friedman, and W. F. Pratt.
1970. Premarital Pregnancy and Status Before
and After Marriage. American Journal of Sociol­
ogy 75:800-820.

uation of Education After Marriage Among

Elder, G. H., Jr. 1974. Age Differentiation and the
Life Course. Pp. 165-190 in Alex Inkeles, J. Cole­
man, and N. Smelser, Annual Review of Sociol­
views.

lation. Chicago: Markham Publishing Company.
Factors Affecting Age at Marriage

