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Abstract Wavelets, functions with zero mean and finite variance, have recently been found to be appropriate

tools in investigating geophysical, hydrological, meteorological, and environmental processes. In this study, a

wavelet-based modeling technique is presented for suspended sediment discharge time series. The model

generates synthetic series statistically similar to the observed data. In the model in which the Haar wavelet is

used, the available data are decomposed into detail functions. By choosing randomly from among the detail

functions, synthetic suspended sediment discharge series are composed. Results are compared with those

obtained from a moving-average process fitted to the data set.
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Introduction

Flow in a river transports sediment to river reservoirs through the existing river channel.

Sediment is classified as bed load and suspended load, depending on the mode of

transportation. Bed load is that fraction of sediment transported intermittently near the

riverbed, whereas suspended load is the remaining fraction transported continuously within

the flow. Suspended load is measured by sampling from river flow. The most common

practice is to correlate the suspended load to the river discharge. The fraction of bed load can

be estimated by the traditional bed load equations, as continuous sampling is not an easy task

for bed material. This fraction is added to the suspended load to obtain the total sediment

load of the river. The load can also be given in terms of volume. Once the annual total

sediment volume accumulated in the river reservoir is known, the dead storage volume is

obtained, in common practice, simply by multiplying the accumulation by the design life of

the reservoir.

The dead storage volume is of great importance in the design of river reservoirs. It is the

volume that accommodates the sediment which accumulates during the lifetime of the

reservoir. Its underestimation may shorten the life of the reservoir, whereas its

overestimation leads to undesirable costs. The dead storage volume can be determined by

empirical approaches (Bogardi 1974). Traditional sediment transport equations can also be

used (Garde and Ranga Raju 1977). Monitoring and sampling are other solutions for the

determination of the dead volume. Remote sensing and geographic information system

technologies are now available (Baban and Yusof 2001). However, statistical analysis and

stochastic modeling techniques such as autoregressive moving-average (ARMA) models

(Box et al. 1994) are still attractive methods, used in hydrology for generating streamflow

discharge time series. These techniques are also used separately for sediment discharge, as

simultaneous streamflow and sediment discharge records are not available for comparatively

long periods in developing countries such as Turkey, preventing the development and

application of statistical relationships between streamflow and sediment. For example, a

Bayesian approach was developed by Szidarovszky et al. (1976) for generating distribution
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functions of the sediment yield in ephemeral streams. Phien and Arbhabhirama (1979)

performed a statistical analysis of the sediment accumulated in reservoirs, and Phien (1981)

correlated sediment load and river flow sequences in order to determine the expected value

and variance of the accumulation. Tingsanchali and Lal (1992) developed a combined

deterministic–stochastic model for generating daily sediment concentrations from daily

discharges, and Skoklevski and Velickov (1998) analyzed suspended load transportation by

using stochastic methods.

This study aims at simulating annual mean suspended sediment discharge series by using

wavelet functions that have zero mean and finite variance. The concept of wavelets in its

present form was first proposed by Morlet (1981) and Grossman and Morlet (1984).

Wavelets were then employed for signal transmission practices in electronic engineering

(Daubechies 1988; Mallat 1989). Wavelets were also used in geophysics (Kumar and

Foufoula-Georgiou 1993; Szilagyi et al. 1999; Kulkarni 2000). Recently, they have been

found to be useful in hydrology, for synthetic data generation. For example, Feng (1998) and

Smith et al. (1998) generated synthetic flow time series. Bayazit and Aksoy (2001) and

Bayazit et al. (2001) used wavelets for the same purpose. Aksoy (2001) generated wavelet-

based synthetic sequent-peak algorithms for determining the storage capacity of river

reservoirs.

The method in this study was developed by Bayazit and Aksoy (2001). It uses the Haar

wavelet – the simplest wavelet. The idea behind the method is to decompose the available

data into their details first, and then to randomly add them up into one single unit to obtain

annual suspended sediment discharge. The following sections, after a summary of the

method, give the results of an application to a 32-year annual suspended sediment discharge

series taken from the Juniata River at Newport in Pennsylvania, USA, together with

conclusions.

Method

A continuous function with zero mean and finite variance is called a wavelet (Rao and

Bopardikar 1998). An infinite number of functions can qualify as wavelets. Some examples

of wavelets are the Morlet, Mexican hat, Shannon and Meyer types. A simpler wavelet is the

Haar wavelet (Figure 1), defined as:

cðtÞ ¼

1 0 # t # 1=2

21 1=2 # t # 1

0 otherwise

8>><
>>:

ð1Þ

A discrete wavelet transform of a function f(t) is defined as:

dðk; l Þ ¼

ð1

21

f ðtÞ22k=2c ð22kt 2 l Þdt ð2Þ

where k is a scale variable and l is a translation variable, with both being integers (k . 0

means stretching, and k , 0 means contracting the wavelet, whereas l is its translation in

time). The term cð22kt 2 l Þ is called a wavelet function, and corresponds with windows of

various widths at various instants of time. They are scaled and shifted versions of the mother

wavelet. The inverse transform is:

f ðtÞ ¼
X1
21

X1
21

dðk; l Þ22k=2c ð22kt 2 lÞ ð3Þ
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Multi-resolution analysis is the basis for the method. It decomposes a signal, and then

reconstructs it. In this study, the Haar wavelet is used, due to its simplicity. Therefore,

decomposition of a signal (multi-resolution analysis) with the Haar wavelet is considered

and detailed below (Rao and Bopardikar 1998).

For a certain value of k, let us define fk(t) as the average of f(t) over an interval of size 2k:

f kðtÞ ¼
1

2k

ð2kðlþ1Þ

2k l

f ðtÞdt 2kl , t , 2kðl þ 1Þ ð4Þ

The resolution will decrease as k increases. A change in the data resolution with a change in

k, the resolution level, can be seen in the upper part of Figure 2, in which the average of a

sample time series taken at different resolution levels, according to Eq. (4), is shown. Note

that the data sample used in Figure 2 has 16 elements. Note also the increase in ordinates of

fk(t) with a decrease in k.

The difference between the successive averages fk21(t) and fk(t) is defined as the detail

function:

gkðtÞ ¼ f k21ðtÞ2 f kðtÞ ð5Þ

The middle part of Figure 2 shows the detail functions calculated by Eq. (5) for different

resolution levels. Note, from Eq. (4), that f4(t) ¼ 0 for all t. It can be seen that:

f ðtÞ ¼
X1

k¼21

gkðtÞ ð6Þ

Comparing Eq. (3) with Eq. (6), Bayazit and Aksoy (2001) concluded that multi-resolution

analysis using the detail functions was identical to wavelet decomposition with a Haar

wavelet. According to Eq. (6), the original signal is obtained when all the detail functions are

summed up. At the bottom of Figure 2, f(t), the sum of the four detail functions by Eq. (6) is

Figure 1 Haar wavelet
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seen, and it represents the original data, f0(t). Eq. (6) is the basis for the generation algorithm

explained below.

Let us consider a data sample of size M ¼ 2K, where K is a positive integer (K ¼ 4 for the

sequence in Figure 2), taken from a stochastic process f(t) with zero mean:

f ð1Þ; f ð2Þ; . . .; f ðMÞ: Define the sample fk(i) ðk ¼ 0; 1; . . .;K; i ¼ 1; . . .;MÞ consisting of

averages of 2k successive elements of the sample. f0(i) is the original sample and fK(i) is a

sample of all zeros, since the average of M elements is zero. The detail function gk(t) has a

sample consisting of M elements, given by Eq. (4) for k ¼ 1; 2; . . .;K:

Figure 2 Decomposition and reconstruction of a data sequence
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Thus, for each element fi of the original sample, there are K detail function values, gk(i),

corresponding with different resolutions. Choosing from M elements for each gk(t)

randomly, and then summing them up by Eq. (6), a simulated value is obtained for f(t) as:

f ð jÞ ¼
XK

k¼21

gkð jÞ ð7Þ

where j is the index for generated elements. The generation algorithm is given step by step as

follows (Bayazit and Aksoy 2001), and is illustrated in Figure 3 for K ¼ 4.

(1) In order to obtain the first element of the series ( j ¼ 1), gk values ðk ¼ 0; 1; . . .;KÞ are

chosen from M values randomly, and summed to obtain f1 (Figure 3).

(2) The second element ( j ¼ 2) is generated by choosing for each k, gk coming just after

the gk values chosen in the first step. The f2 is obtained by the summation of these

(Figure 3).

(3) Data generation is continued in this way for the desired number of times: For the

generation of each element fj, the detail function values right next to those of the

previous step j 2 1 at each resolution level are used.

Wavelet analysis in the form presented in this study is a non-parametric method. The

advantage of using a non-parametric method for data generation is that it is not necessary to

choose a distribution for the stochastic process and estimate its parameters. A drawback with

the method is that the skewness of the data cannot be preserved. Bayazit et al. (2001)

therefore concluded that the algorithm could not reproduce the coefficient of skewness for

non-normal series. Simulated series have skew coefficients that vary widely, tending to zero

on average as the number of simulations increases, which may be explained by the central

Figure 3 Construction of a synthetic data sequence
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limit theorem. Non-normal series can be normalized by a suitable transformation, simulated

by wavelet analysis, and then transformed back. This procedure approximately reproduces

the coefficient of skew of the original series.

Rao and Bopardikar (1998) are referred to for detailed information on multi-resolution

analysis of wavelet functions. Particular details on multi-resolution analysis of the Haar

wavelet can be found in Bayazit and Aksoy (2001) and Bayazit et al. (2001).

Application

The wavelet-based algorithm was applied to an annual mean suspended sediment discharge

series, 32 years in length, taken from the Juniata River at Newport in Pennsylvania, USA

(USGS station number 01567000). The basin area is 8,687 km2. Thirty-two years of

observation – from 1952 to 1983 – were used. Characteristics of the annual mean suspended

sediment discharge at the station are given in Table 1, and the corresponding time series is

plotted in Figure 4. As seen from Table 1, the data set has a non-symmetric distribution with

a skewness coefficient of about 3. However, it was stressed in the previous section that the

proposed wavelet-based algorithm is valid only for data sets with a skewness coefficient of

zero. Therefore, the data set was transformed by using y ¼ xu, where x is the original data

and y is its transformed value. This is known as the Box and Cox (1964) transformation.

Exponent u in the transformation was set to 0.0526 to obtain zero skewness. The data set,

however, is independent.

Two thousand synthetic series, each 32 years in length, were generated by the

wavelet algorithm. The results are given in Table 2. The mean is preserved. Average

standard deviation is only 8% lower than the observed value. The coefficient of skewness

obtained after inverse transformation is lower than the observed counterpart. The relative

error between the two coefficients is rather high. However, the uncorrelated structure of the

data set was preserved in the generated series, although correlation coefficients of individual

series vary over rather wide ranges. Maximum and minimum sediment discharge values

averaged for 2000 series are comparable with their observed counterparts. The average of the

Figure 4 Observed annual mean suspended sediment discharge series

Table 1 Characteristics of observed annual mean suspended sediment discharge series

Average

(tonnes/day)

Standard deviation

(tonnes/day)

Skewness

coefficient

Autocorrelation

coefficient

Maximum

(tonnes/day)

Minimum

(tonnes/day)

r1 r 2 r 3

677.2 460.2 2.895 0.042 0.037 20.122 2688 153.6
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maxima was found to be lower than that of the observed series, and the average of minima

was found to be higher.

The wavelet algorithm was compared to a first-order moving-average process [MA(1)]

fitted to the data set. Again, 2000 series were generated. Results of the MA(1) process are

listed in Table 3, from which it is seen that the average is perfectly preserved. The average

standard deviation is 10% lower than the observed value. A less skewed distribution was

obtained. The correlation structure of the data set, however, was preserved: i.e. no correlation

was found in the generated series. The average of the maxima was found to be lower and the

average of the minima was found to be higher than those of the observed series.

When the results of wavelet algorithm are compared with those of the moving-average

process, it is seen that both methods are very good at replicating the average of the observed

suspended sediment discharge series as an average of 2000 series. When generated series

were taken individually, it is seen that the moving-average process has a wider range for the

average. Standard deviation is almost the same in both methods, although it is closer to the

observed value in the wavelet algorithm. Its range is, however, wider in the moving-average

process. Both methods were found to be less effective in preserving the non-symmetric shape

of the distribution. This is a result of the transformation – not of the methods – as the

skewness coefficients of the simulated series were zero before the inverse transformation

was applied. Annual suspended sediment discharges were found to show no correlation. The

independent structure was obtained, on average, in both methods, with a wider range in the

moving-average process for the first- and second-order correlation coefficients. A higher

maximum for the maxima and a lower minimum for the minima were obtained for both

methods. Wider ranges for those characteristics were obtained when using the moving-

average process.

Figure 5 shows the similarity between the distributions of the observed and simulated

annual suspended sediment discharge series. The distributions of the wavelet algorithm and

moving-average process are based on the average of 2000 series. It is seen that the shape of

the distribution is preserved by both methods. The same mode of the observation was

generated with a relatively higher frequency. The positively skewed distribution is obtained

in both methods. The cumulative frequency diagrams of maximum, mean, and minimum

Table 2 Characteristics of generated data (wavelet)

Average

(tonnes/

day)

Standard

deviation

(tonnes/day)

Skewness

coefficient

Autocorrelation

coefficient

Maximum

(tonnes/

day)

Minimum

(tonnes/

day)

r1 r 2 r 3

Ave. 677.6 422.3 1.683 20.043 20.027 0.017 2094 182.3

Min. 618.7 232.1 20.122 20.418 20.458 20.474 1081 79.37

Max. 777.2 919.0 5.288 0.360 0.497 0.734 5583 304.0

Table 3 Characteristics of generated data (MA)

Average

(tonnes/

day)

Standard deviation

(tonnes/

day)

Skewness

coefficient

Autocorrelation

coefficient

Maximum

(tonnes/

day)

Minimum

(tonnes/

day)

r1 r 2 r 3

Ave. 677.1 410.9 1.485 20.089 20.022 20.025 1984 190.1

Min. 418.9 135.4 20.096 20.521 20.447 20.457 767.3 67.30

Max. 1007 1676 5.183 0.571 0.585 0.501 9934 356.7
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annual suspended sediment discharges of 2000 series are plotted in Figure 6, from which it is

seen that the moving-average process gives a wider range of simulations. Like the flow

duration curve, the suspended sediment discharge duration curve can also be plotted as in

Figure 7, where five series are compared. Curve (1) is the duration curve of the 32-year

observation. Curve (2) is the duration curve of the average of 2000 series simulated by the

wavelet algorithm, and curve (3) is that simulated by the moving-average process. These two

curves match the observed duration curve perfectly. Curves (4) and (5) consist of 64,000

suspended sediment discharges (2000 series, each 32 years in length) simulated by wavelet

and moving-average, respectively. The curves match the observed duration curve as well as

curves (2) and (3) taken on average. However, as expected, higher maxima and lower

minima are observed for very small and very large percentages of time exceeded.

Figure 5 Frequency histogram of observed and simulated suspended sediment discharge series

Figure 6 Cumulative frequency diagram of the observed and generated suspended sediment discharge series
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Conclusions

A newly developed synthetic data generation approach based upon wavelet theory is

proposed in this study. The approach first decomposes a data series into its details, and then

reconstructs those details randomly, to end up with a synthetic data series. The Haar wavelet

is chosen for its simplicity. Other wavelets can also be considered for decomposition of the

data series that might improve the results. Application of the approach to an annual mean

suspended sediment discharge series, and its comparison to a moving-average process fitted

to the data set, suggest that the approach can be used as a synthetic data generation tool.

When the results of this study are combined with those from earlier applications of the

proposed approach (Bayazit and Aksoy 2001; Bayazit et al. 2001; Aksoy 2001), it is

concluded that the wavelet-based approach is an alternative to the traditional AR and MA

type models and/or their seasonal or periodic versions for synthetic generation of

hydrological data sets.

Acknowledgments
The authors thank Randy S. Parker of the US Geological Survey for providing data, and two

anonymous reviewers for their constructive comments.

References
Aksoy, H. (2001). Storage capacity for river reservoirs by wavelet-based generation of sequent-peak algorithm.

Wat. Resour. Manag., 15(6), 423–437.

Baban, S.M.J. and Yusof, K.W. (2001). Modelling soil erosion in tropical environments using remote sensing and

geographical information systems. Hydrol. Sci. J., 46(2), 191–198.

Bayazit, M. and Aksoy, H. (2001). Using wavelets for data generation. J. Appl. Stat., 28(2), 157–166.

Bayazit, M., Onoz, B. and Aksoy, H. (2001). Nonparametric streamflow simulation by wavelet or Fourier

analysis. Hydrol. Sci. J., 46(2), 623–634.

Bogardi, J. (1974). Sediment Transport in Alluvial Streams, Akademiai Kiado, Budapest.

Figure 7 Suspended sediment discharge duration curves: (1) observed; (2) wavelet (average of 2000 series);

(3) MA(1) (average of 2000 series); (4) wavelet (32-year 2000 series); (5) MA(1) (32-year 2000 series)

H
.A

kso
y

et
al.

173

Downloaded from https://iwaponline.com/hr/article-pdf/35/2/165/363517/165.pdf
by guest
on 18 November 2018



Box, G.E.P. and Cox, D.R. (1964). An analysis of transformations. J. Stat. Soc., B26, 511–552.

Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994). Time Series Analysis, Forecasting and Control (3rd edn),

Prentice-Hall, Englewood Cliffs, New Jersey.

Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Commun. Pure & Appl. Math., 41,

909–996.

Feng, G. (1998). A method for simulation of periodic hydrologic time series using wavelet transform, stochastic

models of hydrological processes and their applications to problems of environmental preservation.

In: Proceedings, NATO Advanced Research Workshop,23–27, November 1998, Moscow, Russia, Water

Problems Institute, Moscow.

Garde, R.J. and Ranga Raju, K.G. (1977). Mechanics of Sediment Transportation and Alluvial Stream Problems,

Wiley Eastern, New Delhi.

Grossman, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of

constant shape. SIAM J. Math. Anal., 15(4), 723–736.

Kulkarni, J.R. (2000). Wavelet analysis of the association between the southern oscillation and the Indian summer

monsoon. Int. J. Climatol., 20, 89–104.

Kumar, P. and Foufoula-Georgiou, E. (1993). A multicomponent decomposition of spatial rainfall fields, 1.

Segregation of large- and small-scale features using wavelet transforms. Wat. Resour. Res., 29(8),

2515–2532.

Mallat, S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11, 674–693.

Morlet, J. (1981). Sampling theory and wavelet propagation. Proceedings, 51st Annual Meeting of the Society for

Exploration Geophysics, Los Angeles, USA.

Phien, H.N. (1981). Reservoir sedimentation with correlated inflows. J. Hydrol., 53, 327–341.

Phien, H.N. and Arbhabhirama, A. (1979). A statistical analysis of the sediment volume accumulated in

reservoirs. J. of Hydrol., 44, 231–240.

Rao, R.M. and Bopardikar, A.J. (1998). Wavelet Transforms, Introduction to Theory and Applications, Addison-

Wesley, Reading, MA.

Skoklevski, Z. and Velickov, S. (1998). Suspended load transportation process within Vardar River basin in the

Republic of Macedonia. In: XIXth Conference of the Danube Countries on Hydrological Forecasting and

Hydrological Bases of Water Management, Osijek, Croatia, 15–19 June 1998, D. Geres and D. Trninic

(Eds.), Hrvatske Vode, Osijek, pp. 717–727.

Smith, L.C., Turcotte, D.L. and Isacks, B.C. (1998). Streamflow characterization and feature detection using a

discrete transform. Hydrol. Processes, 12, 233–249.

Szidarovszky, F., Yakowitz, S. and Krzysztofowicz, R. (1976). A Bayes approach for simulating sediment yield.

J. of Hydrol. Sci., 3(1–2), 33–44.

Szilagyi, J., Parlange, M.B., Katul, G.G. and Albertson, J.D. (1999). An objective method for determining

principal time scales of coherent eddy structures using orthonormal wavelets. Adv. Wat. Resour., 22(6),

561–566.

Tingsanchali, T. and Lal, N.K. (1992). A combined deterministic–stochastic model of daily sediment

concentrations in a river. In: Proceedings of the Sixth IAHR Symposium on Stochastic Hydraulics, Taipei, J.T.

Kuo (Ed.), A.A. Balkema, Rotterdam, pp. 221–228.
H

.A
kso

y
et

al.

174

Downloaded from https://iwaponline.com/hr/article-pdf/35/2/165/363517/165.pdf
by guest
on 18 November 2018


