Maternal Iron Deficiency Alters Essential Fatty Acid and Eicosanoid Metabolism and Increases Locomotion in Adult Guinea Pig Offspring1–3

Caroline P. LeBlanc,4 Sylvain Fiset,5 Marc E. Surette,6 Huguette Turgeon O’Brien,7 and France M. Rioux4,5,8*

4École des sciences des aliments, de nutrition et d’études familiales, Université de Moncton, Moncton, NB E1A 3E9 Canada; 5Secteur Sciences Humaines, Université de Moncton, Edmundston, NB E3V 2S8 Canada; and 6Département de chimie et biochimie, Université de Moncton, Moncton, NB E1A 3E9 Canada; 7Département des sciences des aliments et de nutrition, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec, QC G1V 0A6 Canada

Abstract
Iron deficiency (ID) is the most prevalent worldwide nutritional deficiency. Groups at risk of developing ID anemia are infants and pregnant women, even in industrialized countries. Our goal in this study was to evaluate the long-term consequences of maternal ID on the offspring’s fatty acid and eicosanoid metabolism, behavior, and spatial memory. Female guinea pigs consumed iron-sufficient (IS) and –deficient (ID) diets for 14 d before mating and throughout pregnancy and lactation. Dietary iron restriction resulted in ID in pregnant females. On postnatal d 9, all offspring (ID and IS) were weaned to the IS diet and at 42 d, all offspring were iron replete. Locomotion was tested in pups on postnatal d 24 and 40 and spatial memory from d 25 to 40. Pups from the ID group were significantly more active in the open field at both times of testing, whereas spatial memory, tested in a Morris water maze, was comparable in both groups. On postnatal d 42, liver, RBC, and brain fatty acid composition were measured. Dihomogammalinolenic [20:3(n-6)], docosapentaenoic [22:5(n-3)], and docosahexaenoic [22:6(n-3)] acid contents were significantly higher in brain phospholipids of offspring born to ID dams. Prostaglandin E2 and F2α concentrations were also significantly higher in brains of offspring born to ID dams. This demonstrates that moderate ID during gestation and lactation results in alterations of brain fatty acid and eicosanoid metabolism and perturbation in behavior in adult offspring. J. Nutr. 139: 1653–1659, 2009.

Introduction
In early brain development, iron is involved in tissue oxygenation and energy metabolism (1). Iron is also essential to neurotransmitter synthesis and myelination of the central nervous system (CNS)9 (2) and as a cofactor to enzymes involved in brain development (3). Because iron deficiency (ID) during this critical period could cause permanent unfavorable effects on CNS development, it is crucial that the brain acquires an adequate iron supply during development (4). Unfortunately, many women do not maintain an adequate iron status during pregnancy because of increased requirements and intakes below recommendations (5). Infants and pregnant women are therefore at high risk of developing ID even in industrialized countries (6–8).

Although clinical studies have shown that maternal ID has a strong impact on infant iron status at birth (9,10) and during the first year of life (8,11,12), the long-term consequences of maternal ID on the progeny are not well known. Indirect evidence using IQ scores in human infants suggests that inadequate iron status during pregnancy can lead to delays in human infant cognitive and psychomotor development (13). Animal studies also support the potential negative effects of maternal ID on the infant’s CNS development. Severe ID during pregnancy in rats results in decreased activity in the young progeny (14) and sensorimotor deficits that are enduring (15). Similarly, marginal ID during pregnancy and lactation in mice is associated with altered functional motor development (16), which is not corrected by adequate iron intake after weaning (17).

Like iron, the long chain (n-6) and (n-3) PUFA and their metabolites, the prostaglandins (PG), are essential to brain function (18). The PGs, formed by the action of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX), are involved in several brain functions including learning and memory (19), and there is increasing evidence that the fatty acid composition and eicosanoid metabolism in the brain are affected by maternal ID (20,21). The eicosanoids, prostaglandins (PG), and other oxygenated fatty acid derivatives, are essential to brain development and function. For instance, the PGs, formed by the action of COX and 5-LOX, are involved in learning and memory (19), and there is increasing evidence that the fatty acid composition and eicosanoid metabolism in the brain are affected by maternal ID (20,21).
development. Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important structural fatty acids in the brain (18) that are found in high concentrations. DHA plays a functional role in neural and visual processes whereas AA is required to maintain normal growth and function of the vascular system (19). PG concentrations and the expression of their receptors are elevated in the newborn brain (20), where they regulate cerebral blood flow and nitric oxide synthase during the pre- and postnatal periods (21). PG receptors are expressed in astrocytes and oligodendroglial cells and PG are thought to be involved in the regulation of myelin production and oligodendroglial cell differentiation (22).

The biochemical mechanism by which maternal ID affects the CNS development in the progeny is unknown. However, ID has been linked to altered tissue PUFA profiles (23–27). Iron is a cofactor for the desaturases that are required for the synthesis of long-chain PUFA from their 18-carbon precursors. Reduced amounts of AA were reported in the plasma (25) and in liver phosphatidylcholine (PC) (27) of adult rats fed ID diets. Similarly, liver and serum AA were lower in rat pups born to dams fed an ID diet throughout pregnancy and lactation (28,29), whereas reduced AA and DHA levels were measured in brain myelin of mice pups born to dams fed a diet containing marginal amounts of iron (29). Whether these effects are reversible by replenishing iron stores in the progeny is uncertain. Additionally, the effects of ID on brain PG biosynthesis are unknown even though the cyclooxygenases (COX) I and II that are responsible for their biosynthesis are iron-containing enzymes (30).

In this study, we examined the consequences of moderate ID (31) during gestation and lactation on behavior and spatial memory in adult offspring of guinea pigs. The level of ID induced in pregnant females is considered to be moderate in guinea pigs and in human pregnant women. Tissue fatty acid composition and PG levels were also measured. The majority of previous studies investigating the effects of ID on brain development have used rats as the animal model. However, CNS development in rats occurs mainly during the postnatal period (32). We therefore selected guinea pigs, because this animal model more closely approximates the timing of prenatal brain development of humans (33) and is thus susceptible to altered development as a result of maternal dietary deficiencies.

Materials and Methods

Guinea pigs and diets. Nineteen female and 2 male Hartley guinea pigs (75 d old) were purchased from Charles River and were housed in the animal care facility at Université de Moncton, Edmundston campus, in a temperature-controlled environment (22°C) on a 12-h-light/-dark cycle with lights on at 0700. The total number of successful pregnancies in each group was 7 for the iron-sufficient (IS) group and 9 for the ID group. The other females refused to eat the diet, did not become pregnant, had a miscarriage, or had stillbirths. The total number of offspring was 15 for the IS group and 18 for the ID group.

Diets were purchased from Harlan Teklad. The iron contents of the IS and ID diets were 145 and 8.44 mg iron/kg feed, respectively (Table 1). Both IS and ID diets had the same fatty acid profile. The main fatty acids in the diet were linoleic acid [18:2(n-6)], oleic acid [18:1(n-9)], and palmitic acid 16:0, accounting for 58.9 ± 0.6%, 26.4 ± 0.3%, and 10.7 ± 0.1% of total fatty acids, respectively. Small amounts of stearic acid [18:0] and α-linolenic acid [18:3(n-3)] were also present at levels of 1.8 ± 0.03% and 1.0 ± 0.01% of total fatty acids, respectively. Diets were consumed ad libitum along with fresh water. Food intake was recorded daily and body weight every second day. The research protocol was approved by the Université de Moncton animal care committee.

Experimental design.

Females were randomly distributed into 2 groups and consumed their respective diets (ID or IS) for 14 d before mating and continued throughout gestation and lactation. For each dietary group, 1 male was placed with 5 females in a large mating cage for 23 d. A comparable number of females per dietary group were mated with the same male. After mating, females were then separated and placed individually in cages. On postnatal d 9, pups were weaned and all pups were fed the IS diet.

Exploratory behavior in the open field.

At 24 and 40 d of age, pups were tested in an open field to assess their spontaneous locomotor activity, as previously reported in mice (34). The apparatus consisted of a 20-cm-high, 1-m × 1-m enclosure made of white Plexiglas. The bottom of the enclosure was covered with ~3 cm of pine wood chips. On the days of testing, each pup was placed in the open field and activity was recorded via an overhead video camera for 15 min. The behavioral measures recorded were the total number of peripheral and central square crossings, the total number of movements (i.e. starts and stops), and the mean duration of each movement.

Morris Water Maze.

The Morris Water Maze (MWM) consisted of a circular pool (165 cm diameter, 75 cm deep) filled with water (47 cm deep; temperature 23–25°C) made opaque with the addition of nontoxic white paint. A circular escape platform (25 cm diameter, 45 cm high) made of transparent Plexiglas was submerged 2 cm below the water surface and located in the center of 1 of the 4 pool quadrants. This spatial memory task was largely adapted from Dringenberg et al. (35), who first validated the MWM in guinea pigs. Starting on postnatal d 25, offspring were tested in the MWM. During the acquisition phase, guinea pigs were tested for 10 consecutive days with the submerged platform remaining in the same quadrant. The position of the platform among the 4 quadrants was randomly distributed across animals. On each day, guinea pigs received 1 block of 4 training trials. For each block, 4 randomized start positions from the 4 cardinal compass points were used. The guinea pig started a trial facing the wall of the pool and was allowed to swim freely for 45 s. If the guinea pig found the platform, it was left there for 15 s and then removed and dried to wait for next the trial. If the guinea pig did not find the platform after 45 s, it was manually placed on it for 15 s and then removed and dried to wait for the next trial. Time required to reach the

TABLE 1 Composition of IS and ID guinea pig diets 1

<table>
<thead>
<tr>
<th></th>
<th>IS</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>l-Arginine HCl</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sucrose</td>
<td>366.3</td>
<td>367.0</td>
</tr>
<tr>
<td>Cellulose</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Corn oil</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Alfalfa meal</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Vitamin mix (40060)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Minerals 1</td>
<td>59.9</td>
<td>59.9</td>
</tr>
<tr>
<td>Ferric citrate</td>
<td>0.735</td>
<td>—</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Choline dihydrogen citrate</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td>Folic acid</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1 Proximate macronutrient contribution of IS and ID diets (%): protein, 33.7; carbohydrate, 45.7; lipid, 20.6.

2 Containing the following (g/kg vitamin mix): p-aminobenzoic acid, 11.01; ascorbic acid, 101.66; biotin, 0.044; vitamin B-12, 2.97; calcium pantothenate, 6.61; choline dihydrogen citrate 349.69; folic acid, 0.198; myoinositol, 11.01; menadione, 4.96; niacin, 9.91; pyridoxine HCl, 2.20; riboflavin, 2.20; thiamin HCl, 2.20; vitamin A palmitate, 3.96; cholecalciferol, 0.441; vitamin E acetate, 24.22; corn starch 466.69.

3 Containing the following (g/kg minerals): calcium carbonate, 22.5; potassium phosphate dibasic, 14.5; potassium acetate, 9.5; magnesium sulfate, 10.0; sodium chloride, 3.0; manganese sulfate·H2O, 0.3; zinc carbonate, 0.1; cupric sulfate·5H2O, 0.03; chromium KSO4·12H2O, 0.01; potassium iodate, 0.001; sodium selenite·5H2O, 0.001.
platform was recorded via a stopwatch and a camera mounted on the ceiling over the pool.

Five days after the end of the acquisition phase (postnatal d 39), the platform was removed and each guinea pig was allowed to swim freely in the pool for 60 s. Twenty minutes after this retention trial, the same guinea pig was placed in the pool again, but this time the platform was relocated to the opposite quadrant of the maze. For this reverse quadrant platform test, the guinea pigs received 1 block consisting of 4 trials on postnatal d 39 and 1 block of 4 trials on postnatal d 40. This test was performed to determine whether pups transferred learning from one position to another.

Tissue and blood collections. At the age of 42 d, the pups were anesthetized with a solution of 10:1 ketamine/xylazine (1 ml/kg body weight) and killed by decapitation. Two 1-ml blood samples were then collected in EDTA-anticoagulated tubes. One tube was sent to the Edmundston Regional Hospital in Edmundston, New Brunswick, for complete blood count [hemoglobin (Hb), hematocrit (Hct), and mean cell volume (MCV)] using a Beckman-Coulter Ac-T diff2 Hematology Analyzer. Spectrophotometry was used for Hb and aperturé impedance was used for MCV and RBC. Hct was calculated by multiplying MCV by RBC and dividing by 1000. The other blood sample was immediately put on ice for preparation of RBC. The plasma was separated by centrifugation at 1000 × g; 15 min at 4°C and RBC were washed twice with 3 mMol/L EDTA 0.9% saline solution. Aliquots were stored at −70°C until further analysis. The brain and left lobe of the liver from each pup were immediately dissected, weighed, and then frozen in liquid nitrogen and stored at −70°C until further analyses.

Homogenization and tissue preparation. Brain and liver tissues were homogenized in a Potter apparatus. One gram of tissue was homogenized in 9 ml of ice-cold homogenization buffer containing 50 mmol/L potassium phosphate, pH 7.4, and 0.25 mol/L sucrose. For brain tissues, the homogenization buffer also contained indomethacin (10 mg/L) (Alfa Aesar). The supernatant was obtained from the homogenate following centrifugation at 12,000 × g; 10 min at 4°C. Protein content was determined using a modification of the Lowry method (36).

Fatty acid quantification. Total lipids of brain and liver homogenates and of RBC were extracted with chloroform (37). For brain lipids, phospholipid (PL) classes [PC, phosphatidylinositol (PI)/phosphatidylserine, and phosphatidylethanolamine (PE)] were separated by HPLC as previously described (38).

FAME were prepared from brain PL classes (PE, PI/ phosphatidylserine, and PC) and from total lipids extracted from liver and RBC following the addition of 1,2-dihexadecanoyl sn-glycero-3-phosphoryl-choline (Biolyx) as an internal standard and were analyzed by GC with flame ionization detection as previously described (39).

Brain COX II western blotting. Brain homogenate supernatants were heated at 100°C for 5 min in Laemmli sample buffer (40) and separated by SDS-PAGE on a 10% gel. The proteins were then electrophoretically transferred to a polyvinylidene difluoride membrane (Millipore) and incubated for 30 min in Tris-buffered saline (TBS)-TWEEN [0.15% (v/v) Tween-20 in TBS, pH 7.6] containing 5% (w/v) nonfat dry milk. After washing, the membrane was incubated with an anti-COX II (Cayman Chemical) diluted 1:200 in TBS-Tween containing 0.02% sodium azide (v/v) for 60 min. Membranes were then washed and incubated for 45 min in TBS-Tween containing horseradish peroxidase-conjugated goat anti-mouse (1:45,000 dilution, Jackson ImmunoResearch Laboratories). Membranes were then washed and developed using Super-signal West Femto Substrate (Pierce) with detection using an Alpha Innotech Fluorchem imager. Optical densities of bands were measured using Alpha Ease Fluorchem Software 4.1.0.

Measurement of PGE2 and PGF2α. PGE2 and PGF2α concentrations were measured in brain supernatant using PGE2 and PGF2α Correlate-EIA kits (Assay Designs) according to the manufacturer’s protocol. All samples were analyzed in duplicate and plates were read at 405 nm using a Varioskan (Thermoelectron).

Statistical analysis. Data were analyzed using SPSS version 14.0, 2005 software. Two-way repeated-measures ANOVA were used to identify significant differences between groups and sessions in the open field and the MWM and to compare offspring’s body weight of both groups at birth and d 39. Significant main within-subject effects were followed by Bonferroni tests. t tests were used for all other comparisons. Values in the text are means ± SEM and the level of significance was set at P < 0.05.

Results.

Food intake, iron status, and weights. Food intake during gestation did not differ among ID and IS groups; the IS group consumed 31.5 ± 1.5 g/d and the ID group consumed 31.0 ± 1.7 g/d. Dietary restriction of iron during pregnancy and lactation resulted in ID in guinea pig dams, because Hb, Hct, and MCV were significantly lower in the ID group (Table 2). The mean Hb for dams of the ID group was well below the normal range for Hb in guinea pigs, which usually varies between 110 and 140 g/L, with a mean of 125 g/L (31). Iron status did not differ between the 2 groups of pups at 42 d. Offspring’s body weight increased from birth to d 39, but there was no significant difference between groups or time × group interaction. On postnatal d 42, offspring’s brain and liver weights did not differ (Table 2).

Exploratory behavior in the open field. Groups behaved differently in the open field. The ID group was significantly more active than the IS group at both 24 and 40 d postpartum. In each session, the ID group had significantly more central and peripheral square crossings and mean number of movements. There was no significant effect of sessions and no interaction. The duration of each movement significantly decreased from d 24 to 40, but there was no difference between groups and no interaction (Table 3).

MWM. During the acquisition phase of the MWM, escape latency gradually decreased from d 1 to d 10 of training (Fig. 1A), but there were no significant differences between offspring from the IS and ID groups nor was there a time × group interaction. In the retention trial (platform removed), guinea pigs spent more time in the target quadrant than expected by chance (15 s), but there were no diet group differences (data not shown), suggesting that both groups remembered the location of...
the platform 5 d after the end of training. Finally, offspring from both groups showed transferred learning when the platform was relocated in a new quadrant, as shown by a significant decrease in escape latency over the 2 test days (Fig. 1B). There were no diet group differences nor was there an interaction.

Brain fatty acid composition. ID induced during pregnancy and lactation had a lasting impact on the fatty acid composition of the pups’ brains (Supplemental Table 1). The concentration of total fatty acids did not differ between the IS and ID groups (data not shown). The content of total SFA in PI was lower in pups born to ID dams, mainly due to lower 18:0 content, whereas the 18:1(n-7) content was significantly lower in PE and PI of pups born to ID dams. Total proportions of PUFA in PE and PI were significantly higher in pups born to ID dams. Although no differences were measured in the percent of total (n-6) fatty acids, dihomogammalinolenic acid [20:3(n-6)] was significantly higher in all 3 PL classes, whereas 20:2(n-6) was significantly higher in pups born to ID dams. The most striking difference in fatty acid content between groups was in the (n-3) PUFA. Pups born to ID dams had significantly higher proportions of total (n-3) PUFA in PC, PE, and PI, with significantly higher levels of 22:5(n-3) and 22:6(n-3) in PE and PI (Table 4).

Liver fatty acid composition. The concentration of total fatty acids was higher in the IS group (67.4 ± 5.3 mg/g tissue) than in the ID group (53.4 ± 4.0 mg/g tissue) (*P* < 0.05). The 2 groups did not differ in total SFA, monounsaturated fatty acids, PUFA, or (n-3) or (n-6) fatty acids. However, the proportion of 16:0 was lower and those of 18:0, 20:1, and 20:2(n-6) were higher in pups in the ID group (Supplemental Table 2).

RBC fatty acid composition. The concentration of total fatty acids did not differ between the IS and ID groups (data not shown). The 2 groups did not differ in total SFA, monounsaturated fatty acids, PUFA, or (n-3) or (n-6) fatty acids. However, 18:1(n-7) and 20:3(n-6) were significantly lower in the ID group (Table 4).

Brain COX II and PG levels. Dietary restriction of iron during pregnancy and lactation resulted in significantly higher levels of PGE2 and PGF2α in brains of offspring born to the ID dams (Table 4). Consistent with the PG concentrations, COX-II protein levels tended to be higher in brains of pups born to ID dams compared with those born to IS dams (*P* = 0.10).

Discussion

In this study, the consequences of moderate maternal ID on behavior and spatial memory as well as on fatty acid and PG levels were investigated. The results showed that moderate maternal ID during pregnancy and lactation had a lasting impact on the fatty acid composition of the pups’ brains. Specifically, the content of total (n-3) PUFA in PC, PE, and PI was significantly higher in pups born to ID dams, with significantly higher levels of 22:5(n-3) and 22:6(n-3) in PE and PI. The concentration of total fatty acids was higher in the IS group compared with the ID group. The 2 groups did not differ in total SFA, monounsaturated fatty acids, PUFA, or (n-3) or (n-6) fatty acids. However, the proportion of 16:0 was lower and those of 18:0, 20:1, and 20:2(n-6) were higher in pups in the ID group. RBC fatty acid composition did not differ between the IS and ID groups. Brain COX II and PG levels tended to be higher in brains of pups born to ID dams compared with those born to IS dams.

TABLE 3 Exploratory behavior in the open field of offspring of dams fed IS and ID diet during pregnancy and lactation

<table>
<thead>
<tr>
<th></th>
<th>Postnatal d 24</th>
<th>Postnatal d 40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS</td>
<td>ID</td>
</tr>
<tr>
<td>Peripheral square crossings, n</td>
<td>8.8 ± 3.1</td>
<td>19.3 ± 4.8*</td>
</tr>
<tr>
<td>Central square crossings, n</td>
<td>101 ± 25.4</td>
<td>174.7 ± 30.1*</td>
</tr>
<tr>
<td>Movements, n</td>
<td>6.7 ± 1.4</td>
<td>11.4 ± 1.4*</td>
</tr>
<tr>
<td>Duration of each movement, s</td>
<td>21.8 ± 4.2</td>
<td>23.6 ± 3.5</td>
</tr>
</tbody>
</table>

1 Values are means ± SEM, n = 15–18. *Different from IS pups, *P* < 0.05.

TABLE 4 Brain docosapentaenoic acid and DHA contents in PC, PE, and PI, brain PGE2 and PGF2α concentrations, and COX-II levels of offspring of dams fed IS and ID diet during pregnancy and lactation

<table>
<thead>
<tr>
<th></th>
<th>IS</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHA, %</td>
<td>0.7 ± 0.05</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>PC</td>
<td>5.2 ± 0.03</td>
<td>6.3 ± 0.4*</td>
</tr>
<tr>
<td>PE</td>
<td>4.1 ± 0.1</td>
<td>5.1 ± 0.3*</td>
</tr>
<tr>
<td>Docosapentaenoic acid, %</td>
<td>0.1 ± 0.00</td>
<td>0.1 ± 0.01</td>
</tr>
<tr>
<td>PC</td>
<td>0.8 ± 0.04</td>
<td>1.0 ± 0.04*</td>
</tr>
<tr>
<td>PE</td>
<td>0.5 ± 0.02</td>
<td>0.6 ± 0.02*</td>
</tr>
<tr>
<td>PG, pg/mg protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGE2</td>
<td>973 ± 50</td>
<td>1165 ± 70*</td>
</tr>
<tr>
<td>PGF2α</td>
<td>2080 ± 224</td>
<td>3275 ± 362*</td>
</tr>
<tr>
<td>COX-II, relative integrated density values</td>
<td>3.48 ± 0.31</td>
<td>4.88 ± 0.15</td>
</tr>
</tbody>
</table>

1 Values are means ± SEM, n = 15–18. *Different from IS pups, *P* < 0.05.
Consequences of maternal iron deficiency

Eicosanoid metabolism were examined in the adult offspring of guinea pigs. The dietary restriction of iron during pregnancy and lactation resulted in a moderate ID in dams (31) that is similar to that observed in women from industrialized countries (7,8). Previous work by our research group using the same diets showed that offspring from dams fed the ID diet during pregnancy and lactation were ID at weaning (9 d) but had achieved normal Hb levels at 25 d. Consistent with a moderate ID, offspring body weights and maternal food intake during gestation did not differ between the IS and ID groups. An adequate iron status was achieved at 42 d with no significant differences between groups.

Offspring from the ID group were significantly more active than offspring from the IS group. In contrast to this finding, adult rats born to dams fed a diet low in iron during gestation and lactation behaved similarly to their IS counterparts, with no significant locomotor activity differences in the open field between diet groups (15,41). This difference may reflect the different animal models used in the 2 studies. Indeed, one could speculate that the behavior of guinea pigs is expected to be more affected by maternal ID because of the more important period of CNS development before birth compared with rats. In fact, in guinea pigs and humans, rapid brain growth occurs during the prenatal stage, which corresponds to a period particularly vulnerable to dietary restriction. In contrast, rats' brains are very immature at birth and the brain's growth spurt takes place mainly during the postnatal period (42). However, other rat studies indicated that both young (8–10 d old) and older offspring (12 wk) born to ID dams had lower activity levels than those born to IS dams (14,41,43). Studies in humans and rats indicated that infants suffering from early ID during the postnatal period were more wary and hesitant (44,45). This is consistent with a recent study in rhesus monkeys where less fearful and more impulsive behaviors were associated with prenatal iron deprivation and more tense and withdrawn behaviors were associated with postnatal iron deprivation (46). Accordingly, juvenile male rhesus monkeys subjected to ID during pregnancy exhibited an attenuated inhibitory response (47). Our results suggest that offspring from the ID group were more nervous and impulsive. Indeed, in children and adult rats, postnatal ID has been associated with increased anxiety (48,49). Our results along with studies using the rhesus monkey suggest that ID during gestation may result in enhanced activity levels in the offspring that are long lasting despite the consumption of an IS diet after weaning.

The present study did not demonstrate any effects of maternal ID on the progeny's spatial memory on postnatal d 25–40. Previous studies showed varying results for the impact of maternal ID on behavior and cognitive development in offspring (14,15,17,41,50–53). Adult rats (35–70 d old) born to dams fed a severely low-iron diet (4 mg/kg) during the perinatal period had persisting sensorimotor deficits, were more hesitant in novel settings, and had a poorer spatial water maze performance than control rats (15). Similarly, in mice, adult offspring of dams fed an ID diet demonstrated an altered performance in the MWM and attenuated startle responsiveness that were not completely reversed by a postweaning diet replete in iron (17). Furthermore, adult rat offspring born to ID dams were impaired in trace fear conditioning, a nonmotor form of learning (51), and required greater path lengths to reach the hidden platform in the MWM (43). Similarly, persistent behavioral abnormalities (bilateral and unilateral forelimb placing) (52) and a delayed acquisition in the win-shift task (hippocampus-dependent), but not the win-stay (striatum-dependent) or conditioned place preference task (amygdala-dependent) (50), were reported in adult rats born to ID dams. Interestingly, the hippocampus is important in learning and memory (53) and shows the largest change in iron concentration following perinatal ID among brain structures (54). In contrast, cognitive performance in a screen of home orientation (14) and a higher rate of ultrasonic vocalizations (a test of anxiety) (41) measured in young offspring from ID rat dams was not persistent into adulthood. Similarly, a diminished trace fear conditioning in juvenile rats born to ID dams did not persist into adulthood (53). The different outcomes observed in these studies stress the importance of duration timing and severity of ID during development when trying to understand the consequences of maternal ID on the CNS (1).

Previous studies have suggested that ID is associated with an alteration in tissue fatty acid content (23–29) and hypomyelination (55,56). ID in children is associated with lower levels of DHA in RBC (23). In ID rats, lower levels of AA were measured in the plasma (25) and in the liver PC (27), whereas another study reported higher levels of plasma DHA and DGLA (24). In this study, moderate ID in dams during gestation and lactation resulted in changes in the fatty acid composition of the brain, liver, and RBC of the offspring. However, the most striking changes were in brain PUFA composition, where total (n-3) PUFA were significantly enriched by ~20% in PC, PE, and PI in offspring born to ID dams. DHA content was largely responsible for this increase. Few studies have evaluated the effects of maternal ID on the progeny's fatty acid profile (28,29). In the rat, liver and serum AA levels were lower in young offspring born to dams fed an ID diet; however, no changes in (n-3) PUFA were measured (28). In mice born to dams consuming an ID diet during the perinatal period (14 mg/kg), lower amounts of AA and DHA in brain myelin were measured on postnatal d 75 but only in offspring consuming an ID diet postweaning (29). Perinatal ID also results in a modified neurochemical profile in the developing rat hippocampus that includes several precursors of PI biosynthesis (57). The altered fatty acid profile observed in the present study may, therefore, be part of a larger spectrum of neuronal iron-dependent biochemical pathways that are altered by perinatal ID, which may have a lasting impact on neurodevelopment.

The mechanism by which brain (n-3) PUFA content is elevated in young adult offspring born to ID dams is not known; however, we have previously shown that this difference is already apparent at weaning (38). Previously, it was proposed that the decreased tissue long-chain PUFA content associated with ID in adults is due to a reduction of Δ6 desaturase activity (25,59); however, the overall brain PUFA composition in our study and others (24) does not support a reduction in brain Δ6 desaturase activity with ID. Nevertheless, in the developing brain, the capacity to desaturate and elongate PUFA is elevated, suggesting a greater capacity to locally produce highly unsaturated fatty acids during early brain development (60,61). This enhanced capacity to synthesize PUFA during ID may be highly conserved. In fact, it has recently been shown that yeast possess a post-transcriptional regulatory process regulated by ID that results in widespread metabolic reprogramming that includes altered unsaturated fatty acid metabolism (62). It remains to be determined if similar alterations in gene expression are associated with changes in brain (n-3) PUFA.

Although long-chain PUFA concentrations are elevated in the developing brain and are selectively enriched during fetal and infant brain growth (63), their function in brain development is not fully known. As with other tissues, it is likely that one function of long-chain PUFA during CNS development is related...
to their role as precursors to the bioactive prostanooids. Indeed, PG concentrations and that of their receptors are elevated in the newborn brain compared with adults and PG are thought to be involved in regulating cerebral blood flow, myelin production, and oligodendrocyte differentiation in the perinatal period (21,22). Both COX-I and COX-II enzymes are expressed in the brain, although COX-II is primarily associated with changes in PG synthesis in the developing brain (3). In the present study, the concentrations of PGE_2 and PGF_2alpha were significantly higher in pups in the ID group. To our knowledge, no other studies have investigated the effects of maternal iron restriction on prosta-

noid metabolism in the offspring, although we have shown that these differences are not apparent at weaning (58). With respect to arachidonate-metabolizing enzymes, others have measured a transient increase in the expression of the ALOX15 gene in the hippocampus of young pups born to dams fed an ID diet (64).

In conclusion, this study demonstrates that despite consum-
ing an IS diet at weaning, moderate ID induced during gestation and lactation resulted in increased locomotor activity in an open field that is associated with altered PUFA and eicosanoid metabolism in the brain of offspring that persists into adulthood. Although it is difficult to make a causal association between these two outcomes, recent studies have linked dietary supple-

mentation with PUFA to an amelioration in attention deficit hyperactive disorder-related symptoms in children (65,66). Because ID and its timing during development are likely to have several metabolic effects on different subregions of the brain, future research is needed to address these complex issues. These studies would elucidate whether the increased exploratory behavior observed in the offspring born to ID dams is associated with changes in PUFA and eicosanoid metabolism in specific brain structures. This study suggests that the guinea pig is likely to be an appropriate animal model for such investigations.

Acknowledgment
We thank Lucie Dubé for animal care and video analyses.

Literature Cited
10. Crawford MA, Golletto I, Ghrebiremski K, Min Y, Moodley T, Poston L, Phlyactos A, Cunnane S, Schmidt W. The potential role for ara-

18. Sherman AR, Bartholomew SJ, Perkins EG. Fatty acid patterns in iron-
22. Crawford MA, Golletto I, Ghrebiremski K, Min Y, Moodley T, Poston L, Phlyactos A, Cunnane S, Schmidt W. The potential role for ara-

30. Sherman AR, Bartholomew SJ, Perkins EG. Fatty acid patterns in iron-
Consequences of maternal iron deficiency