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Abstract

Purpose:Genomic profiling studies suggest that triple-negative
breast cancer (TNBC) is a heterogeneous disease. In this study, we
sought to define TNBC subtypes and identify subtype-specific
markers and targets.

Experimental Design: RNA and DNA profiling analyses were
conducted on 198 TNBC tumors [estrogen receptor (ER) nega-
tivity defined as Allred scale value � 2] with >50% cellularity
(discovery set: n¼ 84; validation set: n¼ 114) collected at Baylor
College of Medicine (Houston, TX). An external dataset of seven
publically accessible TNBC studies was used to confirm results.
DNA copy number, disease-free survival (DFS), and disease-
specific survival (DSS) were analyzed independently using these
datasets.

Results: We identified and confirmed four distinct TNBC sub-
types: (i) luminal androgen receptor (AR; LAR), (ii)mesenchymal
(MES), (iii) basal-like immunosuppressed (BLIS), and (iv) basal-
like immune-activated (BLIA). Of these, prognosis is worst for

BLIS tumors and best for BLIA tumors for both DFS (log-rank test:
P ¼ 0.042 and 0.041, respectively) and DSS (log-rank test: P ¼
0.039 and 0.029, respectively). DNA copy number analysis pro-
duced twomajor groups (LARandMES/BLIS/BLIA) and suggested
that gene amplification drives gene expression in some cases
[FGFR2 (BLIS)]. Putative subtype-specific targets were identified:
(i) LAR: androgen receptor and the cell surface mucin MUC1, (ii)
MES: growth factor receptors [platelet-derived growth factor
(PDGF) receptor A; c-Kit], (iii) BLIS: an immunosuppressing
molecule (VTCN1), and (iv) BLIA: Stat signal transduction mole-
cules and cytokines.

Conclusion: There are four stable TNBC subtypes character-
ized by the expression of distinct molecular profiles that have
distinct prognoses. These studies identify novel subtype-spe-
cific targets that can be targeted in the future for the effective
treatment of TNBCs. Clin Cancer Res; 21(7); 1688–98. �2014 AACR.

See related commentary by Vidula and Rugo, p. 1511

Introduction
Recent studies have demonstrated that breast cancer heteroge-

neity extends beyond the classic immunohistochemistry (IHC)-
based divisions of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (Her2; ref. 1).

Nearly 10% to 20% of primary breast cancers are triple-negative
breast cancers (TNBC; ref. 2), which lack expression of ER, PR, and
Her2, present with higher grade, often contain mutations in TP53
(3), and have a poor prognosis (4). Molecularly targeted therapy
has shown limited benefit so far in TNBCs, and although PARP
inhibitors in the BRCA-mutant setting are promising (5, 6), new
strategies for classifying and treatingwomen affected by this aggres-
sive disease are urgently needed.

The intrinsic subtyping of breast cancer by gene expression
analyses (7) was recently supported by The Cancer Genome Atlas
(TCGA) Program through mRNA, miRNA, DNA, and epigenetic
analyses (8). The basal-like subtype, traditionally defined by RNA
profiling or cytokeratin expression (9), accounts for 10% to 25%
of all invasive breast cancers (10). In addition, basal-like breast
cancers account for 47% to 88% of all TNBCs (8, 11, 12). Tumors
of the "claudin-low" (CL) subtype (13, 14) have particularly poor
prognoses than hormone-sensitive tumors (15). The results from
an aggregate analysis of publically available expression datasets,
in a study performed by Lehmann and colleagues. (12), suggested
that TNBCs are more heterogeneous than previously described
and identified6 subtypes: (i) androgen receptor (AR)-positive, (ii)
claudin-low–enriched mesenchymal, (iii) mesenchymal stem–

like, (iv) immune response and 2 cell-cycle–disrupted basal
subtypes: (v) BL-1 and (vi) BL-2. However, IHC detection of ER,
PR, andHer2 protein is the clinical standard used to define TNBC.
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In the study by Lehmann and colleagues, when tumors with
IHC-confirmed ER, PR, and Her2 protein expression were
analyzed, only 5 of the 6 described subtypes were observed
(see Supplementary Figs. S4 and S5 in the study by Lehmann
and colleagues; ref. 12). Therefore, while previous genomic
studies have advanced our understanding of TNBCs, stable
subtypes as well as subtype-specific molecular targets still need
to be identified.

In this study, we investigated 198 previously uncharacterized
TNBCs using mRNA expression and DNA profiling and identi-
fied 4 stable TNBC subtypes: (i) luminal AR (LAR), (ii) mes-
enchymal (MES), (iii) basal-like immunosuppressed (BLIS),
and (iv) basal-like immune-activated (BLIA). Using indepen-
dent TNBC datasets, we show that BLIS and BLIA tumors have
the worst and best prognoses, respectively (independently of
other known prognostic factors), compared with the other
subtypes. Our DNA studies demonstrate unique subtype-spe-
cific gene amplification, with CCND1, EGFR, FGFR2, and CDK1
amplified in the LAR, MES, BLIS, and BLIA subtypes, respec-
tively. Collectively, our RNA and DNA genomic results identify
stable, reproducible TNBC subtypes characterized by specific
RNA and DNA markers and identify potential targets for the
more effective treatment of TNBCs.

Materials and Methods
Patients and study recruitment

A total of 278 anonymized tissues collected frommultiple U.S.
and European sites were obtained from the Lester and Sue Smith
Breast Cancer Tumor Bank at Baylor College of Medicine (BCM;
Houston, TX), diagnosis-confirmed, and flash-frozen. BCM pur-
chased these tumors [with clinical information, including age,
menopausal status, histology, American Joint Committee on
Cancer (AJCC) stage, tumor grade] from Asterand. No treatment
or outcome data were available for these tumors. Tissues were
managed by the BCM Breast Center's Human Tissue Acquisition
and Pathology (HTAP) shared resource. Cellularity, histology,
and IHC ER, PR, and Her2 status in discovery and validation

sampleswere assessed by Breast Center pathologists. Only tumors
exhibiting >50% tumor cellularity were used. ER negativity is
defined as Allred scale � 2.

RNA/DNA extraction and array experiments
For extraction and quality control details, see Supplementary

Material. Briefly, tumors were profiled using the Affymetrix U133
Plus 2.0 gene expression array and affy (16) package in R (17).
Discovery and validation set SNP experiments were performed on
Illumina 610K and 660K platforms, respectively. Common SNPs
were analyzed after independent processing in Illumina Genome
Studio v2011 Genotyping Module 1.9.4.

PAM50, TNBCType, and ERSig
TNBCs were assigned to previously described subtypes using

the TNBCType tool (18). Intrinsic subtypes were established with
the PAM50 Breast Cancer Intrinsic Classifier (19) and compared
with 67 non-TNBC randomly sampled tumors representing 80%
of the assigned sample (confirmed by Pearson correlation). This
comparison was used to create a 32-gene centroid signature
[derived from Williams and colleagues' estrogen receptor 1
(ESR1) downstream targets gene list (ref. 20)] and was accessed
via the Molecular Signatures Database (MSigDB; ref. 21) to
correlate TNBCs with ER activation ("ERSig").

Gene selection, non-negative matrix factorization clustering,
differential expression, and centroid signatures

Genes were sorted by aggregate rank of median absolute
deviations (MAD) across all samples and the MAD across each
of the 2 most predominant clusters (approximating basal-like vs.
the remaining intrinsic subtypes) for the discovery set using R
package differential expression via distance summary (DEDS;
ref. 22). The top 1,000 median-centered genes were used for
clustering and split into 2,000 positive input features (23). The
ideal rankbasis and factorization algorithmwasdeterminedusing
the R package non-negative matrix factorization (NMF; ref. 24)
before taking the 1,000-iteration consensus for a final clustering
basis of 4.

Genes were sorted by DEDS using (i) Goeman's global test
(GGT; ref. 25) applied to each set individually for all 18,209genes,
using a Benjamini–Hochberg false discovery rate (FDR) multitest
correction and (ii) computed log2 (fold change) (FC) values. The
top 20 unique genes by P value and log2(FC) became a classifier
comprising 80 genes and representing the median quantiles of
all 80 genes for each discover set cluster, with cases assigned by
minimum average Euclidean distances of quantile gene expres-
sion data. Nonsignificant P values (P > 0.05 by 10,000 permu-
tations) or deviations from any centroid >0.25 were left
unclassified.

Preprocessing and assignment of expression data for publically
accessible cases

Normalization and quality control procedures identical to the
primary study sets [but using the Partek Genomics Suite program
(ref. 26) toperformANOVA-basedbatch correction across the 221
arrays before summarization of probe set data] were performed
on 7 publically accessible studies in Gene Expression Omnibus
(GEO) with TNBCs (by IHC) profiled on the Affymetrix U133
Plus 2.0 array ("external set"). Series GEO matrices and accom-
panying TNBC tumor clinical data from Sabatier and colleagues
(ref. 27; ref. also included in external set) and Curtis and

Translational Relevance

This study describes the results of RNA and DNA genomic
profiling of a large set of triple-negative breast cancers (TNBC).
We identified four stable TNBC subgroups with distinct clin-
ical outcomes defined by specific overexpressed or amplified
genes. The four subgroups have been named the luminal
androgen receptor (LAR), mesenchymal (MES), basal-like
immunosuppressed (BLIS), and basal-like immune-activated
(BLIA) groups. We also identified specific molecules that
define each subgroup, serving as subgroup-specific biomar-
kers, as well as potential targets for the treatment of these
aggressive breast cancers. Specific biomarkers and targets
include the androgen receptor, MUC1, and several estrogen-
regulated genes for the LAR subgroup; IGF1, prostaglandin F
receptor for the MES subgroup; SOX transcription factors and
the immunoregulatory molecule VTCN1 for the BLIS sub-
group; and STAT transcription factors for the BLIA group.
Thus, these studies form the basis to develop molecularly
targeted therapy for TNBCs.

Identification of Four Unique Subtypes of TNBCs
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colleagues (11) studies were assigned using gene-centric repre-
sentation of array data.

Ingenuity Pathway Analysis
Significant genes (Benjamini–Hochberg correction: P < 0.001

from GGT) for each dataset group were uploaded independently
into Ingenuity Systems' InteractivePathwayAnalysis (IPA) software
(www.ingenuity.com). A 0.05 significance threshold was used for
pathway enrichment. Molecules, chemicals, or groups with regu-
latory function(s) were analyzed by IPA to produce final gene lists.

Copy number segmentation and analysis
Allele-specific piecewise constant fitting (ASPCF) analysis and

allele-specific copy number (CN) analysis of tumors (ASCAT,
default values; ref. 28) of 84 discovery and 58 validation set
tumors yielded 62 and 46 samples, respectively, with assigned
reliableDNAploidy- and tumor percentage-corrected integer copy
numbers. These segments were uploaded collectively and indi-
vidually by assigned expression-based subtypes to Genomic Iden-
tification of Significant Targets in Cancer (GISTIC) 2.0 (ref. 29;
default settings, with a 0.5 linear margin for gains and losses).

Survival analyses
Survival curves were constructed using the Kaplan–Meier prod-

uct limit method and compared between subtypes with the log-
rank test using publically available datasets for which disease-free
survival (DFS) and disease-specific survival (DSS) results are
available; however, no treatment information was available for
these datasets. Cox proportional hazard regression model adjust-
ed for available prognostic clinical covariates was performed to
calculate subtype-specific HRs, 95% confidence intervals (CI),
and disease-free survival and overall survival (OS). Survival
analyses were performed using the R package survival.

Results
Patient population

A total of 198 TNBCs were assigned to discovery (n ¼ 84) or
validation (n ¼ 114) sets based on chronological acquisition of
tissue. Subjects were predominantly postmenopausal, Caucasian,
and of mean and median age of 53 years (Table 1). About 95% of
TNBCswere invasive ductal carcinomas, predominantly stages I–III
(1% were metastatic breast cancers), and >75% of tumors were >2
cm at diagnosis.

Table 1. Clinical characteristics of the patients and tumor samples used in study

Both sets Discovery set Validation set
Characteristic n (%) n (%) n (%) P

Number of tumors 198 84 (42) 114 (38)
Age 192 84 108 0.02
<50 y 81 (42) 43 (51) 38 (35)
�50 y 111 (58) 41 (49) 70 (65)
Missing 6 0 6

Race 194 80 114 0.10
Caucasian 187 (96) 75 (94) 112 (98)
Asian/Pacific Islander 7 (4) 5 (6) 2 (2)
Missing 4 4 0

Menopausal status 167 71 96 0.24
Premenopausal 62 (37) 31 (44) 31 (32)
Menopausal 11 (7) 3 (4) 8 (8)
Postmenopausal 94 (56) 37 (52) 57 (59)
Missing 31 13 18

Body mass index 166 65 101 0.65
Underweight (<18.5) 3 (2) 2 (3) 1 (1)
Normal (18.5–24.9) 46 (28) 17 (26) 29 (29)
Overweight (25–29.9) 61 (37) 26 (40) 35 (35)
Obese (�30) 56 (33) 20 (31) 36 (35)
Missing 32 19 13

Tumor size 195 83 112 0.01
<2 cm 35 (18) 10 (12) 25 (22)
2–5 cm 139 (71) 60 (72) 79 (71)
>5 cm 12 (6) 10 (12) 2 (2)
Any size with direct extension 9 (5) 3 (4) 6 (5)
Cannot be assessed 3 1 2

Positive lymph nodes 150 66 84 0.14
0 74 (49) 29 (44) 45 (54)
1–3 49 (33) 28 (42) 21 (25)
4–9 17 (11) 6 (9) 11 (13)
>10 10 (7) 3 (5) 7 (8)
Unknown 48 18 30

Metastases 146 64 82 0.86
No metastases 144 (99) 63 (98) 81 (99)
Metastases found 2 (1) 1 (2) 1 (1)
Unknown 52 20 32

Histology 198 84 114
Infiltrating ductal carcinoma 188 (95) 82 (98) 106 (93) 0.41
Infiltrative lobular carcinoma 1 (0.5) 0 (0) 1 (1)
Adenocarcinoma/carcinoma, not otherwise specified 7 (3.5) 2 (2) 5 (4)
Medullary carcinoma 2 (1) 0 (0) 2 (2)

Burstein et al.
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mRNA profiling of TNBCs reveals four stable molecular
phenotypes

Using RNA gene expression profiling, we explored TNBC
molecular phenotypes. NMF was performed on 1,000 discovery
set genes selected to maximize separation across and within
conventional intrinsic subtypes. These tumors were most stably
divided into 4 clusters by cophenetic, dispersion, silhouette,
and statistical significance of clustering (SigClust; ref. 30)
metrics, in addition to visual inspection of the consensus
heatmap (Fig. 1A and B and Supplementary Fig. S1). This
quadrilateral division of data was also observed in the valida-
tion set tumors using the same input features (Fig. 1D and E
and Supplementary Fig. S2). ER�, PR�, and Her2� were IHC-
confirmed by our participating pathologist Dr. Contreras (Sup-
plementary Fig. S3). Differentially expressed genes (Benjamini–
Hochberg adjusted P < 0.001 from GGT) were significantly
enriched only within corresponding discovery and validation
set clusters (Fisher exact test: P ¼ 4.01E-30, 3.47E-17, 2.88E-46,
and 3.61E-10, respectively; Supplementary Tables S1–S5),
independently confirming the 4 molecular phenotypes
observed. In addition, significant enrichment of discovery set
IPA results in the validation set also support the 4 cluster
separation (Supplementary Tables S6–S10).

Comparison of our NMF results to Perou's "PAM50" TNBC
molecular classification (luminal A, luminal B, Her2þ, basal-like,
and normal-like subtypes; ref. 9) shows clusters 3 and 4 to be
entirely basal-like, containing 86% and 74% of all PAM50 basal-
like tumors in the discovery and validation sets, respectively (Fig.
1C). Conversely, cluster 1 contains all luminal A, luminal B, and
Her2þPAM50 tumors andcluster 2 containsbasal-like andnormal-
like PAM50 tumors.

We then compared our NMF results with the Lehmann/
Pietenpol "TNBC Type" molecular classification (basal-like 1,
basal-like 2, immunomodulatory, LAR, mesenchymal, and
mesenchymal stem–like subtypes; ref. 12), in which "clau-
din-low" tumors are split between the mesenchymal and mes-
enchymal stem–like subtypes. Our results show that cluster 1
contains all of Lehmann's LAR tumors and cluster 2 contains
most of Lehmann's mesenchymal stem–like and some claudin-
lowmesenchymal tumors (Fig. 1F and Supplementary Figs. S4B
and S5). Conversely, our TNBC clustering did not separate
Lehmann's (12) "basal-like 1" and "basal-like 2" types even
when using all 6 subtype signatures described in Lehmann and
colleagues (12) in a semisupervised NMF (2,188 genes; Sup-
plementary Fig. S4). Instead, Lehmann's basal-like 1 and basal-
like 2 tumors are split between clusters 3 and 4 (Supplementary
Fig. S4). Finally, Lehmann's remaining claudin-low mesenchy-
mal tumors reside in cluster 3, whereas the immunomodula-
tory tumors are distributed across clusters 2 and 4, which
express common signaling pathways (Supplementary Figs. S4
and S5).

Gene signatures define four prognostically distinct TNBC
subtypes

Using the discovery and validation sets, we developed and
confirmed an 80-gene signature for these clusters (Fig. 2A and
Supplementary Tables S11–S16). This analysis was repeated
using an independent set of 221 publically accessible TNBCs
with IHC data (external set, Fig. 2B and Supplementary Tables
S17 and S18) and other publically accessible datasets with
available clinical data (Supplementary Tables S19 and S20).

Comparisons of group assignment against existing NMF clus-
ters demonstrated strong reproducibility, with Rand indices of
0.94 (P < 0.0001) and 0.82 (P < 0.0001), respectively (Sup-
plementary Tables S21 and S22).

Clinical outcome data were available for this publically
available "external set" of TNBCs. However, treatment infor-
mation for the "external set" data is not available. Analysis of
DFS and DSS showed that subtype 3 has the worst prognosis of
all 4 subtypes, whereas subtype 4 has a relatively good prog-
nosis for DFS (log-rank test: P ¼ 0.042 and 0.041, respectively)
and DSS (log-rank test: P ¼ 0.039 and 0.029, respectively;
Fig. 2C and Supplementary Tables S23 and S24). The associa-
tions between subtypes 3 and 4 and DFS and DSS remained
significant in multivariate models adjusted for available prog-
nostic clinical covariates.

TNBC subtype–specific enrichment of molecular pathways
Differentially expressed genes from each subtype (Benjamini–

Hochberg adjusted P < 0.001 from GGT) were analyzed for
pathway enrichment. Results from the validation and external
sets significantly overlapped the discovery set, with predicted
regulator activation and inhibition patterns stable across the 3
datasets but distinct between subtypes (Fig. 3 and Supplementary
Tables S25–S29).

Subtype 1 tumors exhibit AR, ER, prolactin, and ErbB4 signal-
ing (Fig. 3) but ERa� IHC staining. Gene expression profiling
demonstrates expression of ESR1 (the gene encoding ERa; Sup-
plementary Fig. S6) and other estrogen-regulated genes (PGR,
FOXA, XBP1, GATA3). Thus, these "ER-negative" tumors demon-
strate molecular evidence of ER activation. This may be because
1% of these tumor cells express low levels of ER protein, defining
them as "ER-negative" by IHC analysis. These observations sug-
gest that subtype 1 tumors may respond to traditional anti-
estrogen therapies as well as to anti-androgens, as previously
suggested (12). To be consistent with previous studies (12), we
termed subtype 1 the LAR subtype.

Subtype 2 is characterized by pathways known to be regulated
in breast cancer, including cell cycle, mismatch repair, and DNA
damage networks, and hereditary breast cancer signaling path-
ways (Fig. 3). In addition, genes normally exclusive to osteocytes
(OGN) and adipocytes (ADIPOQ, PLIN1) and important growth
factors (IGF1) are highly expressed in this subtype, previously
described as "mesenchymal stem–like" or "claudin-low" (Sup-
plementary Fig. S7). Therefore, we named Subtype 2 the MES
subtype.

Subtype 3 is 1 of 2 basal-like clusters and exhibits downregula-
tion of B cell, T cell, and natural killer cell immune-regulating
pathways, and cytokine pathways (Fig. 3). This subtype has the
worst DFS and DSS and low expression of molecules controlling
antigen presentation, immune cell differentiation, and innate and
adaptive immune cell communication. However, this cluster
uniquely expresses multiple SOX family transcription factors. We
termed subtype 3 the BLIS subtype.

Immunoregulation pathways are upregulated in subtype 4,
the other basal-like cluster (Fig. 3). Contrary to BLIS, subtype 4
tumors display upregulation of genes controlling B cell, T cell,
and natural killer cell functions. This subtype has the best
prognosis, exhibits activation of STAT transcription factor–
mediated pathways, and has high expression of STAT genes.
To contrast BLIS tumors, we termed subtype 4 the BLIA
subtype.

Identification of Four Unique Subtypes of TNBCs
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Figure 1.
Classification of TNBCs by mRNA profiling
reveals 4 stable molecular phenotypes. Both
84 (discovery set) and 114 triple-negative
breast tumors (validation set) demonstrate 4
stable clusters by NMF of mRNA expression
across the top 1,000 genes [interquartile
range (IQR) summarized] selected by DEDS
aggregate rank of MADs (see Materials and
Methods) of the discovery set. A and D,
cophenetic and dispersion metrics for NMF
across 2 to 10 clusters with 50 runs suggest
4 stable clusters. Full metrics are available for
each set in Supplementary Figs. S1 and S2. B
and E, silhouette analyses and consensus
plots for rank basis 4 NMF clusters (1,000
runs, nsNMF factorization). Average
silhouette widths worsened with increasing
clusters beyond the 4 shown. SigClust was
significant for all pairwise comparisons with
this feature set. C and F, PAM50 intrinsic
subtypes and TNBC Type distributions by 4
NMF clusters.

Burstein et al.
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DNA copy number analysis identifies TNBC subtype–specific
focal changes

We next investigated TNBC subtype–defined copy number
variation (CNV) by ploidy- and tumor percentage-correcting 62
discovery and 46 validation set TNBCs, before analyzing them
together in GISTIC 2.0. Overall, genomes were very unstable
and exhibited common TNBC chromosomal arm gains and
deletions (Fig. 4A and Supplementary Figs. S7 and S8 and
Supplementary Tables S30–S35). Focal variations present in
all 4 TNBC subtypes include: (i) focal gains on 8q23.3
(CSMD3), 3q26.1 (BCHE), and 1q31.2 (FAM5C), which are

the greatest gains and characterize >84% of all tumors and (ii)
focal losses on 9p21.3 (CDKN2A/B), 10q23.31 (PTEN), and
8p23.2 (CSMD1; Fig. 4B).

Subtype-specific variation is greatest between LAR and the
remaining 3 subtypes (Fig. 4). LAR tumors have focal gains
twice as frequently on 11q13.3 (CCND1, FGF family) and
14q21.3 (MDGA2), but one third as frequently on 12p13.2
(MAGOHB, KLR subfamilies) and 6p22.3 (E2F3, CDKAL1)
compared with MES, BLIS, and BLIA tumors (Fig. 4). The LAR
subtype also has more frequent deletions of 6q, lacks armwide
deletions across 5q, 14q, and 15q, and has significantly fewer

Figure 2.
Gene signature defines 4 subtypes of
TNBC with prognostic differences.
Discovery, validation, and external
sets tumors with intermediate grade,
high ESR1, PGR, and ERBB2
expression, activated ER downstream
targets, and luminal A/B subtypes
are enriched in subtype 1. A, the 4
assigned subtypes in both the
discovery (84 of 84) and validation
sets (114 of 114). B, gene signature
applied successfully to 220 of
221 external set TNBCs. Clinical
outcomes from independent sets
classified by the discovery set–based
signature. Subtype 4 has a better
prognosis for both DFS and DSS.

Identification of Four Unique Subtypes of TNBCs
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Figure 3.
Molecular pathways enriched in the4 identified subtypes of TNBCs. Significant pathways from thediscovery set also found invalidation andexternal sets are listed for
the LAR, MES, BLIS, and BLIA subtypes.
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Figure 4.
DNA copy number analysis identifies focal changes in TNBC subtypes. DNA copy number changes observed in each subtype are listed. A, focal gains (red) and losses
(blue) detected by GISTIC 2.0 are plotted by log10(q-value) and reported by cytoband. Adjacent numbers are percentages of subtype-specific cases (n¼ 24, 17, 33,
34, respectively) with this focal aberration. Presence of a colored square demonstrates this region was detected by subtype-specific GISTIC 2.0 analysis as
well. All structural events for each subtype and set are available in SupplementaryMaterial. B, broad copy number events distinguish the LAR subtype from all others.
Gains (red) and losses (blue) are plotted along the genome, with darker colors representing a region enriched to the displayed subtype by Fisher exact test.
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focal deletions on 5q13.2 (RAD17, ERBB2IP), 12q13.13
(CCNT1, ERBB3), 14q21.2 (FOXA1), and 15q11.2 (HERC2;
ref. Fig. 4 and Supplementary Fig. S8). MES and BLIA tumors,
which exhibit increased normal (diploid) immune cell infil-
tration, are characterized by lower aberrant cell fractions than

LAR and BLIS tumors (Supplementary Fig. S9). Additional
subtype-specific gene overexpression includes: (i) LAR: AR and
MUC1; (ii) MES: IGF1, ADRB2, EDNRB, PTGER3/4, PTGFR,
and PTGFRA; (iii) BLIS: VTCN1; and (iv) BLIA: CTLA4 (Table 2
and Supplementary Tables S36–S39).

Table 2. Selected genes from pathway analysis with significant relative overexpression (>2-fold, Benjamini–Hochberg P � 0.05) in discovery and
validation sets

TNBC
subtype Symbol Description Discovery FC Druggable CNV seen

1. LAR DHRS2 Dehydrogenase/reductase (SDR family) member 2 68.6
PIP Prolactin-induced protein 21.1
AGR2 Anterior gradient 2 homolog (Xenopus laevis) 17.1 Yes
FOXA1 Forkhead box A1 17.1 Yes
ESR1 Estrogen receptor 1 13.9 Yes
ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) 11.3 Yes
CA12 Carbonic anhydrase XII 11.3 Yes
AR Androgen receptor 9.8 Yes
TOX3 TOX high mobility group box family member 3 7.5 Yes
KRT18 Keratin 18 4.3 Yes
MUC1 Mucin 1, cell surface associated 4.3 Yes
PGR Progesterone receptor 3.5 Yes
ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) 3 Yes
RET Ret proto-oncogene 2.5 Yes
ITGB5 Integrin, beta 5 2.1 Yes

2. MES ADH1B Alcohol dehydrogenase 1B (class I), beta polypeptide 42.2 Yes
ADIPOQ Adiponectin, C1Q and collagen domain containing 32
OGN Osteoglycin 16
FABP4 Fatty acid–binding protein 4, adipocyte 14.9
CD36 CD36 molecule (thrombospondin receptor) 14.9
NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 6.1 Yes
EDNRB Endothelin receptor type B 5.7 Yes
GHR Growth hormone receptor 4.9 Yes
ADRA2A Adrenoceptor alpha 2A 4.6 Yes
PLA2G2A Phospholipase A2, group IIA (platelets, synovial fluid) 4.6 Yes
PPARG Peroxisome proliferator–activated receptor gamma 4 Yes
ADRB2 Adrenoceptor beta 2, surface 3.5 Yes
PTGER3 Prostaglandin E receptor 3 (subtype EP3) 3.2 Yes
IL1R1 Interleukin 1 receptor, type I 3 Yes
TEK TEK tyrosine kinase, endothelial 2.8 Yes

3. BLIS ELF5 E74-like factor 5 (ets domain transcription factor) 7
HORMAD1 HORMA domain containing 1 5.7 Yes
SOX10 SRY (sex-determining region Y)-box 10 4.9 Yes
SERPINB5 Serpin peptidase inhibitor, clade B (ovalbumin), member 5 4.6
FOXC1 Forkhead box C1 4.6
SOX8 SRY (sex-determining region Y)-box 8 4.3
TUBB2B Tubulin, beta 2B class IIb 3.2 Yes
VTCN1 V-set domain containing T-cell activation inhibitor 1 3
SOX6 SRY (sex-determining region Y)-box 6 3
KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 2.5 Yes
FGFR2 Fibroblast growth factor receptor 2 2 Yes Yes

4. BLIA CXCL9 Chemokine (C-X-C motif) ligand 9 5.3
IDO1 Indoleamine 2,3-dioxygenase 1 4.9
CXCL11 Chemokine (C-X-C motif) ligand 11 4.9
RARRES1 Retinoic acid receptor responder (tazarotene induced) 1 4 Yes
GBP5 Guanylate-binding protein 5 4.3 Yes
CXCL10 Chemokine (C-X-C motif) ligand 10 4.3 Yes
CXCL13 Chemokine (C-X-C motif) ligand 13 4.3
LAMP3 Lysosomal-associated membrane protein 3 3.7 Yes
STAT1 Signal transducer and activator of transcription 1, 91kDa 3
PSMB9 Proteasome (prosome, macropain) subunit, beta type, 9 2.8 Yes
CD2 CD2 molecule 2.5 Yes
CTLA4 Cytotoxic T lymphocyte–associated protein 4 2.5 Yes
TOP2A Topoisomerase (DNA) II alpha 170kDa 2.1 Yes Yes
LCK Lymphocyte-specific protein tyrosine kinase 2.1 Yes
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Discussion
Using RNA and DNA profiling, we identified 4 stable, molec-

ularly defined TNBC subtypes, LAR, MES, BLIS, and BLIA, char-
acterized by distinct clinical prognoses, with BLIS tumors having
theworst andBLIA tumors having thebest outcome.DNAanalysis
demonstrated subtype-specific gene amplifications, suggesting
the possibility of using in situ hybridization techniques to identify
these TNBC subsets.Our results alsodemonstrate subtype-specific
molecular expression, thereby enabling TNBC subtype classifica-
tion based onmolecules they do express as opposed tomolecules
they do not express.

Many highly expressed molecules in specific TNBC subtypes
can be targeted using available drugs (Table 2 and Supplementary
Tables S36–S39).Our results suggest that AR antagonists (12) and
MUC1 vaccines may prove effective for the treatment of AR- and
MUC1-overexpressing LAR tumors, whereas b-blockers, IGF inhi-
bitors, or PDGFR inhibitors may be useful therapies for MES
tumors. Conversely, immune-based strategies (e.g., PD1 or
VTCN1 antibodies) may be useful treatments for BLIS tumors,
whereas STAT inhibitors, cytokine, or cytokine receptor antibo-
dies, or the recently FDA-approved CTLA4 inhibitor, ipilumimab
(31), may be effective treatments for BLIA tumors. Thus, these
studies have identified novel TNBC subtype-specific markers that
distinguish prognostically distinct TNBC subtypes and may be
targeted for the more effective treatment of TNBCs.

Lehmann's TNBC subtyping study identified 6 TNBC subtypes
through the combined analysis of 14 RNA profiling datasets
("discovery dataset"; ref. 12). Assignment to these subtypes was
confirmed using a second dataset composed of 7 other publically
available datasets; however, all 6 subtypeswere not detectedwhen
subtypingwas limited to only those tumorswith ER, PR, andHer2
IHC data. In addition, basal-like 1 and basal-like 2 tumors are not
readily distinguishable by hierarchical clustering of public TNBC
datasets using Lehmann's gene signatures (32), despite demon-
stration of molecular heterogeneity beyond the classic intrinsic
subtypes. In Lehmann's study, TNBCs strongly segregated into
stromal, immune, and basal gene modules, partially supporting
our model. Additional studies have also demonstrated that an
immune signature is an important clinical predictor for ER-neg-
ative tumors (27, 33, 34). The large set of ER-, PR-, and Her2-
characterized tumors used in our study enabled us to further
separate TNBCs into LAR, MES (including "claudin-low"), BLIS,
and BLIA subtypes and define the clinical outcome of each
subtype.

Previous genomic profiling studies have not demonstrated this
degree of heterogeneity in basal-like breast tumors. Profiling of
TCGA data across miRNA, DNA, andmethylation data supported
the intrinsic subtypes of breast cancer and grouped all basal-like
tumors (8). In the Curtis dataset (11), unsupervised clustering by
CNV-driven gene expression did not identify multiple basal-like
subtypes, confirming that CNV alone does not distinguish these
tumor subtypes. However, our integrated DNA and mRNA data
demonstrate that gene amplification drives several subtype-spe-
cific genes. The CCND1 and FGFR2 genes are amplified in LAR
tumors, whereas MAGOHB ismore commonly amplified inMES,
BLIS, and BLIA tumors. Conversely, CDK1 is amplified in all 4
TNBC subtypes (most highly in BLIA tumors) and thus represents
a potential target. While broad and focal copy numbers differen-
tiate LAR tumors from the remaining subtypes, they cannot
dissociate BLIS and BLIA tumors.

All LARs and most mesenchymal stem–like tumors identified
by the Pietenpol group (12) fall within our LAR and MES sub-
types. However, our study splits the remaining proposed sub-
types, including Lehmann's basal-like 1 and basal-like 2 tumors
into distinct BLIS and BLIA subtypes based on immune signaling.
Furthermore, stratification of our subtypes is based on a fewbroad
biologic functions. LAR and MES tumors downregulate cell-cycle
regulators and DNA repair genes, whereas MES and BLIA tumors
upregulate immune signaling and immune-related death path-
ways (Supplementary Tables S36–S39). Conversely, our BLIS and
BLIA subtypes show a relative lack of p53-dependent gene acti-
vation (p53 mutations characterize most TNBC tumors), and
BLIA tumors highly express and activate STAT genes. Both our
current study and the study by Lehmann and colleagues used
RNA-based gene profiling to subtype TNBCs. Until more TNBC
datasets are analyzed, it will not be clear which specific subgroup-
ing will ultimately be most clinically useful. The study by Leh-
mann and colleagues subdivided TNBCs into 6 subtypes, whereas
this article describes subgrouping of TNBCs into 4 distinct sub-
types, 2 of which overlap with Lehmann and colleagues (LAR and
MES), whereas our other 2 subtypes (BLIS and BLIA) contain
mixtures of the other 4 Lehmann subgroups (see Fig. 1C and F).
Our attempt at reproducing the 6 Lehmann and colleagues sub-
groups by clustering our data using their gene signatures was
unsuccessful (n ¼ 198, Supplementary Fig. S5). The exact subdi-
vision of these TNBC subtypes, while important, is less important
than the clinical prognosis defined by each subtype, and most
importantly, the specific molecular targets identified within the
subtypes. To this point, the identification of specific targets that
modulate the immune system in the BLIA and BLIS subtypes is
one of the most important and unique findings in this study.

In summary, using RNA profiling, we have defined 4 stable,
clinically relevant subtypes of TNBC characterized by distinct
molecular signatures. Our results uniquely define TNBCs by the
molecules that are expressed in each subtype as opposed to
molecules that arenot expressed. Furthermore, thesenewlydefined
subtypes are biologically diverse, activate distinct molecular path-
ways, have unique DNA CNVs, and exhibit distinct clinical out-
comes. By identifying molecules highly expressed in each TNBC
subtype, this study provides the foundation for future TNBC
subtype–specificmolecularly targeted and/or immune-based strat-
egies for more effective treatment of these aggressive tumors.
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