Diabetes With Mitochondrial Gene tRNALYS Mutation

Objective — To solve a possible relationship between mtDNA mutation of tRNALYS(8344) and diabetes, we have surveyed the tRNALYS mutation, glucose intolerance, and insulin secretory capacity in a Japanese family with diabetes and myoclonic epilepsy with ragged-red fiber disease. Several lines of evidence suggested possible linkage between mtDNA mutation and diabetes (1–4).

Research Design and Methods — DNA was isolated from peripheral lymphocytes. The polymerase chain reaction analysis for the tRNA LYS mutation of the mtDNA was conducted as described by Larsson (5). Insulin secretory capacity was assessed by 24-h urinary C-peptide immunoreactivity response (CPR) excretion and plasma CPR to glucagon administration.

Results — We identified seven subjects with the tRNA LYS mutation as well as seven nonmutated members in the pedigrees. Oral glucose tolerance tests in the pedigree indicated that five of the mutated subjects were diabetic, one had impaired glucose tolerance, and one had normal glucose tolerance (NGT), whereas all nonmutated family members had NGT. The pedigree shows maternal transmission of diabetes and the tRNALYS mutation over three generations. Twenty-four-hour urinary excretion of CPR was significantly reduced in the mutant subjects (3.68 ± 3.45 nmol/1, n = 5, P < 0.001) compared with the nonmutant members (19.4 ± 1.17 nmol/1, n = 5) and the normal control subjects (15.8 ± 3.81 nmol/1, n = 6, P < 0.001) compared with the nonmutant members (mean ± SD, 67.8 ± 79.2 nmol/day, n = 12). Plasma CPR 6 min after glucagon injection demonstrated a marked reduction in the mutant subjects (3.68 ± 3.45 nmol/l, n = 5, P < 0.001) compared with the nonmutant members (19.4 ± 1.17 nmol/l, n = 5) and the age-matched normal control subjects (263 ± 64.3 nmol/day, n = 12). Bilateral neurosensory deafness was demonstrated in five of seven (71.4%) mutant subjects (five of five [100%] mutated diabetic patients), but not detected in six nonmutant members.

Conclusions — This observation is the first report of association of diabetes with the mitochondrial tRNALYS mutation. Insulin secretory capacity was significantly lower in the mutant members than in the nonmutated members. These findings suggest that the pancreatic β-cell secretory defect of insulin might be one of the phenotypes of the mitochondrial tRNALYS mutation.

From the Third Department of Internal Medicine and the Department of Neurology, Tohoku University School of Medicine, Sendai, Japan.

Address correspondence and reprint requests to Susumu Suzuki, MD, Third Department of Internal Medicine, Tohoku University School of Medicine, 1–1 Seiryou-machi, Aoba-ku, 980–77 Sendai, Japan.

Received for publication 17 February 1994 and accepted in revised form 26 May 1994.

MERRF, myoclonic epilepsy with ragged-red fiber; ICA, islet cell antibody; CPR, C-peptide immunoreactivity response; NGT, normal glucose tolerance; OGGTT, oral glucose tolerance test; IGT, impaired glucose tolerance; IDDM, insulin-dependent diabetes mellitus; PCR, polymerase chain reaction; bp, base pair; CCr, creatinine clearance; BMI, body mass index; CPEO, chronic external ophthalmoplegia; KSS, Kearns-Sayre syndrome.
Two of the proband’s children (III-1, III-2) and his wife had normal glucose tolerance (NGT). The proband’s brother (II-2) was diagnosed with diabetes after an oral glucose tolerance test (OGTT) at the age of 59. She was treated with diet therapy. He recently had mild sensory hearing loss at the age of 61. She was diagnosed with simple diabetic retinopathy at the age of 63. Her urinary CPR excretion (95.9 nmol/day) and plasma CPR to glucagon (1.89 nmol/l) were low. Her son (III-4) and her husband had NGT. The proband’s brother (II-4) was diagnosed with diabetic ketoacidosis at the age of 24 and then treated with intensive insulin therapy. He had episodes of diabetic ketoacidosis twice at the ages of 26 and 28. His urinary CPR excretion (11.3 nmol/day) and plasma CPR to glucagon (2.22 nmol/l) were low. His brother (II-5) was diagnosed with IDDM at the age of 25 and then treated with intensive insulin therapy. He began to have sensory hearing loss at the age of 28. His insulin secretory capacity was considered low, based on low urinary CPR excretion (21.9 nmol/day) and low plasma CPR to glucagon (1.69 nmol/l). No family members except the proband had myoclonus, muscle weakness, optic atrophy, or MERRF symptoms.

Eight male and six female healthy, lean, age-matched individuals with no diabetic relatives formed the normal control group. All the proband’s family members and the normal control subjects were investigated with fully informed consent. The research protocol was approved by the Tohoku University Institutional Review Board.

Preparation of DNA and polymerase chain reaction (PCR) amplification
DNA was isolated from peripheral lymphocytes. The PCR analysis to detect the tRNA^{LYS} mutation was conducted by the method of Larsson (5). The asymmetric primer method, with primers corresponding to nucleotides 8161–8180 (H81; 50 pmol) of the heavy strand and to nucleotides 8537–8556 (L85; 4 pmol) of the light strand of mtDNA, was used to generate single-stranded DNA for direct sequencing with a primer corresponding to nucleotides 8411–8430 (L84) of the light strand of mtDNA. A primer corresponding to nucleotides 8345–8390 (L83) of the light strand of mtDNA, with the normal AG dinucleotide at nucleotides 8352 and 8353 replaced by a CC dinucleotide, was synthesized. This primer creates a Bgl I restriction-enzyme site around nucleotide 8344 when mtDNA with the tRNA^{LYS} mutation is amplified. The PCR reaction with the primers L83 and H81 was carried out for 30 cycles on a thermal cycler; denaturation was at 94°C for 1 rain, annealing at 72°C for 1 min, and extension at 72°C for 1 min. Approximately 0.1–0.2 μg of the resulting 230 base pair (bp) radiolabeled PCR fragment was digested overnight with 27 U of Bgl I and electrophoresed in 6% acrylamide gels. Two radiolabeled fragments, one of 230 bp, corresponding to normal mtDNA, and the other of 184 bp, corresponding to mtDNA with the tRNA^{LYS} mutation, were detected.
Assessment of insulin secretory capacity

At diagnosis, all patients fulfilled the World Health Organization criteria for diabetes and IGT (7). Insulin secretory capacity of pancreatic β-cells was evaluated by urinary CPR excretion for 24 h and plasma CPR 6 min after intravenous administration of 1 mg glucagon. Urinary excretion of CPR and creatinine clearance (CCr) for 24 h were estimated simultaneously. All studied subjects had normal CCr for 24 h. Plasma glucose was assayed using the glucose oxidase method. Plasma CPRs were assayed using radioimmunoassay.

Statistical analysis

Statistical analysis was made by means of the unpaired Student’s t test. P < 0.05 was considered statistically significant.

RESULTS — We surveyed mtDNA mutation of tRNA\textsubscript{LYS} in a Japanese family with diabetes and MERRF. As shown in Fig. 2, we identified seven subjects with the tRNA\textsubscript{LYS} mutation as well as seven nonmutated subjects. We amplified the region encoding tRNA\textsubscript{LYS} by PCR, determined its sequence, and identified an A-to-G transition at nucleotide 8344 in the tRNA\textsubscript{LYS} gene (data not shown). The proband (II-1) showed normal and mutant genes of tRNA\textsubscript{LYS}. His mother (I-1), brothers (II-2, II-4, II-5), and sister (II-3) were also heteroplasmic for the tRNA\textsubscript{LYS} mutation, whereas the proband’s children (III-1, III-2) and his brother’s child (III-3) were not mutant. His niece (III-4) was also heteroplasmic for the tRNA\textsubscript{LYS} mutation. OGGT demonstrated that his brother (II-2) had IGT. Five of the mutated members were diabetic, one had IGT, and one had NGT, but all nonmutated members were NGT, suggesting high association of the tRNA\textsubscript{LYS} mutation with glucose intolerance. Audiometry examination demonstrated bilateral neurosensory deafness in II-3, II-4, and II-5. Muscle weakness, myoclonus seizure, or other neurological signs were not shown in the mutated members, except for the proband.

Insulin secretory capacity of the family members with the mutation was compared with the nonmutated subjects and the normal control subjects. Ages of the mutant, the nonmutant members, and the normal control subjects were 35.0 ± 17.9, 38.4 ± 21.3, and 46.5 ± 17.9 years (mean ± SD), respectively. Body mass indexes (BMIs) of the mutant, the nonmutant members, and the control subjects were 21.5 ± 1.3, 22.6 ± 2.8, and 22.5 ± 2.2 kg/m2, respectively. Ages and BMIs were not significantly different in the three groups. Twenty-four-hour urinary CPR excretion was also significantly reduced in the mutant members (67.8 ± 79.2 nmol/day, n = 5, P < 0.001) compared with the nonmutant members (276.6 ± 41.8 nmol/day, n = 5) and the age-matched normal control subjects (263 ± 64.3 nmol/day, n = 12). Plasma CPR 6 min after glucagon injection demonstrated a marked reduction in the mutant subjects (3.68 ± 3.45 nmol/l, n = 5, P < 0.001) compared with the nonmutant members (19.4 ± 1.71 nmol/l, n = 5) and the normal control subjects (15.8 ± 3.81 nmol/l, n = 12). Bilateral neurosensory deafness was demonstrated in five of seven (71.4%) mutant subjects (five of five [100%] mutated diabetic patients), but not detected in six nonmutant members.

CONCLUSIONS — A heteroplasmic mtDNA mutation of tRNA\textsubscript{LYS} has been suggested to be linked to the MERRF syndrome (5,6). Holme et al. (8) reported a case of multiple lipomas with high levels of the tRNA\textsubscript{LYS} mutation in a carrier of MERRF. Neurosensory deafness has also been associated with the tRNA\textsubscript{LYS} mutation (6). This study demonstrates that tRNA\textsubscript{LYS} mutation appears to be associated with diabetes in this pedigree, and the tRNA\textsubscript{LYS} mutation and diabetes are maternally inherited. This study shows significant reduction in insulin secretion in the mutated subjects compared with the nonmutated members and the normal control subjects. It has been speculated that a mitochondrial mutation-related defect of oxidative phosphorylation in the endocrine cells might result in reduction of hormone secretion (9-14). Several studies described reduced insulin secretion in diabetes with chronic external ophthalmoplegia (CPEO) and Kearns-Sayre syndrome (KSS) (9-14). We have reported that insulin secretory capacity of pancreatic β-cells in the tRNA\textsubscript{LEU(UUR)} (3243) mutation was severely impaired, as evaluated by the insulinoergic index in OGTT, 24-h urinary excretion of CPR, and plasma CPR 6 min after intravenous administration of glucagon (15). Kadowaki et al. (16) and Awata et al. (17) demonstrated a significant reduction of maximal insulin secretory capacities and early secretion response of insulin to glu-
The proband was diagnosed with slowly progressive IDDM, and three mutated subjects (II-3, II-4, and II-5) in the pedigree were diagnosed with ketosis-prone IDDM. IDDM is known to be associated with CPEO and KSS (11). Oka et al. (18) reported that the tRNA_{LEU(UUR)}(3243) mutation was detected in 3 of 27 ICA-positive patients who were initially diagnosed with non-insulin-dependent diabetes mellitus and then progressed to insulin dependency within a few years. They speculated that the tRNA_{LEU(UUR)} (3243) mutation may cause gradual β-cell destruction. Although ICA was negative in the proband at age 42, the tRNA_{LYS} mutation in the proband, II-3, II-4, and II-5 might cause gradual β-cell destruction to insulin dependency. Larsson et al. (5) reported that >92% of mtDNA with the tRNA_{LYS} mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. They demonstrated a positive correlation between the levels of mtDNA with the tRNA_{LYS} mutation in lymphocytes and the levels in muscle. The levels of mutated mtDNA were lower in lymphocytes than in muscle. The mutated mtDNA levels in lymphocytes of the mutated subjects were 12.0–27.6%, as estimated by the method of Larsson (5). Because we could not determine the levels of mutated mtDNA in pancreatic β-cells, we do not have direct evidence that the tRNA_{LYS} mutation causes a respiratory-chain dysfunction in the β-cells. We could not detect any direct correlation between the percentage of mutation in peripheral leukocytes and 24-h urinary CPR excretion or plasma CPR 6 min after glucagon injection. It is difficult to assess β-cell dysfunction as a primary failure or a secondary failure in the patients with long-standing diabetes. However, duration of diabetes in the diabetic patients in the family was <7 years. The fact that 24-h urinary CPR excretion and plasma CPR 6 min after glucagon injection were decreased in the mutated IGT subject (II-2) and in the proband’s siblings (II-3, II-4, and II-5) with ketoadiposis-onset of diabetes or ketosis-prone IDDM might suggest the presence of primary β-cell failure in these mutated diabetic patients. Further study is needed to resolve the pathological role of the tRNA_{LYS} mutation on the insulin secretory defects in pancreatic β-cells.

Acknowledgments—This investigation was supported in part by a grant for diabetes research from the Ministry of Health and Welfare.

We would like to thank Drs. Hideaki Kashiwamura, Haruo Seki, and Hiroaki Tanji for help with the familial survey.

References

1. van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PAA, van de Kemp JJP, Maassen JA: Mutation in mitochondrial tRNA_{LYS} gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genet 1:368–371, 1992

8. Holme E, Larsson NG, Oldfors A, Tullius M, Sahlin P, Stenman G: Multiple symmetric lipomas with high levels of mtDNA with the tRNA_{LYS} mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet 52:551–556, 1993

