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ABSTRACT. The effect of travel speed of a truck-mounted ultra-low–volume (ULV) sprayer on its application
efficacy was studied at St. Johns County Fairground, Elkton, FL, during summer 2015. The efficacy was assessed by
spray deposition, droplet size spectrum, and 24-h mortality of caged adult Aedes aegypti, using 2 rows of sampling
locations, 15 m apart and spread up to 122 m from the spray. Each location had a bioassay cage and an impinger
droplet sampler, 1 m apart from each other, at 1.5 m off the ground. Aqualuert 20-20 (20.6% permethrin AI and 20%
piperonyl butoxide) was applied at the maximum label rate, travelling at 8, 16, and 32 km/h. Three replications were
completed on 3 days at least a week apart, with 1 replication of each travel speed per day. On each application day
the travel speeds were rotated. Overall, a travel speed of 32 km/h achieved the highest efficacy of Aqualuert 20-20,
followed by 16 km/h, and then 8 km/h, in an open field. In general, droplet size, deposition, and mosquito mortality
increased with increasing travel speed. The increased travel speed will also enhance the work rate of a sprayer and
operator, thus reducing the cost of ULV applications.
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Despite short-lived control, ultra-low–volume
(ULV) space sprays of adulticides are today’s tools
of choice for quick and effective knockdown of
mosquito populations and are the best management
practice during arboviral epidemics (Perich et al.
2000). However, there are mixed reports on the
efficacy of this technology with some studies
indicating adequate control while others showing a
lack of acceptable control. Mount et al. (1968, 1978),
Stains et al. (1969), Taylor and Schoof (1971), and
Rathburn and Boike (1972) all reported �90%
mortality at �91 m from the spray line. McNeill
and Ludwig (1970), Mount et al. (1970), Rathburn
and Boike (1975), Turner (1977), and Bunner et al.
(1987) reported good control at one time or place but
poor at other times and places, even with similar
applications. Reddy at al. (2006) and Xue et al.
(2013) reported poor control. These inconsistencies
in efficacy of ULV ground applications may be due
to the interaction(s) of application technique, weather
conditions, and selected sprayer parameters. Husted

et al. (1975) reported increased distance of .90%
mortality of Culex pipiens (L.) with higher wind
speeds and smaller droplets. Farooq et al. (2017)
found that the ULV nozzle angle with respect to the
ground influenced adulticide efficacy while a hori-
zontal nozzle provided the greatest control of caged
Aedes aegypti (L.) with Aqualuert 20-20.

Most adulticide labels allow travel speeds of truck-
mounted ULV sprayers from 8 to 32 km/h. Any
increase in travel speed will need to increase the flow
rate of the ULV machines, which increases their
droplet size (Hoffmann et al. 2012), a disadvantage
when smaller droplets are desired. On the other hand,
increased travel speed helps better mixing of spray
droplets into the air due to enhanced wake effect,
certainly an advantage. However, the extent of the
impact of travel speed on the efficacy of ULV
applications has not been studied. The objective of
this study was to evaluate the effect of travel speed of
a truck-mounted ULV sprayer on spray dispersion
and mortality of caged Ae. aegypti.

The study was conducted at St. Johns County
Fairgrounds in Elkton, FL, on a 378 3 378–m
unpaved parking lot surrounded by trees. Aqualuer
20-20 (20.6 % permethrin AI, 20% piperonyl
butoxide AI, AllPro Vector Group, Northville, MI)
mixed with oil-soluble Yellow 131SCt fluorescent
tracer dye (Rohm and Haas Co., Philadelphia, PA) at
12,500 ppm was applied at the maximum label rate
(37 ml/ha) with a truck-mounted Cougart ULV
sprayer (Clarke Mosquito Control, Roselle, IL) with
nozzle pointed 458 upward. Travel speeds of 8, 16,
and 32 km/h were evaluated with flow rates of 46, 92,
and 182 ml/min, respectively. Caged (3–5-day-old)
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insecticide-susceptible, laboratory-reared female Ae.
aegypti were used for bioassays. Effectiveness of the
application was assessed by spray deposition, droplet
size spectrum, and 24-h mortality.

The experimental setup consisted of 2 rows, at
least 15 m apart, of 6 measurement locations
extending up to 122 m perpendicular to the spray
line. In each row, 6 bioassay cages with 25 female
Ae. aegypti and 6 spinners were positioned at 0, 15,
30, 61, 91, and 122 m from the spray line. Details of
the layout are provided in Farooq et al. (2017). Cages
and spinners were 1.5 m above the ground. Only 1
application of each travel speed was performed on
the same day and replicated on 3 subsequent days at
least 1 wk apart. Temperature, relative humidity,
wind speed, and wind direction were recorded at 3.0
m aboveground using a HOBOt weather station
(Onset Computer Corporation, Bourne, MA) (Table
1).

Control cages were held in the environment well
out of the spray zone for 15 min and were collected
before spray started. Spray cages and rods were
placed in the field when ready for each spray. Fifteen
minutes postspray, cages were removed and rods
were collected from all locations. Control and spray
cages were placed in separate vehicles and supplied
with 10% sugar solution. Teflont-coated rods were
preserved for measurement of droplets and the others
were stored in prelabelled, resealable bags for
deposition measurement. After collection, rods were
stored in a cool and dark environment. All bioassay
cages were maintained in the Anastasia Mosquito
Control District laboratory until 24-h mortality count
was recorded. All rods were stored in the refrigerator
at the Navy Entomology Center of Excellence for
droplet size and deposition measurements.

Droplets were measured using the DropVision
system (Leading Edge Associates Inc., Fletcher, NC)
and droplet distribution parameters were determined.
Droplet diameters were measured in micrometers,
and their distribution paramenters, where 10%, 50%,
and 90% of the spray volume is contained in droplets
smaller than these diameters, were represented as
DV0.1, DV0.5, and DV0.9 (ASTM 2004). Deposition
was measured using analysis described by Farooq et
al. (2009). Rods were washed inside the plastic bag
using 20 ml of hexane; fluorescence readings of the

solution were determined using a spectrofluoropho-
tometer (Shimadzu, Model RF5000U, Kyoto, Japan)
and converted to spray volume on rod using
calibrations developed from a set of standard
concentrations. The spray volumes for each sample
were then converted to active ingredient (AI)
deposition (ng/cm2) using sampling area of 63 cm2

and the ratio of dye and AI in the spray tank.
Statistical analysis was conducted with Intelt

Visual Fortran Composer XE 2013 with a ¼ 0.05.
Initial Kolmogorov–Smirnov tests (Smirnov 1939)
performed on all data sets revealed that the data were
nonnormally distributed while the Bartlett test
(Bartlett 1937) showed nonhomogeneity of varianc-
es. Thus a 1-way nonparametric Kruskal–Wallis
analysis (a ¼ 0.05) (Kruskal and Wallis 1952) was
conducted to study the overall effect as well as effect
at each distance of travel speed on deposition, DV0.5,
and 24-h mortality. Subsequent Tukey multiple-
comparisons tests were conducted to identify effects
of those speeds that were significantly different from
each other.

The vehicle travel speed had a significant effect on
mean deposition (v2 ¼ 6.95, df1 ¼ 2, df2 ¼ 107, P ¼
0.0016) and travel speeds of 8, 16, and 32 km/h
resulted in overall mean depositions of 0.54, 0.73,
and 1.37 ng/cm2, respectively. The mean depositions
at all travel speeds were significantly different from
each other. Also at 15- and 30-m distances, there
were differences in deposition from travel speeds
(Fig. 1).

The overall effect of vehicle travel speed on mean
volume median diameter (Dv0.5) of droplets was
significant (v2¼ 6.45, df1¼ 2, df2¼ 107, P¼ 0.0023)
and travel speeds of 8, 16, and 32 km/h resulted in
overall mean Dv0.5 of 9.3, 9.5, and 11.0 lm,
respectively. These means at all travel speeds were
significantly different from each other. As shown in
Fig. 1, at each distance, the Dv0.5 from 32 km/h was
generally higher, but not significantly different from
other speeds. As flow rate has to be increased with an
increase in travel speed, the increase in Dv0.5 is a
result of the increase in flow rate as shown by
Hoffmann et al. (2012) and Farooq et al. (2016).

Travel speed significantly affected mean 24-h Ae.
aegypti mortality (v2¼ 4.15, df1¼ 2, df2¼ 107, P¼
0.0199) and the speeds of 8, 16, and 32 km/h resulted

Table 1. Weather conditions during applications for each replication of treatments.

Replication Date
Travel speed

(km/h)
Temperature

(8C)
Relative humidity

(%)
Wind speed

(km/h) Wind direction

1 June 24, 2015 8 23.9 91 3.2 SW
16 26.1 93 3.2 WSW
32 27.8 87 5.0 SW

2 July 8, 2015 8 27.2 72 3.2 SW
16 28.3 69 4.8 SE
32 26.1 78 3.2 S

3 July 15, 2015 8 27.8 84 9.9 S
16 25.6 91 6.4 SSW
32 26.7 88 9.6 SSW
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in mean mortalities of 79.7%, 85.6%, and 94.1%,
respectively, all significantly different from each
other. As illustrated in Fig. 1, mortality from 32-km/h
travel speed was 100% up to 90 m, but low at 120 m.
At distance 0, mortality from 32 km/h was signifi-
cantly higher than mortality from other speeds.

Greater effectiveness of a ULV spray can be
achieved when it is thoroughly mixed within the air
in the target area (Farooq et al. 2017). The results of
this study showed that spray droplet size, deposition
(flux), and caged mosquito mortality increased with
increasing travel speed, and spray performance was

Fig. 1. Comparison of spray deposition (top), volume medium diameter (VMD) (middle), and 24-h mosquito mortality
(bottom) for individual travel speeds of the spray vehicle at different distances from the spray line. Different letters indicate
significant difference (a ¼ 0.05) between means of VMD, deposition, or mortality.
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best at the highest speed. Mount (1998) commented
based on Mount et al. (1970) that when an effective
insecticide dose and appropriate atomization are
maintained for a designated swath, travel speed does
not affect efficacy; however, no details of how this
conclusion was drawn are reported.

Improvement in application efficacy with in-
creasing travel speed, as seen in this study, can be
attributed to 2 physical phenomena observed during
the spray. First, speed of the induced air due to and
in a direction opposite to sprayer travel increases
with the increase in travel speed. The induced air
deflects the spray plume, released at 458 upward,
toward the ground and suppresses upward spray
movement resulting in better efficacy as evidenced
by Farooq et al. (2017). Second, movement of a
vehicle creates an air vortex behind it, which
strengthens with increasing travel speed. This
vortex helps better mix the spray with air, resulting
in higher probability of droplets contacting flying
insects.

Although this study demonstrates that an increase
in travel speed during ULV application results in
improved deposition and mosquito mortality, the
improvement may have been curtailed to some extent
by the increase in droplet size with increasing travel
speed. An increase in engine and blower/fan speed,
or an increase in rotary atomizer rotational speed
decreases droplet size (Farooq et al. 2016). A new
feature in future equipment, to link engine, blower/
fan or rotary atomizer speed with travel speed, is
recommended to maintain droplet size. Another
difficulty in using and maintaining higher speeds
may arise from the practical limits on travel speeds
due to ground surface and shorter runs in urban
settings. Use of available control systems to vary
flow rate with change in travel speed can help
overcome this difficulty.

In addition to effectiveness, use of increased travel
speed will increase work rate, enhance timeliness,
and reduce the operational cost of ULV applications.
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