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Molecular Profiles of Matched Primary and Metastatic
Tumor Samples Support a Linear Evolutionary Model of
Breast Cancer
Runpu Chen1, Steve Goodison2, and Yijun Sun1,3,4

ABSTRACT
◥

The interpretation of accumulating genomic data with respect
to tumor evolution and cancer progression requires integrated
models. We developed a computational approach that enables
the construction of disease progression models using static
sample data. Application to breast cancer data revealed a linear,
branching evolutionary model with two distinct trajectories for
malignant progression. Here, we used the progression model as a
foundation to investigate the relationships between matched
primary and metastasis breast tumor samples. Mapping paired
data onto the model confirmed that molecular breast cancer
subtypes can shift during progression and supported directional

tumor evolution through luminal subtypes to increasingly malig-
nant states. Cancer progression modeling through the analysis of
available static samples represents a promising breakthrough.
Further refinement of a roadmap of breast cancer progression
will facilitate the development of improved cancer diagnostics,
prognostics, and targeted therapeutics.

Significance: Analysis of matched primary and metastatic
tumor samples supports a unidirectional, linear cancer evolution
process and sheds light on longstanding issues regarding the
origins of molecular subtypes and their progression relationships.

Introduction
Human cancer is a dynamic disease that develops over an extended

period of time through the accumulation of genetic alterations. Once
initiated, the advance of the disease to malignancy can be viewed as a
Darwinian, multistep evolutionary process at the cellular level (1).
Delineating the dynamic disease process and identifying pivotal
molecular events that drive stepwise disease progression would sig-
nificantly advance our understanding of tumorigenesis and provide a
foundation for the development of improved cancer diagnostics,
prognostics, and targeted therapeutics. Traditionally, systemdynamics
is approached through time-series studies achieved by repeated sam-
pling of the same cohort of subjects across an entire biological process.
However, due to the need for timely surgical intervention upon
diagnosis, it is not ethically feasible to collect time-series data to study
human cancer. Consequently, while the concept of cancer evolution
has been widely accepted (1, 2), the biological process of how cancer
progresses to a malignant, life-threatening disease is still not well-
understood. The lack of time-series data has been recognized by the
field as the central problem in studying cancer progression (3).

With the rapid development of sequencing technology, many thou-
sands of excised tumor tissue specimens are being collected in large-scale

cancer studies (4–6). This provides us with a unique opportunity to
develop a novel analytical strategy to use static data, instead of time-
course data, to study disease dynamics. The strategy is based on the
rationale that each excised tissue sample provides a snapshot of the
disease process, and if the number of samples is sufficiently large, the
genetic footprints of individual samples populate progression trajecto-
ries, enabling us to recover disease dynamics by using computational
approaches. We developed a comprehensive bioinformatics pipeline (7)
and applied it to the gene expression data from over 3,100 breast tumor
samples available from The Cancer Genome Atlas and METABRIC
consortiums (4, 5). Our analysis demonstrated that it is indeed possible
to use static sample data to study disease dynamics and led to one of the
first working models of breast cancer progression that covers the entire
disease process. The progression pattern was confirmed by analysis of a
series of smaller independent breast cancer datasets and by aligning
established clinical and molecular traits with the model (7). To further
validate the model, here we proposed a novel strategy to investigate the
progression relationships of matched primary and metastasis (P/M)
tumor samples from patients with breast cancer. Our analysis suggested
that while breast cancer is a genetically and clinically heterogeneous
disease, tumor samples are distributed on a low-dimensional manifold,
that disease subtypes are not hardwired and can shift within the same
individual, and that the shift is unidirectional along a continuum of
disease state toward malignancy. This study shed light on some long-
standing issues regarding the origins of molecular subtypes and their
possible progression relationships.

Materials and Methods
The P/M dataset was downloaded from Gene Expression Omnibus

(accession number: GSE92977), which contains the expression levels
of 105 breast cancer–related genes and 5 house-keeping genes from
246 matched tumor samples collected from 123 patients with breast
cancer (8). To overcome the issue of missing data, we first filtered out
6 genes and 13 samples containing >20% missing values, and then
performed missing data imputation on the remaining samples. Spe-
cifically, for each sample, we found its 10 nearest neighbors and
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replaced the missing data in each gene in the sample by the average of
the observed values of the gene in the identified nearest neighbors. The
P/M dataset also contains a considerable number of outlier samples,
which would complicate downstream analysis. Intuitively, an outlier
sample should be dissimilar to its nearest neighbors. We exploited this
intuition by calculating the average distance between each sample and
its 10 nearest neighbors and removing 23 samples with top 10%
average distances. By using the PAM50 classifier, we stratified the
samples into the five intrinsic molecular subtypes (luminal A, luminal
B, HER2þ, basal, and normal-like). With the subtype information, we
performed a one-way ANOVA analysis on individual genes and
removed 12 genes that contain little information in discriminating
thefivemolecular subtypes (P> 0.1).After data preprocessing, 87 genes
and 210 samples including 92 pairs were retained for the further
analysis.

We investigated the progression relationships between thematched
tumor pairs by mapping the P/M data onto a progression model of
breast cancer that we constructed using theMETABRIC data (referred
to as theMETABRICmodel hereafter; ref. 7). Because the data sources
are not entirely compatible, we first mapped the 87 genes in the P/M
cohort back to the 25,160 genes in the METABRIC data and identified
85 genes present in both datasets, and then used ComBat (9) to remove
the platform-induced data deviations. The METABRIC model was
constructed using 359 genes (7), while the P/M cohort contains only
the expression data of 85 genes. To address the issue, we designed a
novel computational strategy that projects the P/M data onto a high-
dimensional space spanned by the 359 genes used to build the
METABRIC model. Specifically, we assumed that the projection
relationships between the 85 and 359 genes were shared by both
cohorts, learned a projection function by using the METABRIC data,
and applied the function to the P/Mdata. See SupplementaryData for a
detailed mathematical derivation. After we obtained the high-
dimensional prediction of the P/M data, we projected each sample
onto the progression paths identified in the METABRIC model. Here,
the projection of a sample is defined as a point on a progression path
that is the closest to the sample. By using the mean of the normal
samples to represent the origin of cancer progression, we compared the
progression distances ofmetastasis tumors with those of theirmatched
primary tumors. Because the P/Mcohortmeasured only the expression
levels of 85 genes and contained considerable measurement errors,
many pairs had small differences in their progression distances, likely
due to random variations. We devised a way to identify tumor pairs
that underwent significant disease progression (Supplementary Data).

Results
Constructing a progression model of breast cancer

As a foundation for the investigation of the relationships between
matched tumor pairs, we applied our computational pipeline devel-
oped in (7) to the METABRIC data and reconstructed a progression
model of breast cancer (see Supplementary Data; ref. 7 for details). The
dataset contains the expression profiles of 25,160 genes obtained from
1,989 surgically excised breast tumor samples. Briefly, we first per-
formed supervised learning by using the breast cancer subtypes as class
labels and selected 359 disease-related genes. Then, we performed a
clustering analysis on the expression measures of the selected genes to
detect tumor groups with homogenous gene expression profiles. By
using gap statistic (10) and consensus clustering (11), 10 distinct
clusters were identified. Finally, we constructed a progression model
and represented it as an undirected graph, by using the centroids of the
identified clusters as the vertices and connecting them based on the

progression trend inferred from the analysis. Figure 1A and B show
the distribution of the tumor samples in a three-dimensional space
supported by the selected genes and a schematic of the constructed
model, respectively. Our analysis identified a linear, branching model
describing two distinct trajectories tomalignancy, either directly to the
basal subtype with little deviation, or a stepwise, more indolent path
through the luminal subtypes to the HER2þ subtype. The two trajec-
tory termini (i.e., HER2þ and basal) represent the twomost aggressive
breast tumor subtypes (12). Significant side branches are also evident
for both luminal A/B subtypes. Our results confirmed that molecular
subtypes are not hardwired, and genotypes and phenotypes can shift
over time (1), and that cancer development follows limited, common
progression paths (4).

Mapping of matched primary and metastatic tumor samples
To validate the constructed model, we investigated the interrelation-

ships of the matched primary and metastasis tumor samples with
respect to molecular subtype and directional progression. To overcome
the issues of missing data and outliers, we performed a series of data
preprocessing to remove genes and samples containing excessive
missing values, to impute missing data, and to identify outlier data
(Materials andMethods section).After datapreprocessing, a total of 210
samples including 92 pairs were retained for further analysis. Using the
PAM50 classifier (13), we stratified the samples into five intrinsic
molecular subtypes, including three normal-like, 79 luminal A, 78
luminal B, 33 HER2þ, and 17 basal tumors (Supplementary
Table S1). It has been reported that normal-like samples could be
technical artifacts fromhigh contamination of normal tissue (14), so we
removed from further analysis the three pairs that contained normal-
like classification.Figure 2Apresents a Sankeyplot showing the subtype
changes ofmatched pairs.We then performed a quantitative analysis of
the progression relationships of the primary and metastasis tumors by
mapping the data onto theMETABRICmodel. Because the data sources
are not entirely compatible, we first performed batch-effect correction
by using ComBat (9) and then applied a novel strategy to map the P/M
data onto the 359-dimensional space where theMETABRICmodel was
constructed (Materials and Methods section). Figure 2B visualizes the
sample distributions of both P/M and METABRIC data, where each
sample was color-coded on the basis of its PAM50 label. By using the
normal samples as the baseline to represent the origin of cancer
progression, we compared the progression distances of each matched
pair and reported the results in Fig. 2C. After multiple testing correc-
tion, a total of 16 pairs were identified with significant positive disease
progression (i.e., the progression distance of a primary tumor is
significantly smaller than that of the matched metastasis tumor) and
one pair with negative disease progression (FDR � 0.1).

From Fig. 2A, we observed that all basal metastatic tumors were
derived from basal primary tumors, and all nonbasal metastatic
tumors were derived from nonbasal primary tumors. This suggests
that basal cancer is a distinct disease entity, supporting the bifurcating
structure revealed by the proposed progressionmodel (Fig. 1).We also
observed that while most paired samples (62%) were of the same
molecular subtype, subtypes did shift primarily from a lesser to amore
malignant phenotype (i.e., luminal A toB or toHER2þ subtype), which
aligns well with the METABRIC model. There were several examples
of luminal B shifting to luminal A (six pairs) and HER2þ shifting to
luminal B (one pair), implying that cancer evolution can be bidirec-
tional. However, because the PAM50 system provides only an approx-
imate stratification of breast cancer (15), the P/M cohort measured
only the expression levels of 85 genes, and the data contains consid-
erable measurement errors, a qualitative analysis of subtype changes
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tells only part of the story. Indeed, as shown inFig. 2B, luminal A andB
do not have a clear-cut boundary, as is the case for luminal B and
HER2þ. This boundary overlap of approximate subtypes explains why
in some large-scaled benchmark studies it has been observed that
existing molecular subtyping methods only achieve moderate concor-
dance, particularly when classifying luminal A and B tumors (16).
Through a quantitative analysis of the progression distances
revealed by mapping the P/M data to the model (Fig. 2B and
C), we found that all six luminal B primary tumors that changed to
luminal A metastases and one HER2þ primary tumor that changed
to a luminal B metastasis had very small disease progression.
Conversely, all 16 pairs with significant positive progression were
either luminal A to luminal B (nine pairs), luminal A to HER2þ

(three), luminal B to HER2þ (one), HER2þ to HER2þ (two), or
basal to basal (one). As examples, Fig. 2B shows the locations of two
pairs (9P/9M and 48P/48M) that underwent evident disease pro-
gression. Taken together, these analyses support a unidirectional,
linear evolution process for breast cancer through luminal subtypes
toward malignancy. Interestingly, one tumor pair (18P/18M, both
classified as luminal A) had a significant negative disease progres-
sion. Although the overall observed trend here was a downstream
P-to-M shift, a number of scenarios can coexist. Tumor cells can
escape the primary lesion and survive at early stages of primary
tumor development. The evolutionary time index may be different
for these foci, especially if the metastasis lesion is dormant for a
period, and local selective pressures at primary and secondary sites
can differentially impact the evolution of the related lesions.

Discussion
Cancer evolution theory dates back to the 1970s (17), and

numerous studies have been conducted that significantly expanded

our understanding of the concept (1, 3, 18). Yet, due to the difficulty
in obtaining time-series data, beyond conceptual models, there is
currently no established cancer progression model derived from
tumor tissue data that covers the entire disease process. We have
proposed a novel computational strategy that overcomes the exist-
ing sampling restrictions. The application of the approach to large-
scale breast cancer genomic datasets identified a linear, bifurcating
progression model describing two distinct pathways to cancer
malignancy. The interpretation of the model is that the basal
subtype is distinct from the luminal subtypes, and that the luminal
subtypes can shift during disease progression and may be consid-
ered as different stages of the same disease. The mapping onto the
progression model of the paired P/M samples further supports the
overall model and the concept that the cancer evolutionary process
is unidirectional through luminal subtypes toward increasingly
malignant states.

Since the proposal of the cancer molecular subtypes (12), fundamen-
tal issues regarding whether subtypes are biologically independent
entitiesorhaveprogressive relationshipshavebeenunderdebate (15, 19).
One conceptual model proposes a distinct path scenario where each
subtype follows a path of initiation and progression independently. The
alternative is a linear evolution model, where tumors gradually evolve
from normal cells to malignant states through the accumulation of
genetic alterations (15).While bothmodels embrace thenotion of cancer
evolution, the first implies that subtypes are different diseases, while the
second suggests that subtypes are different stages of the same disease.
Clarifying this issue could have a profound impact on current cancer
research because clinical management and research strategies in the two
scenariosmay be very different. Our analysis supports the secondmodel
as a representation of disease progression, but also suggests that basal
and luminal/HER2þ subtypes are differentially derived from an ances-
tral somatic or neoplastic cell of origin.
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Figure 1.

Breast cancer progression modeling analysis performed on METABRIC gene expression data. A, Data visualization analysis provides a general view of sample
distribution. The dataset contains 144 normal breast tissue samples, which we used as the baseline to represent the origin of cancer progression. To help with
visualization and to put the result into context by referring to previous classification systems, each sample was color-coded on the basis of its PAM50 subtype label.
B,Aprogressionmodel of breast cancer. Each node represents an identified cluster, and the pie chart in each node depicts the percentage of the samples in the node
belonging to one of the five PAM50 subtypes. The analysis revealed four major progression paths, referred to as N-B (normal to basal), N-H (normal through luminal
A/B to HER2þ), N-LB (normal through luminal A to luminal B side-branch), and N-LA (normal to luminal A side-branch). The model was modified from Sun and
colleagues (7). LumA, luminal A; LumB, luminal B.
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The development of cancer progression models can inform a range
of research directions. For example, current prognostic tests are of
value only in a restricted set of patients, but if we can visualize the
entire, ordered progressive process, the identification of specific
molecular characteristics associated with a broader spectrum of cancer
phenotypes becomes feasible. Assisted by genomic testing, we can
envisage the placement of samples from individual cases onto a
progression path to guide clinical management and evaluate individ-
ualized treatment success. The derivation of annotated progression
maps can also guide the design of animal studies to focus on pivotal
points of cancer development, which may yield the best return with
limited resources. Guided by a working model, future studies using
higher resolution sampling (e.g., single-cell sequencing and tissue
microdissection) and incorporating multi-omics data can provide
refined roadmaps of breast cancer progression. Although in this
study we focus mainly on breast cancer, the developed methods for
model construction and validation can also be used to study other

distinct (6) or related cancers (20) and other progressive human
diseases where the lack of longitudinal data is an unavoidable
problem.
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Figure 2.

Progression analysis of 89 pairs ofmatchedprimary andmetastasis tumor samples.A, Sankey diagram showing the subtype changes ofmatched tumor pairs.B,Data
visualization of the P/M cohort mapped onto the METABRIC model. Two examples (9P/9M and 48P/48M) are shown that underwent evident disease progression
from luminal A to the HER2þ subtype. C, Comparison of progression distances of matched primary andmetastasis tumors. A total of 16 and one pairs were identified
with significant positive and negative disease progression (i.e., samples outside of the shaded region; FDR � 0.1), respectively. dm , progression distance of a
metastasis tumor; dp , progression distance of a primary tumor; LumA, luminal A; LumB, luminal B.
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