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ABSTRACT

It is proposed that a numerical environmental model cannot be justified for predictive tasks without

an implicit uncertainty analysis which uses reliable and transparent methods. Various methods of

uncertainty-based model calibration are reviewed and demonstrated. Monte Carlo simulation of

data, Generalised Likelihood Uncertainty Estimation (GLUE), the Metropolis algorithm and a set-based

approach are compared using the Streeter–Phelps model of dissolved oxygen in a stream. Using

idealised data, the first three of these calibration methods are shown to converge the parameter

distributions to the same end result. However, in practice, when the properties of the data and

model structural errors are less well defined, GLUE and the set-based approach are proposed as

more versatile for the robust estimation of parametric uncertainty. Methods of propagation of

parametric uncertainty are also reviewed. Rosenblueth’s two-point method, first-order variance

propagation, Monte Carlo sampling and set theory are applied to the Streeter–Phelps example. The

methods are then shown to be equally successful in application to the example, and their relative

merits for more complex modelling problems are discussed.

Key words | calibration, propagation, stochastic, simulation, uncertainty

INTRODUCTION

Motivation

The demand for far-sighted, cost-efficient solutions to

engineering problems has increased simultaneously with

our numerical modelling expertise and the sophistication

of our computers. Consequently, numerical simulation

models have become an essential part of environmental

and civil engineering. They are routinely used to predict

the environmental impact of engineering projects, as well

as the impact of natural events on our engineering

achievements.

In the 1970s and 1980s, great attention was given to

improving our knowledge of the underlying environ-

mental processes which we aimed to simulate and, as this

knowledge grew, the models tended to become complex

(e.g. Thomann 1998). At the same time, improving

environmental databases showed that even theoretically

well founded models failed to accurately replicate obser-

vations (e.g. Bierman & Dolan 1986; see also Binley et al.

1991). The interacting processes and the unknown spatial

and temporal heterogeneities are too many to be accu-

rately modelled or observed. This has forced environ-

mental modellers to engage more thought in the procedure

of model calibration, and to be more cautious in proposing

deterministic solutions. It is becoming common procedure

to include confidence limits with all model results.

Producing a reliable set of confidence limits on a

model result is not difficult, given ideal circumstances. For

example, to fit a linear model to observations which are

normally and independently distributed with constant

variance requires standard regression techniques, and

derived confidence limits are theoretically sound (see

Berthouex & Brown 1994). However, the natural environ-

ment is very much non-linear and this biases parameter

estimates (e.g. Tellinghuisen 2000). Also, data generally

carry sampling and measurement errors and are often

unreliable, and, no matter how well behaved the data are,
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if the structure of the model is fundamentally wrong then

standard regression techniques are flawed. Clearly then,

extrapolation of the model into the future also complicates

the analysis, as the reliability of the model under new

conditions is always in question. The problem of model

equifinality (Beven & Binley 1992) means that many differ-

ent proposed models may appear equally adequate when

compared to the data but will give significantly different

results when extrapolated to new conditions.

Scope

This paper is a review of methods of uncertainty analysis

in environmental modelling. This subject area has pre-

viously been reviewed elsewhere (Beck 1987; Melching

1995; Tung 1996) and the reader is directed to this litera-

ture for additional background and discussion. This paper

complements those previous works by taking a demon-

strative approach to the review, aiming to give insightful

comparisons between the methods using simple examples

and theory. As such, it is intended to be a practical guide to

the available methods, and to enable and encourage the

modeller to implement them with forethought, and to

interpret the results properly. Notably, this review

excludes methods of recursive parameter estimation (see

Beck 1987) and the use of multi-objective optimisation (see

Fonseca & Fleming 1995). The utility of these methods is

evident when the modelling objectives are relatively

well defined by observations of the environmental system

(e.g. Whitehead & Hornberger 1984; Gupta et al. 1998).

Without diminishing the importance of these (and other

omitted) methods, this paper is principally concerned with

methods most used for analysis of systems for which

supporting observations are relatively sparse.

The sources of uncertainty and their representation in

the model

A definition of uncertainty analysis is ‘the means of cal-

culating and representing the certainty with which the

model results represent reality’. The difference between a

deterministic model result and reality will arise from:

• model parameter error,

• model structure error (where the model structure is

the set of numerical equations which define the

uncalibrated model),

• numerical errors—truncation errors, rounding errors

and typographical mistakes in the numerical

implementation,

• boundary condition uncertainties.

As reality can only be approximated by field data, data

error analysis is a fundamental part of the uncertainty

analysis. Data errors arise from:

• sampling errors (i.e. the data not representing the

required spatial and temporal averages),

• measurement errors (e.g. due to methods of handling

and laboratory analysis),

• human reliability.

Realising that an error-free model would equate to the

error-free observations, the relationship between the

actual model result M and the actual observations O can

be summarised by

M − e1 − e2 − e3 − e4 = O − e5 − e6 − e7 (1)

where e1–e4 represent the four sources of model error in

the order listed above, and e5–e7 represent the three

sources of data error listed above.

It is the goal of the modeller to achieve, to within an

arbitrary tolerance, an error-free model by removal of

e1–e4. However, the modeller is generally neither in con-

trol of model structure errors e2, nor numerical errors e3,

nor boundary condition errors e4. Commonly, only the

values of the model parameters are under the direct con-

trol of the modeller. The aim would then become one of

compensating as far as possible for e2–e4 by identification

of the optimum effective parameter values. Central to this

paper is the argument that there is always some ambiguity

in the ‘optimum’ effective parameter values caused by

the unknown natures of, and inseparability of, e2–e7, and

that this ambiguity can be represented by parametric

uncertainty. As such, the model parameters are used as

error-handling variables and are identified according to

their ability to mathematically explain e2–e7. In most

environmental modelling problems, significant bias in one
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or more of these errors will inevitably lead to biased

parameter estimates. While the ideal solution would be to

eliminate bias, for example by compensatory adjustments

to data or by model structure refinement, such measures

are often not practical and never comprehensive. In rec-

ognition of this, the potential importance of biased model

calibration will be illustrated in this paper, and significant

attention is given to methods of uncertainty analysis

which aim to deliver some robustness to bias.

The difficult task of identifying parameter uncertainty

is generally approached using methods of calibration

which derive, from the pre-calibration (a priori) parameter

distributions, calibrated (a posteriori) distributions

(where, for now, ‘distribution’ is used in the most general

sense). Due to a lack of prior knowledge, the a priori

distributions are often taken as uniform and independent

(e.g. Hornberger & Spear 1980). On the other hand,

the a posteriori distributions, constrained by the data,

may be multi-modal and non-linearly interdependent

(Sorooshian & Gupta 1995). Interdependency arises when

the model result is simultaneously significantly affected by

two or more parameters, such that the distribution of each

parameter must be regarded as conditional on the value of

all interdependent parameters. Therefore, it is necessary to

refer to the joint parameter distribution, which is defined

by a continuous function of all the parameters, and to

sampled parameter sets rather than individual parameter

values.

Model identifiability

Model identifiability is the extent to which the single most

appropriate model can be identified by the modeller. It

includes both model structure identifiability (i.e. that of

the uncalibrated equations which form the model) and

parameter identifiability (i.e. that of the parameter values

given one model structure). If a set of field data can be

explained equally well by two or more feasible models,

then the chosen model is poorly identifiable from the data.

As the alternative feasible models will not give identical

results under changed boundary conditions, any predic-

tive results will have implicit uncertainty. Poor identifi-

ability has been generally identified as a ubiquitous issue

in environmental modelling (hence the need for uncer-

tainty analysis), and is exacerbated with increasing model

complexity (e.g. Wheater et al. 1986).

Parameter non-identifiability is caused when the

model has too many interdependent parameters and not

enough high precision data are available. The problem can

be tackled by collecting additional data and/or by reduc-

ing the number of interdependent parameters. Berthouex

& Brown (1994) observe ‘well-designed experiments will

yield precise uncorrelated parameter estimates with ellip-

tical joint confidence regions’. This implies that the data

should provide unambiguous information about every

parameter as an independent entity, but in most field

experiments this cannot be achieved. Alternatively the

quote implies that the model should be reduced to a

number of simpler, independent models. While this makes

the uncertainty analysis straightforward, it may not encap-

sulate all the interdependent processes which the predic-

tive model requires, and may not give insightful results.

Hence there is need for a compromise between complexity

and identifiability, consistent with the available data and

model objective.

APPROACHES TO UNCERTAINTY-BASED MODEL
CALIBRATION

Calibration is the process of tuning the model by

optimisation of the set of model parameters. In traditional

deterministic modelling, a single optimum parameter set is

found such that model results fit the data as closely as

possible. A variety of automated optimisation procedures

are used (see Sorooshian & Gupta 1995). The closeness

of fit is quantified by one or more objective functions

(OFs). The OF is often some expression of the sum of the

squared residuals (of the data and the model result) (see

Weglarczyk 1998). However, the OF should be designed

according to the nature of both the data errors

(Sorooshian & Dracup 1980; Valdes et al. 1980) and the

model errors (Beven & Binley 1992), as the optimum

parameter values depend intimately on both. In an

uncertainty-based calibration, where it is recognised that

use of one optimum parameter set will give results of
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limited insight, the modeller is interested in the response

of the OF over the entire a priori range of parameter sets,

i.e. the OF response surface (see Berthouex & Brown

1994). Analysis of the response surface is the means

of deriving the calibrated parameter distributions. This

discussion will describe and demonstrate different

approaches to this analysis.

Objective functions and likelihood measures

The method of maximum likelihood (see Ang & Tang 1975)

is the basis for traditional calibration, and it is a necessary

starting point for this discussion. If the OF is defined as a

likelihood estimator of the model then for each trial model

OF = P(e1)P(e2|e1)∏  P[ei|(e1�e2� . . . � e i—1];

i=3,4, . . . , N (2)

i

where ei is the ith of N model residuals (i.e. the difference

between the ith of N available data points and the corre-

sponding model result), P(ei) is the probability density of

ei, and P(e2ze1) signifies the probability of e2 assuming e1

has already happened. If the N residuals are assumed to be

independent and normally distributed with zero mean and

constant variance s2, and there are F degrees of freedom

(i.e. parameters to be calibrated), then Equation (2)

reduces to

(3)exp(— 0.5(N—F)).
(2ps2)N/2

1
OF =

If N and F are constant, which is likely during a model

calibration, Equation (3) is reduced to

(4)
(s2)N/2

K
OF =

where K is a constant. Therefore, assuming that the sum of

the squared residuals divided by an arbitrary constant

is an unbiased estimator of s2, the least sum of squared

residuals maximises the likelihood (Box & Jenkins 1970).

Usually, one or more of the assumptions used in the

derivation of Equation (4) is not valid. If more than one

system response is being modelled and monitored then s2

cannot be taken as constant, and Equation (4) becomes

(5)
(s2

r)N/2

K
OF =

R

r=1
∏

where R is the number of responses each measured at N

locations (in time and/or space). For finding the maximum

likelihood, this is equivalent to minimisation of the sum of

weighted squared residuals, assuming the responses are

independent. Similarly, if the variance changes in time

and/or space with the magnitude of the response then

an appropriate weighting scheme may be used (e.g.

Sorooshian & Dracup 1980). For autocorrelated residuals,

Romanowicz et al. (1994) describe a suitable likelihood

estimator.

The OFs in Equations (2)–(5) give the probability

density of the data sample (say, data sample k) occurring,

given the model result. If this model result is defined by a

set of parameters (ai) sampled from the a priori joint

parameter distribution and applied to a chosen model

structure (model structurej), then

P[data samplekz(aizmodel structurej)] = OFi. (6)

This conditional probability may be manipulated using

Bayes’ theorem (see Ang & Tang 1975) to give the prob-

ability of ai given the chosen model structure and given

the data sample:

P[(ai|model structurej)|data samplek] ×

(7)= OFi.
P[(ai|model structurej)

P(data samplek)

If only one data sample is considered, with no explicit

attention to data sampling error, then P(data samplek) = 1.

Furthermore, if it is considered that all of S sampled

parameter sets have equal a priori probability then

P(aiz model structurej) is equal to 1/S. In summary

P[(ai|model structurej)|data samplek] = (8).
S

OFi

The standardised likelihood (so that all the discrete OFs

total unity), P′, can be regarded as a point estimate of
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probability mass from the a posteriori joint parameter

distribution:

P′[(ai|model structurej)|data samplek] = (9).

l =1,S
∑OFl

OFi

The number of sampled parameter sets, in particular the

adequacy of the sampling of the important parameter

interactions, is fundamental to the reliability of the results

(Cochran 1977; Kuczera & Parent 1998). As the important

interactions are not known a priori, the sampling is often

randomised, which is known as Monte Carlo sampling

(see Ang & Tang 1984). The limitation of this approach is

the large number of parameter samples, and hence model

runs, generally required to achieve convergence of the a

posteriori parameter distribution. However, this can be

mitigated by numerous variance reduction techniques, for

example Latin hypercube sampling and stratified random

sampling (MacKay et al. 1979).

Data sampling error arises from the fact that, if many

data sets are sampled from the same population, no two

sets will give the same likelihood measure for a given

model. The data sampling error can be incorporated in the

calibration using the theorem of total probability:

P[(ai|model structurej] =

P[(ai|model structurej|data samplek] × (10)

P[data samplek])

k =1,D
∑

where D is the number of sampled data sets. If it is

supposed that the data sampling error is the main source

of uncertainty, and only the maximum likelihood model

for each data realisation need be considered, then

P[a′
kzmodel structurej] = P[data samplek] (11)

where a′
k is the maximum likelihood set of parameters set

found for the kth sample of data. Thereby, many different

data sets from the same population are required, usually

an unrealistic requirement in the context of environmental

sampling programmes. Alternatively, one available sample

can be used to estimate the distributional properties of the

residuals (e.g. Ang & Tang 1975). Equation (11) can then

be solved by randomly simulating data on the basis of

these estimated properties. This is Monte Carlo simulation

of data, an established basis for estimation of parameter

uncertainty (Rubinstein 1981; Shao & Tu 1995). Such a

procedure is shown in Figure 1. As an alternative to

simulation of data, residual bootstrapping can be used

(e.g. Shao 1996). This uses sub-samples of the residuals (of

the available data and the maximum likelihood model

result) as the kth data realisation. As with Monte Carlo

simulation of data, residual bootstrapping requires initial

assumptions about the maximum likelihood, but it avoids

assumptions regarding the variance.

Possibility theory and the HSY method

A problem with the maximum likelihood estimator is that

simplifying assumptions are required about the nature of

Figure 1 | Monte Carlo calibration procedure.
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the data errors. In environmental monitoring, the sam-

pling location and methods of measurement generally

cause unknown biases in the maximum likelihood esti-

mate. Various methods may be tried to improve robustness

to assumptions regarding data bias. One approach is to use

possibility theory (Zadeh 1978; see also Wierman 1996). A

possibility distribution describes the perceived possibility

of an event where the maximum possibility is 1 and the

minimum is 0. In possibility theory, the rules of union and

intersection differ from those in probability theory. For

independent, random variables X and Y,

Possibility(X∩Y) = Minimum [Possibility(X), Possibility

(Y)] (12a)

Possibility(X∪Y) = Maximum [Possibility(X), Possibility

(Y)] (12b)

Applying possibility theory to model calibration requires a

subjective measure of the possibility of the outcome of each

candidate model. Using Equation (12a), for example, the

possibility of any model result is the model residual (out of

all N model residuals) perceived to be the least likely.

Although the significance of the remaining N − 1 residuals

would be lost, the robustness to data bias would be

increased by avoidance of the multiplicative likelihood

estimator.

Another particular appeal of applying possibility

theory to model calibration is that it provides a convenient

basis for calibrating the model using subjectively defined

support criteria. While such reasoning can be based on

interpretation of data it may also be knowledge-based.

That is, the possibility of any candidate model can be

judged on the basis of non-numeric (even non-

documented) knowledge about the environmental system

rather than by ‘hard’ data.

Hornberger & Spear (1980) suggested a groundbreak-

ing approach to calibration of environmental models

which has distinct parallels with possibility theory. In

their method, an a priori parameter set, applied to a

given model structure, is considered to be a possible model

of the system if the corresponding model result lies

wholly within a set of characteristic system behaviour. The

characteristic behaviour is defined by subjective reasoning

which may include analysis of available data. The result of

this approach to calibration is an a posteriori sample of

equally possible parameters and a complementary sample

of impossible parameter sets. Van Straten & Keesman

(1991) demonstrate how the a posteriori sample of possible

parameters can be propagated to a range of possible

results. Statistical comparison of the contents of these

sets can robustly quantify model sensitivity to individual

parameters (e.g. Spear & Hornberger 1980; Chen &

Wheater 1999), and so the method is often referred to as

Regional (or Global) Sensitivity Analysis. After Beck

(1987), the method is referred to hereafter as the

Hornberger–Spear–Young (HSY) algorithm and an

interpretation of the algorithm is illustrated in Figure 2.

Generalised Likelihood Uncertainty Estimation (GLUE)

Beven & Binley (1992) developed the HSY method into

their Generalised Likelihood Uncertainty Estimation

(GLUE), so that every possible model was weighted with a

likelihood. The array of likelihoods (for each model struc-

ture) is interpreted as point estimates of probability from

the joint parameter distribution for that model. As new

data becomes available, the distributions can be updated.

The predictions from alternative model structures with

their own joint parameter distributions can be combined

using Bayes’ method. The key feature of GLUE is that the

modeller designs an OF which is taken as a measure of the

likelihood. It is emphasised that the estimated uncertainty

depends largely on the user’s design of likelihood measure

(e.g. Freer et al. 1996), and that the basis of the design

should be explicit. In particular, the GLUE likelihood

measure should not be interpreted as a statistical likeli-

hood estimator, as used in Equations (2)–(5), unless it is

specifically designed as such (e.g. Romanowicz et al. 1994)

with regard to the data and model errors.

A major problem with the likelihood estimators of

Equations (2)–(5), which may be addressed using GLUE,

is the assumption that the model is correct and uncertainty

only arises from the statistical significance with which the

data can define the optimum solution. If the model is

biased with respect to the observations (i.e. incapable of

producing uncorrelated residuals), this has the unsatisfac-

tory effect that the parameter uncertainty tends to reduce,
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as high likelihood is exclusive to those parameter sets (of

course, themselves biased) which compensate for the

model bias. Furthermore, when the number of data points

is high, parameter uncertainty is low and the associated

confidence limits on the model results will not encompass

many measurements of the real system. This may be solved

within the GLUE framework, for example, by prescribing

a value of N (Equations (3)–(5)) which is less than

the number of data points, so increasing the parameter

variance (e.g. Freer et al. 1996). This has a distinct advan-

tage in regulation-driven modelling exercises, where the

stochastic model may be judged by its ability to encompass

the measurements, irrespective of the measurement errors.

However, simple manipulation of likelihood estimators

will not solve the problem of model or data bias, for

which GLUE must be used in its more general, subjective

capacity.

Adaptation of parameter distributions

It has been described how the OF evaluated for any

parameter set can be interpreted as a point estimate of

probability mass or possibility. Thus, using Monte Carlo

simulation of the parameters, a response surface equiva-

lent to an a posteriori distribution can be approximated.

However, many thousands of a priori parameter samples

may be required for an adequate approximation to be

made (e.g. Kuczera & Parent 1998). To improve the ef-

ficiency of the calibration, attempts have been made to

adapt the a priori distribution to an a posteriori form. Such

approaches are commonly called adaptive random

searches (ARSs). Types of ARS include genetic algorithms

(Holland 1975), shuffled complex evolution (Duan et al.

1993) and Monte Carlo Markov chains (see Rutenbar

1989), all of which have proved useful for environ-

mental model calibration and for uncertainty analysis

(e.g. Mailhot et al. 1997; Mulligan & Brown 1998;

Thyer et al. 1999). Careful thought is required before

applying an ARS to estimation of parametric uncertainty

because the achieved a posteriori distribution depends

on the particular ARS and the convergence criteria, as

well as the data, the model and the OF. So, while a

distribution representing uncertainty may be derived,

the significance of this uncertainty is not necessarily

helpful.

Here, a Monte Carlo Markov chain model proposed

by Metropolis et al. (1953) is described. The algorithm uses

a Markov chain process (see Rutenbar 1989) which, in

essence, assumes that the current state of a system dictates

the probability of moving to any proposed new state. The

Metropolis algorithm was originally developed to simulate

the stochastic behaviour of a system of particles at thermal

equilibrium. Applied to model calibration, it adapts the

Figure 2 | HSY calibration procedure.
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population of parameters until the OF (in this case to be

minimised) is described by the distribution

(13)
KMET

1
P(ai) = e—OFi/A

where KMET is a standardisation constant such that the

total of all P(ai) is unity, A is a case-dependent constant

and ai is the ith parameter set in the derived population.

Note that, while the distribution of the accepted OFs

converges to the Gaussian form of Equation (13), the

distribution of the accepted parameter sets depends upon

the relationship between the model and the OF. The

algorithm starts from an arbitrary location in the a priori

parameter space. From then on, the probability of any

sampled parameter set ai being accepted into the popu-

lation depends entirely on comparison of OFi with that of

the last accepted set, OFi − 1. This probability is defined by

Equations (14a) and (14b):

(14a)

(14b)

P(ai—1)

P(ai)P(ai—1ƒai) =

P(ai—1ƒai) = 1

= exp for    OFi—1<OFi

for    OFi—1‰OFi .

A

OFi—1—OFi& /

Each parameter set is sampled at a random distance and

direction from the previously added set, subject to the a

priori constraints and a specified maximum distance, B.

An implementation of the Metropolis algorithm is sug-

gested in Figure 3. Mailhot et al. (1997) and Kuczera &

Patent (1998) find the Metropolis algorithm to be useful in

uncertainty analysis. The Metropolis algorithm can be

refined by allowing constants A and B to be updated at

intervals, thereby gradually increasing focus on the

optima.

Example of calibration

This example aims to demonstrate some of the above

approaches to the estimation of a joint a posteriori

parameter distribution, and establish some relationships

and contrasts between them. To make the demonstration

manageable, the model is simple and the data are ideal-

ised. Attention is drawn to the last paragraph in this

section which discusses the example in the context of

more complex and practical problems.

A steady state model of organic carbon (BOD) decay

and dissolved oxygen (DO) in a river can be described by

the Streeter–Phelps equations (Streeter & Phelps 1925):

(15a)BODx =BOD0e—koc(x/n)

(15b)

DOx =DOsat —

(DOsat —DO0)e—kau(x/n)

[e—koc(x/n) —e—kau(x/n)
] —

kau — koc

koc}BOD0

where koc is the BOD decay rate, kau is the oxygen

aeration rate, x is the distance downstream from a point

pollution source, DO0 and BOD0 are the respective con-

centrations in the river at x = 0, v is the average transport

Figure 3 | Metropolis calibration procedure.

184 Neil McIntyre et al. | Estimation and propagation of parametric uncertainty in environmental models Journal of Hydroinformatics | 04.3 | 2002

Downloaded from https://iwaponline.com/jh/article-pdf/4/3/177/392439/177.pdf
by guest
on 21 May 2019



velocity and DOsat is the concentration of DO at satu-

ration. Synthetic data are generated by the model using

the parameter values and boundary conditions in Table 1,

and random errors are introduced in DO( = eDO) from an

N(0, 22) population, and in BOD ( = eBOD) from an inde-

pendent N(0, 102) population. With 20 data locations

spaced at 5 km intervals along a 100 km stretch of river,

the synthetic data are illustrated in Figure 4. These data,

together with the maximum likelihood model solution, are

used to estimate the properties of the distribution of

residuals, which are listed (alongside the population prop-

erties) in Table 2. This estimation is based on the conver-

gence properties of a sample’s maximum likelihood and

variance using the Central Limit Theorem (from Ang &

Tang 1975). Assuming v and the boundary conditions are

known, the parameters to be calibrated are koc and kau.

The synthetically derived error population is ran-

domly sampled and Monte Carlo (MC) calibration of

parameters koc and kau proceeds as described in Figure 1.

The maximum likelihood set (koc, kau) is found for each

data sample using stratified random sampling, using

the least sum of squared objective function defined in

Equation (5). One thousand samples of the a priori

parameters are used to estimate the optimum parameter

set for each of 200 realisations of the data. That is, 0.2

million model runs are used to derive the posterior

parameter distributions. This exercise is repeated with

different quantities of synthetic data (i.e. varying the

20 locations shown in Figure 4), with the data error

population distribution kept the same. The comparison of

calibrated marginal distributions is shown in Figure 5.

Figure 6 gives a similar comparison of the marginal distri-

butions, this time changing the data quality (i.e. varying

the expected standard deviation shown in Table 2). Note

that the distributions of koc and kau are correlated (cor-

relation coefficient = 0.31), meaning that the a posteriori

model must be defined by the bivariate distribution of koc

and kau as opposed to the marginal distributions shown in

Figures 5 and 6. Note also from Figures 5 and 6 that the

‘true’ values of koc and kau (1 and 5, respectively) do not

necessarily correspond to the identified maximum likeli-

hood (see especially the result for 5 data locations in

Figure 5). This is because the available data, upon which

the MC calibration is founded, are only a sample of the

true water quality.

Table 1 | Deterministic parameter values for Streeter–Phelps example

Parameter Value Unit

koc 1 d − 1

kau 5 d − 1

BOD0 75 mgO/l

DO0 0 mgO/l

DOsat 12 mgO/l

v 0.5 m/s

Figure 4 | Synthetic data for Streeter–Phelps model.

185 Neil McIntyre et al. | Estimation and propagation of parametric uncertainty in environmental models Journal of Hydroinformatics | 04.3 | 2002

Downloaded from https://iwaponline.com/jh/article-pdf/4/3/177/392439/177.pdf
by guest
on 21 May 2019



Figure 6 shows that MC gives a significantly uncertain

value for the parameter kau despite perfect data, which is

contrary to intuition. This implies that adequate conver-

gence of the joint parameter distribution has not been

achieved using 0.2 million model runs. Whether this is

primarily due to the inefficiency of SRS as an optimisation

procedure, or due to the limited number of realisations of

the data, is not investigated here. However, it is clear

that the difficulty of achieving convergence, even for a

relatively simple problem such as this, contributes to the

approximate nature of the solution.

It is common in environmental monitoring that data

are biased descriptors of the true state of the environment.

This may be because of heterogeneity which is not recog-

nised in the sampling programme, or because of repeated

laboratory errors, or simply because of physical con-

straints such as a lower bound of zero. To explore the

effect of this, the DO data are raised by a random amount

between 0 and 5 mgO/l, and to a minimum of zero and the

maximum of DOsat. The calibration is done as before, with

20 data locations, and the calibrated parameter distri-

butions are shown in Figure 7. This shows that where

significant bias is suspected but unknown, another

approach to calibration is required. Note that the par-

ameter uncertainty associated with kau is implied to be

significantly reduced, contrary to what we would desire. In

practice, model structure error is particularly relevant to

the Streeter–Phelps model, because it neglects many of the

complexities of pollution transport and decay. The effect

of model structure error is similar to that of data bias (at

Table 2 | Properties of the DO and BOD data error population

Property of
residuals Population Sample

Standard deviation
of sampled property

BOD Mean 0 0 2.14

Standard deviation 10.00 9.69 5.39

DO Mean 0 0 0.43

Standard deviation 2.00 2.17 0.87

Figure 5 | Calibrated distributions with different sample sizes.
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least in this case), in that it biases parameter estimates and

causes inappropriate reduction in parameter uncertainty.

It has been shown how MC simulation can be used to

derive the calibrated marginal parameter distributions by

frequency analysis of the sampled maximum likelihood

parameters. GLUE offers the opportunity to reduce the

computation required by not explicitly accounting for the

data sampling error. It is based on point estimates from the

joint distribution which are directly applied to uncertainty

propagation and, therefore, the non-linear parameter

dependencies are implicitly handled. Also, stratified ran-

dom sampling (SRS) gives some control of the location of

the point estimates and so coverage of extreme values is

assured. Here, GLUE is applied to the previous Streeter–

Phelps example using the data sample illustrated by Figure

4. The likelihood function defined in Equation (5) is

applied (whereby for this example we are opting not to

explore the full generality of GLUE; instead we are main-

taining a strictly statistical likelihood estimator), using a

total of 2000 random samples of (koc, kau). The likeli-

hood equipotentials of the derived point estimates are

shown in Figure 8. For comparison with the MC results,

Figure 6 | Calibrated distributions with different error variances.

Figure 7 | Effect of BOD error bias.
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the marginal distributions of koc and kau are illustrated in

Figure 9. Repeated for other data scenarios, the results are

summarised in terms of calibrated parameter variances in

Figure 10.

The similarity of the GLUE and MC results is striking,

considering that the GLUE method does not explicitly

account for data sampling error, and has reduced the

computation from 0.2 million to 2000 model runs. The

theoretical basis for the similarity can be demonstrated at

a simple level. Equation (3) is re-expressed as

(16)
KGLUE

1

(2p(sm
2 +d2))0.5N

1
exp[— 0.5(N—F)]P′GLUE =

where P′
GLUE is the probability of any parameter set, d2 is

the variance of the corresponding model result around the

maximum likelihood result, s2
m is the error variance

around the maximum likelihood result and KGLUE is a

standardisation constant. In the MC method, P′
MC is

the probability of any parameter set, but d2 is the

variance of the maximum likelihood result for any data

realisation around the result for the available data

sample. Approximating the standard error of the maxi-

mum likelihood as normally distributed with variance

s2
m/N (assuming that sm is accurate, see Ang & Tang 1975):

(17)
KMC

1

(2psm
2 )0.5

N0.5

exp[— 0.5d2N/sm
2].P′MC =

As it is known that the integrals of Equations (16) and (17)

are both unity, to prove that they give the same result for

all parameter samples only requires that the ratio

P′
GLUE:P′

MC is proven to be the same for all d:

P′MC

P′GLUE

(2p(sm
2 +d2))0.5N N0.5

(2psm
2 )0.5

exp[— 0.5d2N/sm
2]

exp[— 0.5(N—F)]

= ×

(18)

KGLUE

KMC

.

Amalgamating all terms which are independent of d into

one constant K:

P′MC

P′GLUE

(sm
2 +d2)

exp(d2/sm
2 )

= K (19)
0.5N

.fi ^
Expanding the exponential term into a MacClaurin series,

and neglecting terms higher than quadratic, gives,

P′MC

P′GLUE

sm
N

K

(sm
2 +d2)0.5N

= = (20)
sm

2

sm
2 +d2

K
0.5N

& /

which is constant for all d. Thus it is shown that Equations

(16) and (17) are describing the same probability distri-

bution if d4/s4
m and higher-order terms can be neglected.

These terms are not negligible if N is very low, but in such

cases the assumptions underlying Equations (16) and (17)

are not justifiable anyway. Nevertheless, the theory

presented here supports the experimental results in

Figures 9 and 10, and confirms that GLUE is (usefully)

neglecting higher-order uncertainties in this application.

Interestingly (but probably not of practical value),

Equation (19) provides a basis for exactly reproducing the

MC result by adjusting the GLUE result.

The Metropolis algorithm (Figure 3) is observed to

further increase the efficiency (in terms of time for

Figure 8 | Equipotentials of point estimate likelihoods using GLUE.
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convergence of the (koc, kau) covariance matrix) of the

Streeter–Phelps calibration by up to 60%. The OF is

defined as the sum of the variance-weighted squared

errors, i.e.

OF= (21)
s2

m,DO
e2

i,DO + e2
i,BOD

1

s2
m,BOD

1 20

i=1
∑

20

i=1
∑

where sm,DO and sm,BOD are the error population stan-

dard deviations (from Table 2), and ei,DO and ei,BOD are

the ith residuals of DO and BOD, respectively. Then, the

probability of selecting parameter set ai pursuant to ai − 1

is given by Equation (14). A is specified as 2, and the

maximum permitted step, B, is specified as (Bkoc = 0.05,

Bkau = 0.25). The data set illustrated by Figure 4 is used.

The converged koc and kau distributions are almost iden-

tical to those obtained using the MC method (Figure 9)

and Figure 10 supports this result under a range of data

conditions. All the Metropolis results are reproducible

with different values of B, although the most efficient

depends on the convergence criterion. From Equation

(13) it is clear that the Metropolis result is sensitive to A,

and it is not a coincidence that this choice of A almost

replicates the MC result. Idealising Equation (21) by con-

sidering a single response, and using the definitions for

Equations (13) and (16):

=

=

—

(22).

A

OFi

^sm
2 A

(d2 +sm
2)N

& /KMET

1
exp

—fiKMET

1
exp

^sm
2 A

d2N
—fiKMET

1
exp ^sm

2 A

sm
2N

—fiexp

P′MET =

Equating this with (17) gives

=

(23)^sm
2

0.5d2 N
—fiexp

^sm
2 A

d2N
—fiKMET

1
exp ^sm

2 A

sm
2N

—fiexp

KMC

1

(2psm
2 )0.5

N0.5

and equating the exponents with the d2 terms gives A = 2.

The specification of A and the OF used here is generally

applicable to an approximation of the standard error of a

maximum likelihood model result assuming Gaussian

error. As sm is not generally known a priori, updating of A

within the algorithm may be useful. Also, A and the OF

can be designed to give a more useful representation of

uncertainty than the standard error, with broader confi-

dence intervals to reflect, for example, unknown model

and data bias. Whether this can be done in a robust and

meaningful way is a matter for further research. While

Figure 9 | Comparison of calibrated parameters using GLUE and MC.
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Metropolis is an adaptive search, and therefore potentially

superior to GLUE for finding the maximum likelihood and

variance, its sampling of the extreme values is relatively

sparse.

Now consider the HSY method of Hornberger &

Spear (1980). A set of characteristic system response is

defined, with the sampled parameter set given a possibility

of 1 (P(d) = 1), if the model result falls wholly within

pre-specified lower and upper limits. For the Streeter–

Phelps example, those limits are of DO and BOD (DOl,

DOu and BODl, BODu, respectively), i.e.

P(d) = 1 for DOl <DO<DOu∩BODl <BOD<BODu (24a)

P(d) = 0 for all other results (24b)

For example, if the upper and lower limits are taken to be the

90% confidence limit defined by the data sample and its

maximum likelihood model result, the set of (koc, kau)

defined by Equation (24a) is represented in Figure 11. Note

that, as opposed to Figure 8, the set limits defined in Figure

11 are not smooth due to the discontinuous nature of

Equation (24). The HSY method is potentially more robust

to model error and data bias than statistically based likeli-

hood methods because unreliable results, such as those

illustrated in Figure 7, can be avoided with appropriate

specification of the upper and lower bounds of characteristic

response. Of course, improvement in reliability is at the

expense of a less specific description of uncertainty.

Notwithstanding its demonstrative limitations (see

below), this example compares classical Monte Carlo

simulation, GLUE and Metropolis and shows that these

methods are not fundamentally different insofar as they

can produce the same calibration results, given consistent

objective functions. The question of which is more ef-

ficient depends upon the case. Monte Carlo sampling of

the data is a rigorous method of sampling from a known

error distribution, and can be modified to a resampling

Figure 10 | Comparison of calibrated parameter variances using GLUE, MC and Metropolis.
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scheme if the error distribution is unknown. GLUE avoids

sampling of data and, if used with statistical likelihood

estimators, can be an extremely good approximation to the

more rigorous data sampling schemes. In addition, it has

more general application than used in the example (see

below). Metropolis has the advantage of adapting the

response surface, thereby generally locating the parameter

set mode(s) to within some tolerance in a shorter time.

However, this is at the expense of the reliability of extreme

results. All these approaches to calibration require careful

design of the OF, as this defines the variance of the a

posteriori joint parameter distribution. The HSY algorithm

was briefly explored, and it was shown how it might be

used to cover for the effects of model and data biases, at

the cost of a less discriminating description of uncertainty.

With regard to more complex and more realistic

environmental modelling, the above example has several

important limitations. Firstly, it only has two interdepend-

ent parameters, while many models have significantly

more. In such cases converging the a posteriori joint

distribution would be expected to be much more difficult,

perhaps requiring many thousands of model runs (e.g.

Thyer et al. 1999), depending on the strength and nature of

the interactions. Secondly, the response surface, which is

illustrated by Figure 8, is well behaved. Many practical

problems involve multi-modal responses together with

discontinuities derived from the discontinuities in the

model structure, again increasing the difficulty of conver-

gence. Thirdly, Equation (15) is an analytical solution to

the Streeter–Phelps model, which is solved easily and

quickly, which facilitates Monte Carlo methods. Models of

the environment are more often in the form of systems of

differential equations for which approximate numerical

solutions are required and computational demands are

relatively high. While computer power is continuously

increasing and parallel processing facilities are available,

computation time remains a limitation in model cali-

bration and uncertainty analysis. Lastly, the data have

been synthesised from a normal population of residuals

which are uncorrelated and have zero mean. Only a nomi-

nal look at the effects of data bias has been included.

UNCERTAINTY PROPAGATION

Uncertainty propagation in this context means propa-

gating the calibrated parameter joint distribution to a

stochastic result. Methods of propagating probability dis-

tributions can be classified as sampling methods, variable

transformation methods, point estimation methods and

variance propagation methods. An alternative to prob-

ability theory is the theory of possibility (Zadeh 1978).

Each of these approaches is discussed here. In this dis-

cussion, the general term ‘random variables’ includes

uncertain parameters, boundary conditions and stochastic

results.

Monte Carlo methods

Monte Carlo (MC) simulation applied to uncertainty

propagation means generating discrete parameter sets

according to their probability or possibility distribution,

and running a simulation using each set. Alternatively, the

population or point estimates which were derived during

calibration can be recalled, thereby avoiding the need for

assumptions regarding the form of the distribution. The

Figure 11 | The (koc, kau) uniform possibility distribution.
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results of multiple simulations give a close approximation

to the analytical form of the probability density function

(PDF) using frequency analysis, and any model can be

easily included in such a framework with minimal input

from the modeller. For these reasons, MC is a well used

method of uncertainty propagation. The main disadvan-

tage of MC is that a great number of model runs may be

required to reliably represent all probable results,

especially when there is a number of random variables.

Methods of estimating a preferred number of samples are

available (e.g. Cochran 1977), although this also depends

on the convergence or divergence during propagation and

therefore is case specific (Tellinghuisen 2000). Variance

reduction techniques, such as stratified random sampling

(SRS) and Latin hypercube sampling (see MacKay et al.

1979), are often used to improve efficiency.

First-order and point estimate approximations

First-order variance propagation is the most common

method of uncertainty propagation (Beck 1987). If a func-

tion Z = f(X), X = (x1, x2, . . . xF) is approximated by a

first-order Taylor series expansion around the expected X,

mx, then

mZ = f(mX) (25a)

s2
Z = ∆(Z)T Ψ(X)∆(Z) (25b)

where ∆(Z) is the F × 1 matrix of derivatives of Z with

respect to X; j(X) is the F × F covariance matrix of (x1, x2,

. . . xF) and mZ and s2
Z are the mean and variance of Z. This

is a linear approximation of uncertainty propagation

which is only completely reliable for linear models. The

accuracy of this method for non-linear models can be

improved by using a higher-order Taylor series expansion,

but this becomes computationally demanding, especially if

the derivative values are calculated numerically. Variance

propagation is a useful method for models which can

approximated by quasi-linearisation (see Gelb 1974), i.e. a

series of localised linear functions. For example, Kitanidis

& Bras (1980) applied variance propagation to a quasi-

linearised hydrologic model.

Rosenblueth’s point estimation method for symmetric

and non-symmetric variable distributions (Rosenblueth

1981) aims to reduce the computational demands of vari-

ance propagation by eliminating the calculation of deriva-

tives. The PDF of each random variable is represented by p

discrete points, located according to the first, second and

third moments of the PDF. The joint PDF of F random

variables is represented by the array of projected points.

Therefore, pF points are used. Each point is assigned a

mass according to the third moment and the correlation

matrix. All points are propagated discretely to pF solutions

and the first moment is the weighted average; the second

moment, that of the squares; and the third moment, that of

the cubes. Most usually a two-point scheme is used

whereby 2F points are required. For symmetrical distri-

butions for F>2, the number of evaluations can be

reduced from 2F to 2F by using Harr’s point estimation

method (Harr 1989). Harr’s method is a useful improve-

ment on Rosenblueth’s, but is limited by the necessity of

symmetrical distributions. A similar approach which

allows for skewed distributions but not correlations is

described by Hong (1998). Protopapas & Bras (1990) have

applied Rosenblueth’s two-point method to a rainfall-

runoff model and Yeh et al. (1997) have similarly applied

Harr’s method, and a useful review of all these point

estimate methods is given by Christian & Baecher (1999).

It is worth noting that some Monte Carlo-based

methods of calibration, for example GLUE (Beven &

Binley 1992), are randomised point estimate methods. In

GLUE, many random samples of the a priori parameter

space are assigned GLUE likelihoods, which then become

point estimates for the uncertainty propagation stage.

Unlike Rosenblueth’s method, it is generally assumed that

there are enough points to derive the model output PDF,

not just the lower moments.

Possibility theory

Possibility theory (Zadeh 1978) offers a robust alternative

to propagation of probability distributions. To illustrate

this, let f(X, Y) be a function which is strictly increasing or

decreasing with respect to both variables X and Y, and let

X and Y have possibility distributions which rise internally
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to a single peak or plateau. Then, using the rules of

possibility in Equations (12a) and (12b), the two values of

X( = xlp, xup) and Y( = ylp, yup) with possibility P (com-

monly called the P-level a-cut of X and Y) define the two

values of f (X,Y) with possibility P. For example, if ∂f/∂X is

positive for all X and ∂f/∂Y is negative for all Y, then

f(X,Y)up = f(xup,ylp) (26a)

f(X,Y)lp = f(xlp,yup) (26b)

This method can be extended to problems with many

uncertain parameters so long as the aforementioned

‘increasing–decreasing’ and ‘single-peak’ conditions are

met for each. While an infinite number of a-cuts are

required for the exact solution to non-linear propagation

(Wierman 1996), an approximation of the propagated

possibility distribution can be made with a small number

of computations. The associated difficulties and limi-

tations should be recognised. Firstly, special attention

must be given to the method of calibration in order to

derive meaningful parameter possibility distributions. Sec-

ondly, the possibility is greater than the probability at all

points (Zadeh 1978), and so the former is a less specific

descriptor of uncertainty. Thirdly, if parameter a-cuts are

to be used, prior knowledge of the sensitivity of the results

to the parameters is required. Lastly, there remains the

problem of parameter interdependence which, as in prob-

ability theory, complicates the analysis, generally requir-

ing that the P-level a-cut be defined by a large sample of

parameter sets.

Propagation of the Streeter–Phelps model parameters

The joint (koc, kau) distribution previously identified

using GLUE (Figure 8) is propagated to give spatially

varying distributions of BOD and DO. Again, the bound-

ary conditions defined in Table 1 are used. Firstly, each of

the 2000 point estimates of (koc, kau) is propagated

through the Streeter–Phelps model, then the first-order

variance and Rosenblueth two-point methods are applied,

using the covariance matrix of (koc, kau) which is derived

from the GLUE point estimates. It is observed that the

three alternative methods give (practically) identical

results for the first three moments. The numerical

efficiency of the first-order variance and Rosenblueth two-

point methods is proven, despite the apparent non-

linearity of the model with respect to koc and kau. In fact,

the model is only significantly non-linear at low values

of DO, and the performance of the first-order method

deteriorates with either increased BOD loading or

increased data uncertainty. Propagation of the possibility

distribution illustrated in Figure 11 replicates the 90%

confidence limits derived using the other methods (assum-

ing normality), although this result is specific to the

definitions used in the derivation of Figure 11 (see

Equations (24a,b)). None of the methods can reproduce

the 90% confidence limits on the data error upon which

the calibration was founded, illustrated in Figure 12.

Figure 12 | Propagated uncertainty for Streeter–Phelps model.
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Results are constrained by the boundary conditions, irre-

spective of parameter uncertainty. Therefore, if they are

not precise, the modeller must treat the boundary con-

ditions as random variables as well as the parameters.

Furthermore, it may be observed from Figures 4 and 12

that the 90% confidence limits contain much less than

90% of the data. Using the multiplicative likelihood esti-

mator of Equation (5) has meant the limits represent the

uncertainty in the maximum likelihood solution, not the

variance of the data.

The example of the Streeter–Phelps model has illus-

trated that alternative methods of estimation and propa-

gation of parametric uncertainty can lead to practically

the same result. However, the example is too simple to

fully show the limitations of the reviewed methods. At the

calibration stage, unknown model structure and data bias

may mean that statistical interpretation of the model

residuals is not useful, and a more robust approach must

be sought, by subjective evaluation. At the propagation

stage there may be strong non-linear dependency of par-

ameters, which must be approximated by a covariance or

correlation coefficient in Rosenblueth’s method and the

first-order variance method, leading to a poor approxi-

mation of prediction uncertainty. Practical environmental

models often include cyclic, non-continuous or otherwise

highly non-linear processes which will test all methods

much more severely than was attempted here. Practical

models may take considerable processing time and have

many uncertain parameters. Achieving reliable results

using MC simulation may be computationally expensive,

although this is of less concern where parallel processing

facilities are available.

CONCLUSIONS

Review summary

Imprecision in environmental modelling stems from the

inevitable approximate nature of the models, and from the

inevitable difficulty of identifying a single ‘best’ model,

given the limitations in our prior knowledge and in the

information retrievable from field data. In general, it may

be said that the natural environment is too complex, with

too many heterogeneities and apparently random influ-

ences, to be usefully described without including some

estimation of uncertainty. The inclusion of uncertainty

analysis adds to a conventional modelling exercise in two

main ways. Firstly, the calibration of model parameters

involves identification of parameter distributions rather

than single parameter values. Secondly, the parameter

distributions (and alternative model structures if used) are

propagated to stochastic rather than deterministic results.

A variety of applications of Monte Carlo (MC) simu-

lation can provide detailed information about the cali-

brated parameter distributions. A traditional application

of MC simulation is to optimise the parameters with

respect to each of a multitude of realisations of the data,

thereby giving a sample of optima. If data are of limited

quality, this sample converges slowly, and reliable

results may not be achieved within an acceptable time.

Generalised Likelihood Uncertainty Estimation (GLUE)

requires the modeller to design a likelihood measure

which is used in the calibration. This design may be based

on classical likelihood estimators, in which case GLUE is

seen to significantly improve the efficiency of traditional

MC simulation while giving similar results. Alternatively,

the GLUE likelihood measure may include subjective

interpretation of the data as well as the potential for model

structure error, in order to give more robust results. GLUE

is founded on the principles of Bayesian estimation, and in

this regard is especially useful for updating model uncer-

tainty estimation as new data, knowledge and models

come to light. The Metropolis algorithm is a Monte Carlo

Markov chain procedure which has proven useful in

parameter uncertainty estimation. In some cases it is a

more efficient method of deriving parameter distributions

than GLUE, although it cannot give such detailed infor-

mation about extreme values. The theoretical and practi-

cal similarity of the traditional MC, GLUE and Metropolis

methods of calibration, under idealised conditions, has

been demonstrated.

The computational burden of MC methods has, in the

past, been a major limitation. However, MC simulation is

ideally suited to parallel processing. Also, a number of

variance reduction techniques are available to improve

efficiency. Stratified random sampling is particularly
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valuable in environmental modelling because it guaran-

tees a number of extreme value samples, and that all

significant parameter correlations are efficiently identified

and propagated. Latin hypercube sampling further

improves the representation of individual parameters at

the expense of a representation of their interactions.

For propagation of parametric uncertainty, Monte

Carlo methods are generally the most useful. Various

other methods give relatively efficient estimation of the

lower moments of propagated probability distributions

(e.g. Rosenblueth’s two-point method, first-order variance

propagation). However, the applicability of these methods

generally decreases as model complexity grows, and the

results should be subject to verification.

A look to the future

In a society which is increasingly reliant upon and confi-

dent with computer technology, and which is increasingly

sympathetic to the need for environmental protection, the

use of computer models of the environment is bound to

flourish. In the future, the stakes involved with environ-

mental management are likely to increase and (as in other

professions where the stakes are perceived as high) risk–

benefit management will become a key concept. The risks

associated with environmental interventions mainly stem

from a lack of knowledge about environmental responses

at regional to global scales. Using stochastic modelling

methods, we are increasingly able to include this lack of

knowledge as an essential input to environmental risk

management. Continuing advances in computational

resources, for example parallel processing technology and

powerful desktop computers, will allow more widespread

and economical application of the Monte Carlo-based

methods described in this paper. Also, there is scope

for the development and application to environmental

modelling of more advanced algorithms for the identifi-

cation of model uncertainty (for example, genetic algor-

ithms, shuffled complex evolution and Markov chain

methods).

It was argued in this paper that complex models tend

to be less identifiable because it is more difficult to identify

which model components are causing the observed

responses. Therefore, uncertainty and modelling expense

can be reduced by using parsimonious models which aim

to include only the principal components affecting the

system under observed conditions. On the other hand, the

predictive power of a model lies largely in its ability to

explore changes in the principal components, for which

hypotheses of future behavioural changes and suitable

model structures are needed. Clearly, it is important that

modellers have the expertise and information needed to

select an appropriate model structure. This may be

achieved by development and dissemination of modelling

toolkits, by which modellers can take an experimental

approach to model structure identification (e.g. Wagener

et al. 2001). Such tools also provide a way forward for

incorporating alternative structural hypotheses into the

uncertainty estimation.

If there is inadequate information with which to

identify a model, the uncertainty in the model is defined by

a priori research, which would generally include a review

of the parameter distributions identified for previous

comparable modelling studies. It can be argued, then,

that the modelling profession would benefit from formal

compendiums of modelling studies. Further to this,

more research is required into the problem of model

regionalisation—relating model structures and a priori

parameter distributions to the characteristics of the sys-

tems under study. For example, clusters of models (struc-

tures and corresponding parameter distributions) can be

recommended for a problem with certain attributes.

Although regionalisation approaches are established in

some modelling disciplines (e.g. rainfall-runoff model-

ling), the gathering and processing of world-wide exper-

ience in identifying models to system characteristics is,

generally speaking, a task for the future decades.

From this review, it is clear that objective function

(OF) design is difficult because traditional likelihood esti-

mators are not robust to model structure and data bias,

while the significance of more subjective measures of

model performance is not easy to define. Two on-going

approaches to these problems seem likely to become

prominent in the future. Firstly, multi-objective optimis-

ation (whereby two or more OFs are applied to the same

calibration problem) can be used to explore the robustness

of the optimum model to OF design, and to explore the
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inability of the model to achieve multiple objectives sim-

ultaneously (e.g. Gupta et al. 1998). As the latter is the

symptom of model structural error, this provides a basis

for model structure identification (e.g. Wagener et al.

2002). Multi-objective optimisation was excluded from

this review because successful applications have been to

problems which are well defined by observations. It is a

matter for future research how such methods can be

employed to improve robustness of uncertainty analysis of

less well defined systems.

A look to the future of uncertainty analysis in environ-

mental modelling is not complete without a discussion of

the crucial role of environmental monitoring. As previously

stated, a model is a collection of hypotheses of system

behaviour conditioned by observations of the system,

which usually come from formal monitoring programmes.

In previous decades most monitoring has usually been fixed

in frequency and location for regulation purposes, rather

than designed to encapture the system responses which are

required for model identification. With increasing regulat-

ory motivation, more resources are likely to be made avail-

able for model-oriented monitoring. This may include in

situ monitors at strategic locations to give representative

and intensive temporal measurements, and continued ap-

plication of satellite imagery for spatial representations

(e.g. Franks & Beven 1999). Access to new data should be

encouraged, for example along the lines recently imple-

mented by the USGS (Benson & Faundeen 2000).
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NOMENCLATURE
M notional model result including error
O notional measurement including error
N number of residuals

F number of model parameters
R number of model responses
S number of samples of parameter sets
D number of samples of data sets
K constant as defined in text
P( ) probability or possibility as defined in text
X, Y arbitrary independent random variables
A, B constants used in Metropolis algorithm
Z arbitrary variable Z dependent on X
∆(Z) matrix of derivatives of Z with respect to X
∆(Z)T transpose of ∆(Z)
j (X) covariance matrix of X
mX expected value of X
x distance downstream in Streeter-Phelps model
n average water velocity in Streeter-Phelps model
BOD biochemical oxygen demand concentration
DO dissolved oxygen concentration
koc oxidation rate of BOD
kau reaeration rate of DO
e model residual
e1, e2, e3 a series of model residuals, or components of

residuals
s2

m variance of residuals around optimum model
result

d2 variance of model solution around optimum
model result

a a parameter vector
a′ an optimum parameter vector

ABBREVIATIONS

OF objective function
PDF probability density function
SRS stratified random sampling
ARS adaptive random search
GLUE Generalised Likelihood Uncertainty Estimation
HSY Hornberger–Spear–Young algorithm
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