BMI (Kg/m2), waist circumference (cm).

Total cholesterol, HDL, LDL, triglycerides (TG) (mg/dl) (Hitachi) 24-hour ambulatory blood pressure monitoring (ABPM): Spacelabs 90207. Average SBP, aDBP, aBP Mean (BPM) (SBP-DBP + DBP/3). Standard S and D BP Burden (S=125 and D>75 mmHg reading percentages (SSSBP and SDBPB). Hemodynamic Load (HL=Heart Rate × BPM/100). SBP variability (SBPV) and DBP variability (DBPV)

Statistical analysis: t-Student.

Results: 1 - N=106 (55.5%) NSm; N=47 (25.9%) ESm; and N=28 (15.46%) Sm. 2 - The Sm patient group was youngest and had lower BMI (p=0.04) 3 - Whilst comparing Sm and NSm groups, the following significant differences were observed: average SBP (p=0.03), SDBPB (p=0.02), TG (p=0.02). 4 - Whilst comparing Sm and ESm groups, the following significant differences were observed: SDBPB (p=0.05), DBPm (p=0.02), HL (p=0.034), with the most unfavorable results in the smoking group. 5 - No differences were observed between the non-smoker and ex-smoker patient groups.

Conclusions: 1 - The smoking habit is correlated with different hemodynamic and lipid parameters. 2 - The above-mentioned cannot be attributed to the changes associated neither to age nor to weight because both of these were lower in smokers, adding even greater importance to our findings. 3 - A 3-month period after smoking cessation is enough for the reversion of the hemodynamic alterations. 4 - Nowadays we can add new data to justify the suppression of the smoking habit in patients with high cardiovascular risk.

Key Words: Tobacco, Cardiovascular Risk, Blood Pressure Monitoring

P-545

FAMILY HISTORY OF EARLY CARDIOVASCULAR DISEASE: DIASTOLIC BLOOD PRESSURE AS A MAIN TARGET

Olivia Sanchez, Rosa Fabregat, Enrique Bernal, Ana Bajo, Arturo Ugalde, Elena Sanchez-Largo, Jose Suban-Raiz

Introduction: The importance of family history in cardiovascular pathology has been highlighted in epidemiological studies, but the mechanisms implicated have mainly focused on lipid metabolism, leaving hemodynamic mechanisms in second place.

Objectives: 1 - To classify a population of high cardiovascular risk according to their family history. 2 - To study their correlation with metabolic and hemodynamic variables.

Material and Methods: Study population:

N = 111 patients, aged 26–82 years (58+/–13), 61 males, 50 females, with high cardiovascular risk, defined by diabetes mellitus or at least 2 cardiovascular risk factors (family history, male gender, cigarette smoking, hypertension, dyslipemia, hyperhomocysteinemia, high lipoprotein (a) levels)

Family history of early cardiovascular disease (EDVC) was defined by sudden death and/or coronary disease and/or cerebrovascular disease before the 65 years of age, in first degree relatives, for both men and women.

Anthropometric Parameters: BMI (Kg/m2); Waist circumference (cm).

Lipid profile: total cholesterol (mg/dl), HDL (mg/dl), LDL (mg/dl), triglycerides (mg/dl).

Glucose metabolism: glucose (mg/dl), insulinemia (uM/ml) (Immunometric, IMMULITE, DPC), HOMA (Insulinemia × fasting plasma glucose (mmol/l)/22.5).

24-hour ambulatory blood pressure monitoring (ABPM): Spacelabs 90207.

The following parameters were evaluated in 24 h, daytime (9:00 to 22:00) and nighttime (22:00 to 9:00) periods: average SBP, average DBP, average BP mean (SBP-DBP + DBP/3). Standard Systolic and Diastolic Blood Pressure Burden (systolic>125 and diastolic>75 mmHg reading percentages (SSSBP and SDBPB). Hemodynamic Load (HL=Heart Rate × BPM/100). SBP variability (SBPV) and DBP variability (DBPV)

Statistical analysis: t-Student.