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ABSTRACT

This article presents a critical review of the existing methodologies for process mathematical

modelling in the area of wastewater engineering. It is argued that model identifiability is not a major

issue in mathematical modelling. Model verifiability is a very demanding criterion that can be

replaced by a less stringent one: model observability. The issue of ‘complex models versus

reduced-order models’ is to be resolved by introducing a new concept: optimal model complexity.

The traditional procedures of model validation are not adequate and a mathematical framework for

model quality evaluation is needed.
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INTRODUCTION

Since the development of the IAWPRC (International

Association on Water Pollution Research and Control)

model (Henze et al., 1987), research in the area of bio-

logical wastewater treatment (WWT) process math-

ematical modelling has focused on the following three

subjects:

(a) Model identification and identifiability

Rationale. The design of process control strategies requires

models that are uniquely identifiable, i.e. models for which

a unique set of parameters can be determined through the

model identification procedure (Jeppsson, 1996). Most

WWT process models do not meet the identifiability

criterion.

(b) Model verifiability

Rationale. For a model to be truly verifiable, all its state

variables have to be directly measurable (Jeppsson, 1996).

This is not the case for most existing models which are

then considered to be only partly verifiable.

(c) Model reduction

Rationale. Complex models with many parameters are

generally difficult to identify uniquely, hence the need for

reduced-order models that may not describe the full

dynamics of the system (Jeppsson, 1996).

In this paper, it is argued that model identifiability is

not a major issue in mathematical modelling. Model veri-

fiability is a very demanding criterion and it is suggested to

replace it by a less stringent one: model observability. The

issue of ‘complex models versus reduced-order models’ is

to be resolved by introducing a new concept: optimal

model complexity. The traditional procedures of

model validation are not adequate and a mathematical

framework for model quality evaluation is needed.

The next section presents some general definitions of

the objects that will be used in this paper. Then, the four

sections that follow discuss the issues of ‘model identifi-

ability’, ‘verifiability versus observability’, ‘complex

models or reduced-order models’ and ‘model validation’,

respectively.

DEFINITIONS

Consider a system S whose state space X is a finite-

dimensional one and assume that this system is described

by a mathematical model M of the form:
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x· = f(t,x,p) (1)

where x is the system state vector, p is the parameter

vector, t is the time and f is a function that is nonlinear.

Such a model is generally developed by processing and

combining information (usually obtained from three

possible sources: first principles, empirical data and

empirical knowledge) about the dynamics of the system.

Although several types of models can be developed for the

same system (fuzzy logic, neural network, time series, etc),

we will limit our attention in this paper to mathematical

models of the type of Equation (1).

A fundamental problem in system modelling is the

determination of the values of model parameters such that

the corresponding response of the model equation

approximates as closely as possible the actual response

of the physical system. Assume that the response of

the physical system is given in the form of a set of real

data:

YN: xdata(t1), xdata(t2), . . ., xdata(tN) (2)

The mathematical procedure for determining the model

parameters on the basis of a set YN of data is called model

identification (or calibration). Traditionally, it consists in

minimizing an objective function J(p) such that

(3)
N

k=1
∑J(p) = x(p,tk)—xdata(tk)  2

where x(p,t) represents the solution to the model Equation

(1). If there is only one unique minimum for J then the

system is defined as identifiable (Jeppsson, 1996). A system

model is said to be verifiable if all its state variables are

directly measurable (Jeppsson, 1996). After a model is

developed and identified, we need to know how well it

mimics the true system behaviour. The procedure of

verifying this property is called model validation.

THE MODEL IDENTIFIABILITY ISSUE

The lack of identifiability has been considered a handicap

for process models in the area of wastewater engineering.

The most recent work on WWT process model identifiabil-

ity is probably that of Jeppsson (1996). Using a simple

example, Jeppsson showed that models that use the

Monod equation are not identifiable. He then developed a

set of reduced models for which he investigated the iden-

tifiability using computer simulations. He did not provide,

however, a formal proof of the identifiability of these

models.

In this paper, it is argued that model identifiability is

not a major problem in mathematical modelling: a model

that is not identifiable can still be useful if it produces a

good performance. The arguments in favour of this view

are two-fold.

Models of complex systems are practically impossible

to uniquely identify

This is a fact. When Beck (1986) pointed out the lack of

identifiability of the IAWPRC model, he immediately

added that ‘there is nothing unusual in this, for the same

problem is widespread in the environmental sciences and

in the adjacent disciplines of pharmacokinetics and bio-

medical system analysis. . . . It is well known that there are

difficulties with structural identifiability of biochemical

process models, specifically in association with the use of

the Monod expression.’ The lack of model identifiability is

due to the fact that available models explain just a portion

of the behaviour of highly complex systems. The other

portion which is not accounted for by those models shows

itself through the variability of model parameters. Lack

of identifiability is then an inherent feature of complex

systems.

Systems that are identifiable are usually associated

with some unique values of parameters called universal

constants. Other identifiable systems do not give rise to

universal constants, but their model parameters are always

reported to take the same unique values by all researchers.

There are numerous systems with such properties in

physical sciences. Here is a list of a few of them:

• Interaction of two electric charges: the magnitude of

the force F resulting from the interaction in a free

space of two charges q1 and q2 separated a distance

r is expressed as
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r2
q1q2

F=p

where p is a parameter with a unique numerical

value: p = 1/4pe0, e0 being equal to 8.854 × 10 − 12

SI.

• Interaction of two bodies: the magnitude of the force

F of attraction between any two bodies is given by

r2
m1m2

F=p

where p is a parameter with a unique numerical

value: p = 6.670 × 10 − 11 SI, m1 and m2 are the

masses of the two bodies and r is the distance

between them.

• Equation of state of gases: for ideal gases, this

equation is

PV = pnT

where p is a parameter with a unique numerical

value: p = 8.314 34 × 103 SI, P is the pressure, V is

the volume, T is the absolute temperature and n is

the number of moles. As the pressure gets higher

and the temperature is close to the gas boiling point,

the gas becomes non-ideal and is governed by the

equation

V2

n2

P + p1 (V— p2n) = pnT& /
where p = 8.314 34 × 103 SI and p1 and p2 are two

constant parameters that are gas-specific.

• The hydrogen bromine system: the reaction rate

model for this system (H2 + Br2,2HBr) is as

follows:

2

1

1+ p2([HBr]/[Br2])

p1[H2][Br2]1/2

rHBr = & /
where p1 and p2 are two uniquely determinable

parameters: p1}exp(Ea/RT) with Ea = 175 SI,

R = 8.314 34 × 103 SI and p2 = 0.1

(temperature-independent).

Identifiable systems, such as the ones presented above,

all have one common property that can be expressed

qualitatively in the following way.

Similar to what Cohen and Stewart did in their book

The Collapse of Chaos (Cohen & Stewart, 1994), let us

imagine that the information content of a system S can be

measured by one single number I(S). Considering the

model M that is used to describe S as a mathematical

system, its information content can also be measured by a

number I(M). Identifiable systems have the property that

the two quantities of information I(S) and I(M) are almost

equal. In more concrete terms, identifiable systems

have models that explain practically all mechanisms

governing the system behaviour. This is the case of all the

foregoing examples of identifiable systems (electrostatic

interaction, gravitation, equation of state of gases, chemi-

cal system H2/Br2, etc). However, in the case of a highly

complex system, the quantity of information I(M) is

always strictly less than S, meaning that the model M

does not account for all modes of the system behaviour.

Jeppsson (1996) has expressed this fact very rightly for

the case of the activated sludge WWT process: ‘Though

available models are quite complex they are still greatly

simplifying the representation of many species of

organisms. As the microbial population changes this needs

to be reflected in changing kinetic parameters and even

adding new state variables’. It is therefore the existence of

a significant portion of the system behaviour not

accounted for by the model M that renders the latter

non-identifiable. WWT process models are then not

identifiable and we have to live with this fact.

Model identifiability is not needed for systems control

anyway

What is wrong with a system model that is not identifiable,

but produces an acceptable performance in predicting the

system behaviour? Nothing, if there is a mathematical

guarantee of the model performance. A mathematical

framework to help derive and establish such a guarantee is

presented in Guergachi & Patry (2003). With this frame-

work developed and the guarantee established, model

identifiability becomes irrelevant.

Moreover, it should be noted that some emerging

modelling technologies have also shown that model

identifiability is not essential. Neural networks, for

instance, are fundamentally non-identifiable, yet they
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have been used extensively and successfully in several

areas such as pattern recognition (Haykin, 1994).

VERIFIABILITY VERSUS OBSERVABILITY

Model verifiability requires that all state variables be

directly measurable (Jeppsson, 1996). This is very demand-

ing and not at all practical. Most systems, and especially

complex ones, indeed have variables that are easily and

directly measurable and others that are difficult or even

impossible to measure. Because of that, it is suggested here

to introduce a less stringent criterion called model observ-

ability. With this criterion, the system state variables do

not have to be measured directly and separately. Rather,

they are considered as ‘hidden variables’ and have some-

how to be inferred from what can be measured (output).

Textbooks have defined the observability concept in

several different ways which are all equivalent to each

other (Mybeck, 1979; Ahmed, 1988; Borrie, 1992). Here we

will consider the following definition.

Rewrite the model Equation (1) of the system S in a

more general form:

x = f(t,x,u,p)
.

y = h(x)
(4)˜

where u is a vector of input control variables (usually

called either ‘input’ or ‘control’), y is a vector of measured

outputs (usually called just ‘output’) and h is a function of

the state vector x. The system S model is said to be

observable if, given y(t) and u(t) for all tP[t0, t1], it is

possible to uniquely determine the state vector x(t) for all

tP[t0, t1]. Thus the system model is observable if any state

variable xi(t) can be determined for tP[t0, t1] from the

knowledge of only the input and output over the interval

[t0, t1]. The structure of an observable model must then be

such that the output y(t) is affected in some manner by

the change of any single state variable. In addition, the

effect of any one state variable on the output must be

distinguishable from the effect of any other state variable.

Here is a simple example to illustrate the concept of

observability intuitively (adapted from Ahmed (1988)):

Example 1. Consider a system governed by the model

equations:

x3 = p1x1 + u3

x1 = — p1x3 + u1
.

.

.
x2 = u2

w̃here x1, x2 and x3 are the state variables, u1, u2 and u3

are the inputs and p1 is the model parameter (x = (x1 x2

x3)T, u = (u1 u2 u3)T, p = (p1)). Consider now the two

following cases:

Case (i): the only variable that is measured is the sum

of x1 and x2. In other words, the output y is a scalar and

equal to x1 + x2. The model equations are then

x~1 = − p1x3 + u1 (I)

x~2 = u2 (II)

x~3 = p1x1 + u3 (III)

y = x1 + x2 (IV)

Can we reconstruct x1, x2 and x3 from the knowledge of

the values of only y and the controls u1, u2 and u3? Yes.

This is how we can proceed.

Add Equations (I) and (II). We get

y~ = − p1x3 + u1 + u2

Assuming of course that p1 0, then

.

p1

u1 + u2 — y
x3 =

From Equation (III), we get x1:

. ..

p1

1
x1 =

p1

1
=

.
(x3 — u3) — u3

.

p1

u1 + u2 — y

& /
From Equation (IV), we obtain x2:

. ..

x2 = y — x1 = y —
p1

1
— u3

.

p1

u1 + u2 — y

& /
Thus, this example shows that there is no need to measure

directly and separately all the three state variables x1, x2

and x3. If just the sum of x1 and x2 is measured (and the

values of the control variables are assumed to be known to

the operator, because she manipulates them), it is possible

to uniquely reconstruct estimates x̂1, x̂2 and x̂3 for all the
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three state variables, using the system input and output as

the basis of this estimation. Because of this, the foregoing

system (Equations (I)–(IV)) is observable. In practice, to

check the observability criterion for linear systems, we just

determine the rank of one matrix called the observability

matrix (see for instance Ahmed (1988)). There is no need

to go systematically through the above tedious algebraic

calculations.

Case (ii): the only variable that is measured is x1. In

other words, the output y is a scalar and equal to x1. The

model equations are then

x~1 = − p1x3 + u1 (I)

x~2 = u2 (II)

x~3 = p1x1 + u3 (III)

y = x1 (IV)

As said previously, it is easy to check the observability

criterion of this linear system by computing the rank of the

observability matrix (Ahmed, 1998) and establish that

the system is not observable. In this example, however, the

observability criterion is again examined intuitively:

From Equations (I) and (IV), we determine x3:

.

x3 =
p1

u1 — y

The variable x1 is also uniquely determinable from

Equation (IV):

x1 = y

But the variable x2 is, however, not uniquely

determinable; any function

x2 = x20 
+∫u2

with x20
PR is acceptable. Therefore, the model is not

observable.

When a system model is observable, a state observer

can usually be designed to generate an estimate of x using

u and y as the basis for that estimation (Borrie, 1992).

The concepts of observability and observer were first

introduced by Kalman in the early 1960s, but they have

never been implemented in the area of WWT process

mathematical modelling. The study of observability of

linear systems is quite straightforward. It is, however, a

challenging mathematical subject in the case of nonlinear

systems such as WWT processes.

COMPLEX MODELS OR REDUCED-ORDER
MODELS?

‘An ‘‘optimal’’ model incorporates all of the important

dynamic effects, is no more complicated in its structure

than necessary, . . .’ (Jeppsson, 1996). This is just another

statement of the celebrated principle of simplicity com-

monly attributed to William of Ockham (1290?–1349?)

and known as Occam’s razor: ‘If there are alternative

explanations for a phenomenon, then, all other things

being equal, we should select the simplest one’ (Li &

Vitányi, 1993).

In the case of the behaviour of biological WWT pro-

cesses, however, we are faced with a complexity that is

unparalleled in the chemical industry (Jeppsson, 1996).

The reactions occurring in a bioreactor involve hundreds

of different types of microorganisms biodegrading a

multitude of different organic waste compounds. A simple

bacterial cell in this bioreactor, E. coli for instance, has

about 2,500 different kinds of macromolecules and con-

tains about 24 million individual molecules (Madigan

et al., 1997). E. coli, as well as the other microorganisms

present in the bioreactor, have to synthesize all of these

molecules from the organic wastes so that they can grow

and generate other organisms. In the course of this syn-

thesis process, a large number of reactions take place

involving the use of a multitude of different kinds of

enzymes. It is the authors’ opinion that a description with

scientific accuracy of the bioreactor dynamics is unlikely

to result in a model with a finite number of state variables

and parameters.

However, even if such an accurate and highly complex

model were possible to develop, it would be useless from

an engineering viewpoint. The reason for this is not the
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identifiability problem (as is suggested by Jeppsson

(1996)), but is the data scarcity. If the size of the data set

used for model identification is small while the number of

model parameters is large (i.e. the model is highly com-

plex), then the problem of data overfitting by the model

would occur. On the other hand, if the model is too simple

and, therefore, the number of parameters is sufficiently

low compared to the size of the data set, then the explana-

tory power of the model would be so low that the value of

the objective function (3) would become very high, mean-

ing the model prediction of the true process behaviour is

of a low quality. Consequently, the degree of complexity of

a process model has to be adjusted to the amount of data

that is available for the identification of this model. For

any fixed amount of data, there is an optimal model

complexity that has to be determined. Models that are

more complex would cause overfitting, and models that

are less complex would lead to a low prediction quality.

The mathematical framework that was developed in

Guergachi & Patry (2003) defines all the necessary con-

cepts and tools that help determine the optimal structure

complexity of a WWT process model, corresponding to a

fixed amount of data. In the following paragraphs, a

qualitative explanation of the idea behind this framework

is presented using some simple metaphors.

The identification procedure is viewed as an infor-

mation transfer from a set of real data into the process

model to be identified. Any data set Y carries a certain

amount of information I(Y) about the true process behav-

iour. This amount of information is characterized by the

quantity and quality of the data. The quantity can be

measured by the size N of the data set. The quality can be

evaluated from a statistical point of view: the higher the

statistical dependence among the elements of the data set,

the less information Y carries. For a fixed size N of the

data set Y, the latter contains maximum information when

its elements are statistically independent. The process

model M can be viewed as an information container. Its

size is denoted I(M). The more complex this model, the

more information can be ‘poured’ into it from a real data

set during the identification procedure.

Now consider a model M of the process under study

and a fixed data set Y carrying an amount of information

I(Y). If M is too simple, the information container it

represents will overflow during the identification pro-

cedure and, therefore, some of the information carried in

the set Y will pour out and be lost. If, however, M is too

complex, then the available amount of information I(Y)

will not be enough to fill up the model container com-

pletely. We will end up with an information container

which is impressively large, but carrying very little infor-

mation about the true process behaviour. Consequently,

the best solution is to choose a degree of complexity for M

such that I(Y) matches I(M).

THE ILLUSION OF MODEL VALIDATION

When a model is developed and identified, it needs to be

validated. The procedures that are used for model valida-

tion have, however, been criticized not only in the area of

WWT process mathematical modelling, but also in several

other areas of science and engineering. Jeppsson (1996)

pointed out that ‘in strict sense, model validation is

impossible’. Similarly, Zheng & Bennett (1995) noted that

‘process models, like any scientific hypothesis, cannot be

validated in the absolute sense . . . They can only be

invalidated.’ Konikow & Bredehoeft (1992) suggested that

terms such as model verification and model validation

convey a false sense of truth and accuracy and thus should

be abandoned in favour of more realistic assessment

descriptors such as history-matching and benchmarking.

Several other researchers have expressed similar

criticisms about the model validation issue (Oreskes et al.,

1994; Beck et al., 1997: Bohlin, 1993).

An original approach to deal with this question of

model validation is proposed in Guergachi & Patry (2003),

where a mathematical framework for model quality

evaluation is developed. The basic idea of this framework

is explained below in more mathematical terms.

Let M be a model of the system S and suppose we are

interested in the model predictions of the i0th state vari-

able xi0
of S. We need to know the prediction accuracy of

the model and also the risk of getting significant deviations

between model predictions and the system response.

During the identification procedure, the model M

‘sees’ only a finite number of examples:
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xdata
i0

(t1), xdata
i0

(t2), . . ., xdata
i0

(tN)

(the elements of the data set are called examples). How-

ever, the user expects the model to produce good predic-

tions not only for the situations that it has seen before, but

also for the other unseen situations that will occur in

the real-world operation of the system. Consequently, the

system modeller should strive to make sure that, by

minimizing the objective function

xi0 
(p,tk)— xi0

data(tk) (5)
2N

k=1
∑Ji0(p) =

or equivalently the arithmetic mean value:

xi0 
(p,tk)— xi0

data(tk) (6)
2N

k=1
∑Remp(p) =

N

Ji0(p)

N

1
=

the expected time average:

xi0 
(p,tk)— xi0

data(tk) (7)
2n

k=1
∑R(p) =  lim

nƒ+∞ n

1

will also become minimized. This is because the true

measure of the model performance is not the empirical

objective function Ji0
(p) or the arithmetic mean Remp(p),

but the expected average R(p) of the infinite time

sequence:

zxi0
(p,t1) − xdata

i0
(t1)z2,zxi0

(p,t2) − xdata
i0

(t2)z2,

zxdata
i0

(p,t3) − xdata
i0

(t3)z2, . . .

However, the value of R(p) is not known. Therefore, we

end up with the following situation:

• Remp(p) is merely an empirical measure of the model

performance, but its numerical value is accessible to

us;

• R(p) is the exact measure of the model performance,

but its value is inaccessible to us.

The whole question here is then how to infer information

about the exact model performance measure R(p) from the

knowledge of the value of the empirical measure Remp(p).

Addressing this question and developing a methodology

for model quality evaluation can be found in Guergachi &

Patry (2003).

CONCLUSION

A critical review of the existing methodologies for process

mathematical modelling in the area of wastewater

engineering was presented. The model identifiability issue

was discussed: it was argued that identifiability is not

required in mathematical modelling. The criterion of

model verifiability was deemed very demanding, and it

was suggested to replace it by a less stringent one: model

observability. The issue of ‘complex models versus

reduced-order models’ was also discussed; it was

explained that this issue can be resolved by introducing a

new concept: optimal model complexity. It was argued

that the traditional procedures of model validation are

not adequate and it was explained that a mathematical

framework for model quality evaluation was needed.
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