REFERENCES

ADDITIONAL REFERENCES

I. C. Nicholas and P. E. Allaire

This work represents a welcome addition to the literature on stepped bearings with a more practical outlook than some of the previous studies. Optimization of finite sliders has been carried out but only limited applications exist.

It should be noted that this analysis neglects the pressure drop at the step due to inertia effects [10, 11], which has been shown to be significant even when the Reynolds' number for the slider is small. The pressure profile is strongly affected but often the load capacity is fairly close due to the integration of pressures above and below the laminar region. Thus, the results given here should be taken as an approximation to the optimum sector thrust bearing. At that it still represents the best treatment currently available.

ADDITIONAL REFERENCES

S. M. Rohde and G. T. McAllister

The authors mention an optimum pad angle \(\beta \) of 150° for radius ratio of 0.5. They also find that for radius ratio of \(\beta \) an optimum has not been reached even at pad angle \(\beta \) of 180°. Do the authors have any physical explanation for this behavior?

J. Etsion

The authors mention an optimum pad angle \(\beta \) of 150° for radius ratio of 0.5. They also find that for radius ratio of \(\beta \) an optimum has not been reached even at pad angle \(\beta \) of 180°. Do the authors have any physical explanation for this behavior?

A minor point is the interpretation of the stiffness characteristics of the optimum geometry. As is well known the load capacity of a bearing varies essentially as the reciprocal of the square of the minimum film thickness. We use the word essentially to caution that a change in the minimum film thickness changes the load variable since the (machined) profile remains constant. Hence optimum or near optimum profile configurations which are designed to operate at a specific minimum film thickness sometimes do not have good overload characteristics as discussed in [12].

Could the authors also comment on the effect of mesh size on their results?

Recently we also have examined some bearing profile optimization problems in detail [13, 14]. In that work we have devised some new algorithms for treating this class of problems. The latter fall into the category of distributed parameter optimization problems.

The algorithms presented in [13, 14] make no a-priori assumptions regarding the shape of the profile. Both finite difference and finite element discretization methods (as well as other methods) can be used for the constructions. We will now sketch the algorithm. Complete details, proofs, and results can be found in the references. For brevity we will present the equations in the continuous rather than the discrete forms and in Cartesian coordinates. The reader should note that the continuous problems shown are to be simply replaced by appropriate discretizations.

The Problem: Find \(H^* \geq 1 \) which maximizes

\[L(P_H) = \int \int H P_H(X, Y) dX dY \]

over all \(H \geq 1 \) and when the pressure, \(P_H \), satisfies

\[\nabla \cdot H^3 \nabla P_H = \frac{\partial H}{\partial X^1} \]

(2)

where \(\Omega \) is the pad area.

The Algorithm:

1. Choose an initial film profile \(H_0 \) such that \(P_{H_0} \geq 0 \) (\(H_0 = 1 \) is usually our choice), set \(R = 0 \) and \(P_0 = P_{H_0} \).
2. Solve the "squeeze film" problem for \(P_{H_0} \)

\[\nabla \cdot H_0^3 \nabla P_{H_0} = -1, \quad (X, Y) \in \Omega \]

\[P_{H_0} \mid_{\partial \Omega} = 0. \]

3. Let \(H_{k+1}(X, Y) \) be that value of \(Z, 1 \leq Z \leq M \) which maximizes \(F(Z) \) at each value of \((X, Y) \) where

5 Numbers 12-14 in brackets designate Additional References at end of discussion.

Fig. 7(a) Optimum pressure distribution, $d = \frac{1}{4}$

Fig. 7(b) Optimum film shape, $d = \frac{1}{4}$

Fig. 8(a) Optimum pressure distribution, $d = \frac{1}{10}$

Fig. 8(b) Optimum film shape, $d = \frac{1}{10}$

Fig. 9(a) Optimum pressure distribution, $d = \frac{1}{20}$

Fig. 9(b) Optimum film shape, $d = \frac{1}{20}$
\[F(Z) = -Z \nabla P_h \cdot \nabla P_{thr} + Z \frac{\partial P_{thr}}{\partial X}. \]

(4) Let \(\xi(X, Y) \) be the solution of
\[
\nabla \cdot H_h \nabla \xi = -\frac{1}{\gamma} \left[\nabla \cdot H_k \nabla P_h - \frac{\partial H_{k+1}}{\partial X} \right], \quad (X, Y) \in \Omega
\]
\[\xi_{\text{init}} = 0. \]

Set \(P_{k+1} = P_k + \xi. \)

(5) Check for convergence, i.e.,
\[
is \| H_{k+1} - H_k \| < \epsilon_1
\]
and
\[
is \| P_{k+1} - P_k \| < \epsilon_2.
\]

(6) If the convergence criterion is satisfied then \(H^* = H_{k+1} \) and \(P_{H^*} = P_{k+1}. \) If not, set \(k = k + 1 \) and go to step (2).

In this algorithm \(M \) and \(\gamma \) are constants as discussed in [13, 14]. \(M \) is usually selected to be about 3 whereas \(\gamma \) is reduced as the iteration proceeds.

This algorithm was found to be extremely efficient, requiring only two solutions of the differential equation per iteration. Likewise few iterations were required to obtain four place accuracy. \(H_k \) was allowed as many as eight hundred degrees of freedom in some of these computations.

Figs. 7-9 show some finite difference results for a square slider obtained using this algorithm for decreasing mesh size \(d. \) Note how a pocket naturally forms. No assumptions regarding shape have been made.

The extensions of these methods to other areas are currently being pursued by the discussors. In particular the optimization of finite journal bearings is straightforward using this type of algorithm.

Additional References

9 Starting with \(\gamma = 100, \gamma \) can be reduced to 2 within a few iterations.