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Abstract

Chimeric antigen receptors (CAR) are engineered fusion pro-
teins constructed from antigen recognition, signaling, and cost-
imulatory domains that can be expressed in cytotoxic T cells with
the purpose of reprograming the T cells to specifically target
tumor cells. CAR T-cell therapy uses gene transfer technology to
reprogram a patient's own T cells to stably express CARs, thereby
combining the specificity of an antibody with the potent cyto-
toxic and memory functions of a T cell. In early-phase clinical
trials, CAR T cells targeting CD19 have resulted in sustained
complete responses within a population of otherwise refractory
patients with B-cell malignancies and, more specifically, have
shown complete response rates of approximately 90% in
patients with relapsed or refractory acute lymphoblastic leuke-
mia. Given this clinical efficacy, preclinical development of CAR

T-cell therapy for a number of cancer indications has been
actively investigated, and the future of the CAR T-cell field is
extensive and dynamic. Several approaches to increase the
feasibility and safety of CAR T cells are currently being explored,
including investigation into the mechanisms regulating the
persistence of CAR T cells. In addition, numerous early-phase
clinical trials are now investigating CAR T-cell therapy beyond
targeting CD19, especially in solid tumors. Trials investigating
combinations of CAR T cells with immune checkpoint blockade
therapies are now beginning and results are eagerly awaited. This
review evaluates several of the ongoing and future directions of
CAR T-cell therapy. Clin Cancer Res; 22(8); 1875–84. �2016 AACR.

See all articles in this CCR Focus section, "Opportunities and
Challenges in Cancer Immunotherapy."

Introduction
Over the past few decades, our understanding of the role of

the immune system in cancer has grown considerably and so
has the technology to purify and manipulate specific immune
cell types with a goal of treating disease. The transfer of
genetically engineered immune cells as a form of cellular
therapy has been investigated as a treatment option for HIV
and cancer (1, 2). Chimeric antigen receptor (CAR) T-cell
therapy uses gene transfer technology to reprogram a patient's
T cells to express CARs (Fig. 1), thereby directing cytotoxic
potential of T cells against tumor cells that would otherwise be
ignored (3). CARs are engineered fusion proteins that contain
an extracellular antigen-binding domain composed of a single-
chain variable fragment derived from an antibody and intra-
cellular signaling domains, which are involved in the initiation
of T-cell signaling and downstream T-cell effector functions (4).
First-generation CARs consisted of only the T-cell receptor
complex CD3z chain domain and antigen recognition
domains, showed minimal clinical success, and were charac-

terized by very low levels of engraftment in patients (5, 6).
Second-generation CARs containing costimulatory domains,
typically either CD28 or 4-1BB, were hypothesized and shown
to augment CAR T-cell survival and proliferation (7–9). The
inclusion of a costimulatory domain dramatically increased the
antitumor efficacy and persistence of CAR T cells (3, 10, 11).
Interest and investment in the development of CAR T-cell
therapy is rapidly increasing in both academia and industry,
with multiple ongoing clinical trials as well as many expecta-
tions for the future of the field. Although CAR T-cell therapies
are on a fast track to approval by the FDA for B-cell malignan-
cies, there is active investigation into building better CAR T cells
for treating hematologic malignancies and solid tumors.

Current CARs: Clinical Overview
The most clinical data using CAR T-cell therapy have been

generated with CD19-specific CAR T cells in patients with relapsed
or refractory B-cell malignancies, many of whom have no curative
option other than hematopoietic stem cell transplant. CD19 is
highly and uniformly expressed on B cells, starting early in
development and continuing through all mature stages except
plasma cells. CD19 is also expressed on B-cell malignancies
developing in the bone marrow [B-cell acute lymphoblastic
leukemia (ALL)] and secondary lymphoid organs (chronic lym-
phocytic lymphoma, diffuse large B-cell lymphoma, and follicular
lymphoma; ref.12).

The CD19 CAR T-cell field has become highly competitive in
recent years, with several pharmaceutical companies developing
partnerships with academic institutions. Complete response rates
of approximately 90% have been observed in both pediatric and
adult patients with relapsed or refractory ALL who were treated
with CD19 CAR T cells expressing either a CD28 or a 4-1BB
costimulatory domain (13–17). Overall response rates of 50% to
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100% have been observed recently in patients with diffuse large B-
cell lymphoma, follicular lymphoma, or chronic lymphocytic
lymphoma who were treated with the CD19 CAR T-cell therapy
CTL019 (18, 19). While CD19 is not highly expressed on termi-
nally differentiated plasma cells, CD19 CAR T cells may have
clinical benefit in patients with multiple myeloma; this is hypoth-
esized to be due to the continual repopulation of malignant
plasma cells from a malignant B-cell precursor (20, 21). Although
CD19-specific CAR T cells have demonstrated considerable effi-
cacy in B-cell malignancies, treatment of other hematologic
malignancies will require further CAR T-cell target identification
and validation. Targets currently under investigation are summa-
rized in Table 1.

Regulating CAR T-cell Persistence:
Strategies Currently under Investigation in
the Clinic

A major differentiating factor among the current CARs that have
been investigated in clinical trials has been the level of CAR T-cell
persistence. Early studies using CAR T cells did not include a
lymphodepletion step, which may have contributed to their very
short persistence and poor antitumor activity. Lymphodepletion
is now included in most CAR T-cell therapy protocols; however,
variable levels of persistence are observed both between and
within clinical trials. One strategy to improve lymphodepletion
and CAR T-cell persistence is through increasing the intensity of
lymphodepletion, which leads to depletion of regulatory T cells
and greater engraftment of the infused T cells (22–24). The
selective depletion of regulatory T cells along with administration
of cytokines to support CAR T-cell function is also under inves-
tigation (25). Further research is needed to determine which

lymphodepletion methods result in optimal CAR T-cell persis-
tence and antitumor benefit.

An important question in the field is the degree to which the
costimulatory domains included in the CAR affect CAR T-cell
persistence. A recent study showed that certain CAR T cells con-
taining a CD28 costimulatory domain increased the expression of
T-cell exhaustion-related genes, while the 4-1BB (TNFSF9) costi-
mulatory domain with the same antigen specificity ameliorated
this exhausted phenotype (26). This may explain why in recent
clinical trials of patients with relapsed or refractory ALL, CAR T
cells expressing a CD28 domain have been reported to persist for
up to 3 months, while CAR T cells with a 4-1BB domain persist for
up to 5 years, and more than 6 months in most cases (13, 17, 19).
Other costimulatory domains have also been investigated for
inclusion in CARs, most notably OX40 (TNFRSF4) and ICOS,
which both resulted in improved target cell lysis in vitro when
compared with CARs lacking a costimulatory domain (8, 27).
Indeed, third-generation CARs containing two costimulatory
domains have recently entered into clinical trials. While it is
possible that future CARs incorporating multiple costimulatory
domains will result in increased CAR T-cell antitumor activity,
more studies are required to better understand the kinetics of each
of the costimulatory domains and their relative effects in the
clinic. Incorporation of large numbers of signaling domains may
also lower vector titers due to large transgenes, lower the expres-
sion of the CAR at the cell surface, or result in otherwise decreased
functionality due to the requirement for accessory signaling
apparatus proximal to the cell membrane.

The optimal duration of persistence of CAR T cells is unknown,
and may in fact be different for CD19-directed CAR T cells than for
CAR T cells directed to other malignancies. Long-term persistence
of CD19-directed CAR T cells has both the advantage of ongoing
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Figure 1.
Overview of CAR T-cell therapy in the
clinic. A patient's T cells are harvested
through leukapheresis, followed by T-
cell activation on antibody-coated
beads serving as artificial dendritic
cells. The activated T cells are then
genetically reprogrammed ex vivo by
transduction with a construct
encoding the CAR, and the CAR T cells
are further expanded ex vivo. When
the CAR T-cell product has been
prepared and has passed all quality
control testing, the patient receives
lymphodepleting chemotherapy and
CAR T-cell infusion. � Novartis
Pharmaceuticals.
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disease surveillance and the disadvantage of long-term B-cell
aplasia. In addition to the CAR-encoded signaling domains, other
factors may affect the persistence of CAR T cells, such as the cell
culture system used during manufacturing, the mode of gene
transfer and associated promoters, and the functionality and
phenotype of the input T cells, which in turn may be affected by
age, disease, and prior therapies.

A method to potentially increase the proliferation and long-
term activity of CAR T cells in vivo involves using T cells
specific for an antigen associated with chronic viral infection
as the starting cell population for CAR T-cell manufacturing.
In a murine model using cytomegalovirus (CMV)-specific T
cells that were engineered to express a CD19-specific CAR,
vaccination of the mice with CMV peptide resulted in
enhanced proliferation and antitumor activity of the CAR T
cells due to stimulation through the endogenous CMV-spe-
cific T-cell receptor (28). Similar approaches have been inves-
tigated using CAR T cells derived from Epstein–Barr virus- or
adenovirus-specific T cells (29, 30). Several trials are ongoing

to investigate the safety and efficacy of virus-specific CAR T
cells in patients, including NCT00709033, NCT01430390,
and NCT01109095.

In some cases, particularly in the development of novel
targets, transient CAR T-cell persistence may be desired. CARs
can be expressed for a short duration through transfection of T
cells with mRNA encoding the CAR, instead of using a viral
vector, which permanently integrates the CAR into the genome
(Fig. 2A). RNA transfection is a fast and efficient procedure,
requiring only 1 day of T-cell activation before transfection and
resulting in very high (>40%) transfection efficiency (31). As
mRNA is unable to integrate into the host genome, mRNA
transfection results in a short-lived population of CAR T cells,
which would require multiple doses to achieve an AUC that
could be considered a therapeutic dose. Suboptimal scheduling
of doses may result in generation of an immune or allergic
response against the CAR, especially if a murine single-chain
variable fragment is used (32). CARs transfected into T cells
using mRNA are currently being investigated in early clinical

Table 1. Selected solid and hematologic tumor targets other than CD19 that are currently being investigated as targets for CAR T cells

Target (reference) Indication
Preclinical antitumor
efficacy Clinical efficacy/safety Ongoing trials

Solid tumor targets
EGFRvIII (38, 70) Glioma, glioblastoma, head and

neck cancer
Human glioma cells in vitro

and ex vivo, glioblastoma
xenograft model

None reported NCT02209376
NCT01454596

ERBB2 (42, 71, 72) Glioblastoma, sarcoma Tumor cell lines, breast
cancer xenograft model

Stable disease for 12 weeks to
14 months in 24% of patients
(n ¼ 17)

NCT00902044
NCT01109095
NCT00889954

Mesothelin (43, 61. 62, 73) Mesothelioma, pancreatic
cancer, ovarian cancer, lung
cancer

Mesothelioma xenograft
model

Stable disease in 67% of patients
at day 28 (n ¼ 6)

NCT02159716
NCT02414269
NCT01583686

Carbonic anhydrase IX (74, 75) RCC RCC cells in vitro Liver toxicity affected several
patients

None

PSMA (folate hydrolase 1; refs. 40, 44) Prostate cancer Prostate adenocarcinoma
murine model

Stable disease in 50% of patients
treated (n ¼ 4)

NCT01140373

FAP (76–78) Mesothelioma Murine pancreatic cancer
model, lung cancer
xenograft model

None reported NCT01722149

Carcinoembryonic antigen (79) Lung, colorectal, gastric, breast,
and pancreatic cancers

Murine model of liver
metastases

None reported NCT02349724

5T4 (trophoblast glycoprotein; ref. 80) Solid tumors Murine models of melanoma
and colon carcinoma

None reported None

Hematologic malignancy targets
CD22 (81, 82) B-ALL, B-NHL B-ALL cell lines, xenograft

model
MRD-negative CR in 29% of

evaluable pediatric patients
with ALL; CRS occurred in 57%
of patients (n ¼ 7)

NCT02315612
NCT02588456

BCMA (TNFRSF17; refs. 83, 84) MM MM primary cells and cell
lines, xenograft model

ORR in 33% of patients (n ¼ 12) NCT02215967
NCT02546167

CD123 (IL3RA; ref. 85) AML Primary AML in
immunodeficient mice

None reported NCT02159495
NCT02623582

CS1 (SLAM7; ref. 86) AML, MM Primary MM cells in vitro, MM
xenograft model

None reported NCT02203825

CD138 (syndecan 1; ref. 87) MM Primary MM cells in vitro, MM
xenograft model

None reported NCT01886976

Kappa light chain of Ig (88) MM, CLL, lymphoma B-CLL cells in vivo and in
vitro

None reported NCT00881920

ROR1 (89, 90) Hematologic and solid tumors Primary B-CLL and MCL cells
in vitro, RCC cell lines,
breast cancer cell lines

None reported NCT02194374

Abbreviations: BCMA, B-cell maturation antigen; CLL, chronic lymphocytic leukemia; CR, complete response; CRS, cytokine release syndrome; EGFRvIII, epidermal
growth factor receptor vIII; FAP, fibroblast activation protein alpha; HPV, human papillomavirus; Ig, immunoglobulin; IL3RA, IL3 receptor subunit alpha; MCL, mantle
cell lymphoma; MM, multiple myeloma; MRD, minimal residual disease; NHL, non-Hodgkin lymphoma; ORR, overall response rate; PSMA, prostate-specific membrane
antigen; RCC, renal cell carcinoma; ROR1, receptor tyrosine kinase-like orphan receptor 1; TCR, T-cell receptor.
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trials at the University of Pennsylvania (Philadelphia, PA;
NCT02624258, NCT01837602, NCT02277522, NCT02623582).

Regulating CAR T-cell Persistence:
Strategies on the Horizon

One of the beauties of CAR T cells is that they are "living drugs":
once infused, physiologic mechanisms maintain T-cell homeo-
stasis, memory formation, and antigen-driven expansion. How-
ever, imperfect human intervention may lead to T cells that target
an undesired tissue or proliferate to greater levels than necessary
and therapeutic. As CAR T cells become incorporated into stan-
dard therapies, it may be useful to design them with patient- or
physician-controlled persistence mechanisms, either "ON"
switches or "suicide" switches. For technical reasons, suicide
switches are easier to incorporate into T cells. One of the fastest
acting and clinically tested suicide gene strategies is the inducible
caspase-9 (iCasp9) system (Fig. 2B; ref.33). Cells transduced with
iCasp9 can be depleted by administration of a synthetic small
molecule that dimerizes iCasp9 promolecules, triggering activa-
tion of the apoptotic pathway (34). Induction of iCasp9 dimer-

ization and T-cell depletion via the administration of the small-
molecule AP1903 is a strategy that has been used in patients with
graft-versus-host disease, demonstrating the feasibility of this
approach (35).

CAR T cells may also be depleted through the coexpression of a
protein for which a depleting antibody is already in clinical use,
that is, CD20 or EGFR (Fig. 2C). Administration of the depleting
antibody is expected to deplete target-expressing CAR T cells if
therapy-related toxicity arises or if "cure" has been achieved and
maintained (36). To our knowledge, neither of these strategies
have been clinically tested as a CAR T-cell–depleting method in
patients, but CARs containing an EGFR transgene are currently
under clinical investigation at several centers (NCT02028455,
NCT02159495, NCT01865617). Most investigators have pre-
ferred to manage toxicities with either cytokine blockade or
corticosteroids, or both, rather than permanently ablate a poten-
tially curative (and expensive) therapy.

A recent article demonstrated proof-of-concept for the first
"ON-switch"-based CAR T cells; here, the signaling apparatus of
the CAR was separated and each end was fused to a dimerizing
domain similar to the basis of iCasp9, where the full CAR is

© 2016 American Association for Cancer Research
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Figure 2.
Strategies to regulate CAR T-cell persistence. A, activated T cells are transfected with mRNA encoding a CAR, resulting in expression of the CAR on the
surface of the T cell until the mRNA is degraded. B, T cells are transduced with a construct containing CAR as well as iCasp9. Administration of AP1903 causes
dimerization of iCasp9 within the CAR T cells and subsequent apoptosis, resulting in specific depletion of the CAR T cells. C, T cells are transduced with a
construct containing a CAR and the CD20 protein. Upon administration of the CD20-specific antibody rituximab, the CAR T cells (and all other CD20-
expressing cells) are depleted. ADCC, antibody-dependent cellular cytotoxicity; CD20, cluster of differentiation 20; CDC, complement-dependent cytotoxicity.
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reconstituted only in the presence of a tacrolimus-based drug
(37). The clinical feasibility of such a system is likely to yield
interesting results.

Despite the fast-track regulatory pathway for CD19-directed
CAR T cells, there are still many areas of CAR design and genetic
modifications of T cells that could broaden the therapeutic window
and applicability of genetically modified T cells for adoptive
immunotherapy. For example, CARs have typically contained a
single-chain variable fragment sequence derived from a mouse
antibody, but humanized antibody fragments may be less immu-
nogenic; this may be particularly important for CAR T cells directed
to any antigen other than B cells, because serologic immune
responses to the CAR could limit their functionality (38). A
particularly exciting approach will be to target multiple antigens,
so that Boolean gating such as "antigen 1 AND 2" or "antigen 1
NOT 2" can be employed to more specifically target tumor tissues.
Although these approaches are in very early stages, one could
imagine engineering T cells by using either several distinct CAR
constructs in one T cell or a single bispecific construct (39–41).

The Future of CAR T-cell Therapy: Moving
beyond Hematologic Malignancies and into
Solid Tumors

While CAR T-cell therapy has demonstrated high response rates
in patients with leukemia or lymphoma, solid tumors present
unique challenges for the use of cellular therapies. Several trials
investigating CAR T-cell therapy in solid tumors have been ini-
tiated, but efficacy has been low. The best responses recently
reported in trials using CAR T cells specific for the solid tumor
antigens mesothelin, PSMA, or ERBB2 were stable disease in 24%
to 67% of the patients (42–44). The efficacy of CAR T-cell therapy
in solid tumors may be reduced due to several factors. In contrast
to hematologic malignancies, the solid tumor microenvironment

is composed of immune cells, endothelial cells, fibroblasts, extra-
cellular matrix molecules, and cytokines. This microenvironment
not only reduces access of modified T cells to the entire mass of a
solid tumor, but also plays a role in negative regulatory signaling
that may limit CAR T-cell efficacy (Fig. 3). For example, tumor
stroma cells often produce molecules such as TGFb, IL10, and
indoleamine-2,3-dioxygenase, which promote suppression of an
effector T-cell response by regulatory T cells (see article by Zarour
in this CCR Focus; ref.45). Expressing TGFb dominant-negative
receptor II (DNRII) in T cells may be a method to reduce the
influence of TGFb on CAR T-cell therapy for solid tumors. Pre-
clinical studies showed that cells expressing TGFb DNRII had
increased function, survival, and antitumor activity than cells that
were not modified to express TGFb DNRII (46, 47).

Solid tumor cells also often upregulate immune checkpoint
ligands such as PD-L1, which dampens an effector T-cell response
when engaged with its receptor PD-1 (48) and could lead to
inhibition of CAR T-cell therapies in the tumor microenviron-
ment. It is possible that the combination of CAR T cells and PD-1
blockade may yield the greatest benefit for CAR T-cell therapy in
solid tumors, as CAR T cells generally target only one (or at most
two) surface molecules, whereas checkpoint blockade has the
potential to unleash the endogenous T-cell response, which is
better equipped to sense the entire range of neoantigens resulting
from tumor-specific mutations (see article by T€ureci and collea-
gues in this CCR Focus; ref. 49). Antibodies blocking the PD-1/
PD-L1 pathway have recently been approved by the FDA for
use in certain solid tumors, and combination of one of these
antibodies with CAR T-cell therapy may enhance the efficacy of
CAR T cells in solid tumors.

An additional strategy for reducing the immunosuppressive
effects of the solid tumor microenvironment involves using T cells
redirected for universal cytokine-mediated killing (TRUCK),
which are CAR T cells engineered to secrete the proinflammatory

© 2016 American Association for Cancer Research
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Factors influencing CAR T-cell activity
in the immunosuppressive solid tumor
microenvironment. FasL, Fas ligand;
PD-1, programmed death-1; PD-L1,
programmed death-1 ligand-1; Treg,
regulatory T cell.
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cytokine IL12, which can activate an innate immune response
against the tumor (50). In addition, IL12 inhibits the action of
regulatory T cells and myeloid-derived suppressor cells, which
block antitumor T-cell responses (51, 52). However, high levels of
IL12 can be very toxic, as demonstrated in clinical trials studying
the use of recombinant human IL12 as a therapy (53). Therefore, if
large amounts of IL12 are produced endogenously, as in the case
of an infection that triggers T cells through their endogenous T-cell
receptors, IL12-secreting CAR T cells may contribute to pathologic
levels of IL12 in the patient.

Solid tumors can also be difficult for immune cells to penetrate
if the right combination of chemokines and their receptors is not
present to facilitate T-cell migration into tissues, and this may be a
primary reason for difficulty in using CAR T-cell therapy for solid
tumors. In an alternative CAR engineering approach, CAR T cells
may be directed to the tumor through coexpression of chemokine
receptors such as CXCR2 or CCR4 (54, 55). In addition, a recent
preclinical study showed that macrophages residing outside of the
tumor microenvironment regulate infiltration of T cells into
pancreatic tumors in mice (56); strategies to reduce the immune
privilege provided by intratumoral and extratumoral macro-
phages may enhance the success of CAR T-cell therapy in some
solid tumor types.

Targets and Solid Tumor Types Currently
Investigated for Therapy with CAR T Cells

The single greatest challenge in targeting solid tumors is the
identification of suitable target antigens. Many antigens identified
in solid tumors are also expressed at low levels on healthy tissues,
and the negative effects of long-term CAR T-cell–mediated attack
of these tissues may outweigh the antitumor benefits provided by
the therapy. While these on-target, off-tumor effects are also a
problem when treating B-cell malignancies, the risks of B-cell
aplasia are less severe than T-cell–mediated attack of vital organs.
Long-term strategies for accurately and effectively targeting solid
tumors may require further engineering of the CAR or combina-
torial antigen recognition approaches (40). Alternatively, the
identification of antigens that arise from mutations present in
the tumor but not in healthy tissues may enable the development
of CARs with greater specificity for solid tumors. Table 1 shows a
list of many investigational targets for CAR T cells, and details of
selected targets are described below.

EGFRvIII
Signaling through EGFR promotes cell proliferation, motility,

and adhesion (57). A common deletion in EGFR creates EGFRvIII,
a constitutively active variant (57). EGFRvIII is not expressed
by normal tissues, but is expressed in some cases of glioblastoma
(58). CAR T cells targeting EGFRvIII are currently investigated in
clinical trials at the University of Pennsylvania and the Natio-
nal Cancer Institute (NCI). This trial is examining the use of
EGFRvIII-specific CAR T cells in patients with residual or recurrent
glioma (NCT02209376). This study estimates an enrollment of
12 patients, with a primary completion date in 2016. Preliminary
results indicate that CAR T-cell manufacturing is feasible in this
patient population, and that infusions are well-tolerated in most
patients. The phase I/II trial under way at the NCI is studying
EGFRvIII-targeted CAR T cells for patients with refractory malig-
nant glioma or glioblastoma (NCT01454596). The NCI study
estimates an enrollment of up to 107 patients over a 7-year period,

with a primary completion date in 2018. It is too early to
determine clinical benefit, an endpoint that is particularly chal-
lenging to assess in patients with diseases like glioblastoma, for
whom imaging-based responses are difficult to interpret and
routine tumor biopsies could entail significant risk.

ERBB2
ERBB2 is part of the EGFR family and is overexpressed in several

types of cancer. Three phase I dose-escalation trials using ERBB2-
specifc CAR T cells are ongoing at Baylor College of Medicine
(Houston, TX; NCT00902044, NCT01109095, NCT00889954).
These trials are investigating ERBB2-specific CAR T cells in patients
with ERBB2-positive malignancies, including glioblastoma multi-
forme and sarcoma (59). In patients with sarcoma, ERBB2-specific
CAR T cells persisted for at least 6 weeks in 7 of the 9 patients
treated with the highest doses of CAR T cells (42). In addition, no
dose-limiting toxicity was observed in any of the patients (42),
suggesting that ERBB2-specific CAR T cells may be a good ther-
apeutic approach in patients with metastatic or recurrent sarcoma.
However, the levels of engraftment and penetration into tumor
were low, and clinical benefit is not obvious.

Mesothelin
Mesothelin is a surface glycoprotein of unknown function that is

overexpressed by mesotheliomas, pancreatic cancers, ovarian can-
cers, and lung cancers (60), and CAR T cells targeting mesothelin
have also been studied in several clinical trials. Because mesothelin is
expressed in several tissues, targeted treatments such as CAR T-cell
therapy have the potential to cause off-target effects and should be
used with caution. In a phase I clinical trial conducted at the
University of Pennsylvania, patients with mesothelin-expressing
tumors whose disease had progressed after first-line therapy were
treated with T cells transiently transfected with mRNA for a mesothe-
lin-targeted CAR (61). The mesothelin-specific CAR used in this
study was a second-generation CAR containing a CD3z domain and
a 4-1BB costimulatory domain. These short-lived mesothelin-spe-
cific CAR T cells displayed modest antitumor activity in 2 patients,
demonstrating the feasibility of transient mRNA transfection and the
utility of mesothelin as an antigen for CAR T-cell recognition (61).

An additional phase I trial ongoing at the University of Penn-
sylvania involves a lentiviral-transduced mesothelin-specific CAR
(NCT02159716). This clinical trial, which began in June 2014, is
currently enrolling patients with chemotherapy-refractory malig-
nant pancreatic adenocarcinoma, epithelial ovarian cancer, and
malignant epithelial pleural mesothelioma. Among early results
from 6 patients in this trial, 4 patients have shown stable disease at
day 28 following CAR T-cell infusion (43). There were no acute
adverse events associated with CAR T-cell infusion, and the
lentiviral-transduced mesothelin-targeted CAR T cells showed
improved persistence compared with the mesothelin-targeted
CARs expressed through mRNA transfection (43).

A recent preclinical study at Memorial Sloan Kettering Cancer
Center (New York, NY) compared intrapleurally administered
and systemically administered mesothelin-specific CAR T cells in a
model of pleural malignancy (62). The intrapleurally adminis-
tered CAR T cells were found to have superior antitumor activity,
persistence, and intratumoral accumulation compared with the
systemically administered CAR T cells (14, 62). A phase I clinical
trial at Memorial Sloan Kettering Cancer Center will soon begin
testing the safety of intrapleural administration of mesothelin-
specific CAR T cells in patients with pleural malignancies
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(NCT02414269; refs.14, 62). In addition, the NCI is conducting a
clinical trial using retrovirally transduced mesothelin-specific
CAR T cells in patients with metastatic pancreatic cancer, meso-
thelioma, and ovarian cancer (NCT01583686).

PSCA and PSMA
Prostate stem cell antigen (PSCA) and prostate-specific mem-

brane antigen (PSMA) have been investigated as CAR T-cell targets
in several preclinical studies. PSCA is a cell surface protein that is
overexpressed on several solid tumor types, including prostate,
pancreatic, and kidney cancers (63). PSCA-specific CAR T cells
showed efficacy in a pancreatic cancer xenograft model and were
reactive against prostate tumor cells in vitro and in vivo (64, 65).
Therefore, PSCA represents an antigen that may be used to target
multiple tumor types; however, targeting PSCA may result in off-
tumor, on-target toxicity in organs unaffiliated with the tumor
that express low levels of PSCA, such as the placenta and kidney
(66, 67). CAR T cells recognizing PSMA have also shown efficacy
in vitro and in vivo (68, 69). In addition, both PSCA and PSMA were
targeted in a preclinical study that showed that CAR T cells can be
engineered to recognize only tumors expressing both antigens,
thereby increasing CAR T-cell specificity and reducing off-tumor
effects (40). A phase I clinical trial (NCT01140373) using PSMA-
specific CAR T cells in patients with metastatic prostate cancer
resulted in stable disease in 2 of 4 patients treated (44).

Concluding Remarks
Immune-based therapy for cancer is undergoing rapid growth

both in academic research laboratories and in industry-sponsored
clinical trials. CAR T-cell therapy is now global, although most

open trials are located in the United States and China (Fig. 4). This
promises to be an exciting advance in the fields of cancer immu-
notherapy and cellular therapy. The impressive response rates
observed in clinical trials of CD19 CAR T cells have led to the rapid
proliferation of preclinical studies testing new targets and meth-
ods to make CAR T-cell therapy safer and more broadly applicable
to various tumor types. Strategies to genetically modify T cells to
improve their targeting, enhance their tissue penetration, and
control their expansion and persistence are all ways to make better
CAR T cells.
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Figure 4.
Heatmap indicating geographic locations of ongoing or completed trials testing CAR T cells. From search term "chimeric antigen receptor;" source: http://
clinicaltrials.gov, accessed January 8, 2016. Of these 92 trials, 80 have been sponsored by academic institutions, while 12 trials are either sponsored by industry or
have an industry partner listed as a collaborator on clinicaltrials.gov.
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