Sternal wound complications after primary isolated myocardial revascularization: the importance of the post-operative variables

Luc Noyeza,*, Johannes A.M. van Drutenb, Jan Mulderb, Alma M.A. SchroeÈna, Stefan H. Skotnickia, René M.H.J. Brouwera

a Department of Thoracic and Cardiac Surgery, University Hospital Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
b Department of Medical Informatics, Epidemiology and Statistics, University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

Received 21 September 2000; received in revised form 9 January 2001; accepted 4 February 2001

Abstract

Objective: Select pre-, peri-, and post-operative variables, predictive for sternal wound complications (SWC), in a clinical setting.

Methods: We analyzed pre-, per-, and post-operative data of 3815 patients who underwent a primary isolated bypass grafting. 100 patients (2.6%) had post-operative SWC. Unifactor and multifactor risk analysis, were used for statistical analysis.

Results: Unifactor analysis identified age (P = 0.05), obesity (P = 0.001), lung disease (P = 0.001), extracorporeal circulation >100 min (P = 0.02), graft choice (P = 0.01), post-operative low cardiac output, reoperation, nephrological, pulmonary problems (P < 0.001) as risk factors. Multifactor analysis, identified obesity (P = 0.005), reoperation (P = 0.01), nephrological (P = 0.0001), pulmonary problems (P = 0.001) and No-IMA-use (P = 0.05) as independent predictors. Age < 50 years (P = 0.04) decreased the risk for SWC. There is, however, an interaction of the graft-use and the pre-operative and post-operative predictors, that can mask the precise effect of the graft-use.

Conclusion: Reoperation, nephrological and pulmonary problems are strong predictors, obesity and age independent preoperative risk factors for sternal wound complications.

Keywords: Myocardial revascularization; Postoperative morbidity; Sternum; Wound complication

1. Introduction

Median sternotomy is the most common incision in cardiac surgery. Sternal wound complications (SWC) are not so frequent (1–5%). Age, gender, diabetes and graft-choice are variables, mostly related with SWC. In the clinical setting, surgeons take decisions, certainly concerning graft use, based on patient characteristics, to decrease post-operative SWC. However, despite this ‘selection’ SWC persist and also the consequences, mortality, morbidity and increase of hospital stay and costs [1–4].

The objective of this study is to select variables from sets of pre-, peri-, and post-operative variables, which contribute independently to a decreased or an increased risk of SWC.

2. Material and methods

2.1. Patients

With the aid of our database, Coronary Surgery Database
Lung disease was registered in patients with chronic obstructive pulmonary disease, and/or a history of previous lung disease. Emergency operation is defined as operation for involving myocardial infarction, ischaemia not responding to medical therapy, or cardiogenic shock. Post-operative myocardial infarction as a new post-operative Q wave or T wave accompanied by increased cardiac enzymes (CPK-MB > 10%). Low cardiac output as the need for inotropic support (dopamine need increasing 4 μg/kg/min for at least 12 h) or as cardiac index below 2.2 l/min/m². Reoperation is defined as all re sternotomies for bleeding, tamponade or other reasons during hospital stay. Under nephrological problems, post-operative dialysis and renal dysfunction (creatinine ≥150 μmol/l) were noted. Pulmonary infections and other pulmonary morbidity were noted under pulmonary problems. Nephrological and pulmonary problems secondary to SWC were not incorporated in this analysis.

2.2. Surgical technique

All patients were operated on using standard cardiopulmonary bypass technique, aortic and right atrial (two stage) cannulation, hypothermia (28–32°C), and myocardial protection using St. Thomas’ Hospital cardioplegia. The only surgical change is the increase of the use of arterial grafts [5].

The operative field was scrubbed with Hibitane 4% (ICI Pharma, Holland bv Rotterdam, The Netherlands) and painted with Hibitane 0.5%. All patients received prophylactic antibiotics, cefazolin and ampicillin, starting just before bypass and continuing for 48 h after the operation. Sternal closure was performed using twisted stainless steel wires, in the first time cohort, in several patients the sternum was closed using the controlled tension osteosynthesis system [6].

2.3. Statistical analysis

Univariate and multivariate risk analysis methods were applied. To test which variables can be considered risk factors for SWC the χ² test or Fisher’s exact test was used. Associations with continuous variables were tested using Student’s t-test or one-way ANOVA. Cochran–Armitage trend test was applied to study the incidence of SWC with age (univariate risk analysis). Multiple logistic regression analysis was used to identify risk factors from the sets of pre-, peri- and post-operative variables which independently contribute to a decrease or an increase in risk of SWC (multivariate risk analysis).

Odds Ratio’s (OR) are used as approximations of relative risk. Statistical significance was assumed at P < 0.05. A P-value between 0.05 and 0.10 was considered indicative for statistical significance.

3. Results

Table 1 shows the incidence of post-operative SWC in the three time cohorts. The overall incidence of wound complications in period 1987–1995 is 2.6%. The incidence of SWC is not associated with the time cohorts (χ² test, P = 0.24).

3.1. Univariable risk analysis

Table 2 lists the variables tested for post-operative SWC, for each variable the χ² test statistics (P-value) for no association with the incidence of SWC was calculated.

Age (P = 0.05), obesity (P = 0.001), and lung disease (P = 0.001) were pre-operative risk factors for SWC.

Duration of the extracorporeal circulation longer than 100 min (P = 0.02) and graft choice (P = 0.01) are per-operative risk factors. For patients with only vein grafts the incidence of SWC was 4.0%, for patients with one internal mammary artery (one-IMA) graft 2.0% and patients with bilateral use of the internal mammary artery 2.9%.

All post-operative variables are associated with the risk of wound complications; very strongly associated are low cardiac output, reoperation, nephrological and pulmonary problems (P < 0.001).

Table 3 shows the association between age and IMA-use and the incidence of SWC in each subgroup. There is a clear association between age and IMA-use (χ² test, P = 0.001).

In the age-group >70 years the percentage of patients with BIMA-use is relatively small (4.7%), but with a relative high risk for SWC (2/35, 5.7%). Patients below the age of 50 years with No-IMA-use or one-IMA-use have very little risk (1/291, 0.3%).

3.2. Multivariate risk analysis

The results of the logistic regression analysis using all variables are presented in Table 4 (Model A: 19 variables). Variables associated with an increased independent risk for SWC are: male sex (P = 0.05), obesity (P = 0.004), ‘No-IMA-use’ (P = 0.07), reoperation (P = 0.009), nephrological problems (P = 0.001) and pulmonary problems (P = 0.0001). The variables age <50 years (P = 0.06) and kidney disease (P = 0.08) are indicative for a decreased risk for SWC.

The results of the logistic regression analysis using only
Table 2
Unifactor risk analysis, pre-, peri-, and post-operative variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Incidence of SWC per category</th>
<th>χ^2 test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number and percentage (%) with SWC</td>
<td>P-value</td>
</tr>
</tbody>
</table>

Pre-operative

Age

- <50 years: 428 (0.9)
- 50 ≤ age ≤ 70: 2661 (2.7)
- >70 years: 745 (3.1)

Sex (female/male)

- Female: 938 (2.2)/2896 (2.7)
- Male: 279 (2.2)/3555 (2.6)

Obesity (yes/no)

- Yes: 838 (4.2)/2996 (2.2)
- No: 104 (5.8)/3730 (2.5)

Diabetes (yes/no)

- Yes: 501 (3.6)/3333 (2.5)
- No: 52 (1.9)/3782 (2.6)

Kidney disease (yes/no)

- Yes: 516 (4.8)/3318 (2.3)
- No: 52 (1.9)/3724 (2.1)

Lung disease (yes/no)

- Yes: 516 (4.8)/3318 (2.3)
- No: 52 (1.9)/3724 (2.1)

Pulmonary problems (yes/no)

- Yes: 291 (13.2)/3523 (1.7)
- No: 282 (8.2)/3552 (2.2)

Reoperation (yes/no)

- Yes: 23 (4.4)/3578 (2.2)
- No: 51 (1.9)/3724 (2.1)

Nephrological problems (yes/no)

- Yes: 311 (13.2)/3523 (1.7)
- No: 23 (4.4)/3578 (2.2)

Graft use

- No-IMA-use: 834 (4.0)
- One-IMA-use: 104 (5.8)
- BIMA-use: 2317 (2.0)

Post-operative

Myocardial infarction (yes/no)

- Yes: 104 (5.8)/3730 (2.5)
- No: 256 (8.6)/3578 (2.2)

Reoperation (yes/no)

- Yes: 282 (8.2)/3552 (2.2)
- No: 2287 (2.4)

Nephrological problems (yes/no)

- Yes: 110 (19.1)/3724 (2.1)
- No: 516 (4.8)/3318 (2.3)

Pulmonary problems (yes/no)

- Yes: 311 (13.2)/3523 (1.7)
- No: 23 (4.4)/3578 (2.2)

^-a Additionally carried out Cochran–Armitage Trend test: $P = 0.05$.

^-b IMA, internal mammary artery.

Variables associated with an independent contribution to the risk of SWC, are presented in Table 5 (Model B: 10 variables). In Model B, 6 variables contribute significantly to the risk of SWC ($P < 0.05$). Age (<50 years ($P = 0.04$) decreases the risk of SWC. Obesity ($P = 0.005$), ‘No-IMA-use’ ($P = 0.05$), but in the first place, reoperation ($P = 0.01$), nephrological problems ($P = 0.0001$) and pulmonary problems ($P = 0.0001$) increases the risk of SWC.

To investigate whether detailed information about these risk factors provides additional information about the risk of SWC, the risk factors were divided into subcategories (subgroups) (Table 6). The overall incidence of SWC in case of reoperation is 8.2%, By subcategory the observed risk ranges from 0 to 19%. In case of nephrological problems the overall risk is 19.1%, by subcategory the risk varies from 17 to 25%, and for pulmonary problems the global risk is 13.2%, varying from 9.6 to 16 % for subgroups.

Table 7 shows the association of the graft-use with pre- and post-operative predictors. Age (mean age), male gender and obesity are different in the three categories. The graft-use is associated with reoperation ($P = 0.02$), nephrological problems ($P = 0.001$) and pulmonary problems ($P = 0.01$). Nephrological and pulmonary problems occur more frequently in patients with only vein grafts. Reoperations occur more frequently in the BIMA-group. The use of one IMA is associated with a relative low prevalence of reoperations and pulmonary problems (6.5 and 7.2%).

4. Discussion

The criticism on this study is of course the bias of the graft use in relation to pre- and preoperative variables. However it is just the intention of the study to identify predictive variables for SWC in the clinical situation. Only double-blind randomized studies can identify the real independent predictors of SWC, but such studies were, for ethical reasons, not acceptable.

SWC are described in 1–4% of sternotomies, in our series the overall incidence of SWC in the period 1987–1995 is 2.6% [1–4] The incidence of SWC appears not to be associated with the three time cohorts (Table 1). That the use of the controlled tension osteosynthesis system made no difference in SWC comparing with the use of steel wires was already discussed in a previous paper. [6] The risk of SWC in specific subgroups may vary from close to 0 to 20% or more (Table 2). Patients below the age of 50 years have a
relatively low risk (0.9%); if in the younger age-group not the two IMA’s are used, the risk drops even to 0.3% (Table 3). In contrast if there are post-operative pulmonary problems, the risk of SWC increases to 13.2%, and if nephrological problems are present, the risk amounts to 19.1% and even to 25% if post-operative dialysis is needed (Table 6).

4.1. Pre-operative variables

4.1.1. Age

The risk of SWC increases with age (Table 2), and elderly age has been associated with SWC in other studies [4,8,9]. Below the age of 50 years the risk is 0.9%, between 50±70 years the risk is 2.7% and above 70 years it amounts to 3.1%. In comparison to the overall risk (2.6%) the risk below the age of 50 is relatively low. This is reflected in the Odds Ratio of age, 50 years (OR ≈ 0.35). Since age, 50 years is a ‘negative ‘risk factor, it may be that the risk in certain subgroups of this age group is very low. Although in our analysis an additional risk was not detected for patients above 70 years (Table 5), it may be that a more refined analysis of the elderly patients can detect ‘old age’ as an independent risk factor. Borger identified age, 74 years as predictor for sternal wound infection [4].

4.1.2. Sex

Sex may be an independent risk factor for SWC (Table 5). Also other studies identified male sex as a risk factor for SWC [2,4,10]. The reason is unclear, certainly because female sex is normally associated with a higher mortality and morbidity in myocardial revascularization [11]. Borger suggests that males tend to have increased tension on their sternal incision, which in turn leads to increased risk of sternal instability [4].

4.1.3. Obesity

If the risk factor obesity is present, the risk for SWC seems about twice as large in comparison with no-obese patients (Table 5). The Parisian mediastinitis study group identified obesity as the only independent preoperative risk factor for deep sternal wound infection after myocardial revascularization.

Table 4

Multifactor risk analysis main effects (Model A: 19 variables)

<table>
<thead>
<tr>
<th>Variables</th>
<th>P-value</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age <50 years<sup>a</sup></td>
<td>0.06</td>
<td>0.37</td>
</tr>
<tr>
<td>Age >70 years<sup>a</sup></td>
<td>0.66</td>
<td>0.87</td>
</tr>
<tr>
<td>Sex</td>
<td>0.05</td>
<td>1.7</td>
</tr>
<tr>
<td>Obesity</td>
<td>0.004</td>
<td>2.0</td>
</tr>
<tr>
<td>Diabetest</td>
<td>0.25</td>
<td>1.4</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>Lung disease</td>
<td>0.32</td>
<td>1.3</td>
</tr>
<tr>
<td>Peri-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-IMA-use<sup>b</sup></td>
<td>0.07</td>
<td>1.6</td>
</tr>
<tr>
<td>BIMA-use<sup>b</sup></td>
<td>0.28</td>
<td>1.4</td>
</tr>
<tr>
<td>Bypass time</td>
<td>0.19</td>
<td>1.4</td>
</tr>
<tr>
<td>Aortic cross clamp time</td>
<td>0.44</td>
<td>0.80</td>
</tr>
<tr>
<td>Emergency</td>
<td>0.26</td>
<td>0.59</td>
</tr>
<tr>
<td>Post-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0.12</td>
<td>0.43</td>
</tr>
<tr>
<td>Low cardiac output</td>
<td>0.16</td>
<td>1.6</td>
</tr>
<tr>
<td>Reoperation</td>
<td>0.009</td>
<td>2.2</td>
</tr>
<tr>
<td>Nephrological problems</td>
<td>0.001</td>
<td>3.4</td>
</tr>
<tr>
<td>Pulmonary problems</td>
<td>0.0001</td>
<td>5.2</td>
</tr>
<tr>
<td>Time cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort 1990–1992<sup>c</sup></td>
<td>0.11</td>
<td>1.6</td>
</tr>
<tr>
<td>Cohort 1993–1995<sup>c</sup></td>
<td>0.66</td>
<td>1.1</td>
</tr>
</tbody>
</table>

^a Reference group: 50 ≤ years ≤ 70 (n = 2661).

^b Reference group: One-IMA-use (n = 2317).

^c Reference cohort: 1987–1989 (n = 1292).

Table 5

Multifactor risk analysis main effects (Model B: 10 variables)

<table>
<thead>
<tr>
<th>Variables</th>
<th>P-value</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age <50 years<sup>a</sup></td>
<td>0.04</td>
<td>0.35</td>
</tr>
<tr>
<td>Age >70 years<sup>a</sup></td>
<td>0.78</td>
<td>0.93</td>
</tr>
<tr>
<td>Sex</td>
<td>0.08</td>
<td>1.6</td>
</tr>
<tr>
<td>Obesity</td>
<td>0.005</td>
<td>1.9</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>0.14</td>
<td>0.21</td>
</tr>
<tr>
<td>Peri-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-IMA-use<sup>b</sup></td>
<td>0.05</td>
<td>1.6</td>
</tr>
<tr>
<td>BIMA-use<sup>b</sup></td>
<td>0.18</td>
<td>1.5</td>
</tr>
<tr>
<td>Post-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reoperation</td>
<td>0.01</td>
<td>2.1</td>
</tr>
<tr>
<td>Nephrological problems</td>
<td>0.0001</td>
<td>3.9</td>
</tr>
<tr>
<td>Pulmonary problems</td>
<td>0.0001</td>
<td>5.4</td>
</tr>
</tbody>
</table>

^a Reference group: 50 ≤ years ≤ 70 (n = 2661).

^b Reference group: One-IMA-use (n = 2317).

Table 6

Post-operative predictors, reoperation, nephrological problems, pulmonary problems^a

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Number of patients</th>
<th>Number of patients with SWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reoperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No reoperation</td>
<td>3552</td>
<td>77</td>
</tr>
<tr>
<td>Bleeding/tamponade</td>
<td>214</td>
<td>14</td>
</tr>
<tr>
<td>Cardial problems</td>
<td>47</td>
<td>9</td>
</tr>
<tr>
<td>Other reasons</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Nephrological problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No nephrological problems</td>
<td>3698</td>
<td>79</td>
</tr>
<tr>
<td>Dialysis</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Renal dysfunction (creatine ≥ 150 μmol/l)</td>
<td>82</td>
<td>14</td>
</tr>
<tr>
<td>Pulmonary problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No pulmonary problems</td>
<td>3523</td>
<td>59</td>
</tr>
<tr>
<td>Infection</td>
<td>165</td>
<td>27</td>
</tr>
<tr>
<td>Other problems</td>
<td>146</td>
<td>14</td>
</tr>
</tbody>
</table>

^a Number and % with SWC in subcategories (subgroups).
Diabetes is associated with age [4] and does not mean that diabetes is not a risk factor for SWC. Diabetes is not an independent risk factor (Table 4). This is agreed upon by diabetics in the study of Borger [2,4]. In our study the Parisian mediastinitis study group [13,14] in 1987–1989 never included diabetes as a group of patients with kidney disease as pre-operative variable with this low frequency is low and questionable as we have already seen with the variable kidney disease.

4.1.4. Diabetes

The number of diabetic patients in this series 501/3834 patients (13.1%) is comparable with other studies, 11% diabetics the Parisian mediastinitis study group [13,14] in 1987–1989. In our study diabetes is not an independent risk factor (Table 2). The number of diabetic patients in this series 501/3834 patients (13.1%) is comparable with other studies, 11% diabetics the Parisian mediastinitis study group an 19% diabetics in the study of Borger [2,4]. In our study diabetes is not an independent risk factor (Table 4). This does not mean that diabetes is not a risk factor for SWC. Diabetes is associated with age (P < 0.01), and obesity (P < 0.001) (the P-values/percentages reported in the discussion are additionally to the P-values/percentages reported in the Results section). Diabetes patients also have a relative higher risk for nephrological problems (6.4 vs. 2.3%) and pulmonary problems (10.6 vs. 7.7%) (the P-values/percentages reported in the discussion are additionally to the P-values/percentages reported in the Results section). Diabetes can be considered an indirect risk; its effect on SWC is through other risk factors. This can explain the difference in several studies identifying diabetes whether or not, [4,2] or depending on ‘BIMA-use’, [1] as a risk factor for SWC. We have no indication that different types of diabetes is associated with different risk on SWC; the risk for insulin dependent patients (150 patients) is 3.3% while the overall risk of 501 diabetes patients is 3.6% (the P-values/percentages reported in the discussion are additionally to the P-values/percentages reported in the Results section).

4.1.5. Kidney disease

Of the 52 patients with kidney disease, only one had a SWC (1.9%). The number of patients with kidney disease is very small 52/3834 (1.3%), so the power of the analysis of a pre-operative variable with this low frequency is low and even questionable. It seems contradictory that kidney disease was indicated as a variable indicative for a decreased risk for SWC (Table 4), however in the further analysis (Table 5) kidney disease disappears as a variable associated with SWC. The reason for inclusion of kidney disease as pre-operative variable is because of the association with post-operative nephrological problems [7]. The importance of post-operative nephrological problems for SWC is confirmed in several studies [1–3]. These postoperative nephrological problems; renal failure, dialysis are mostly secondary to low cardiac output, myocardial infarction.

4.1.6. Lung disease

For lung disease, there is a clear association with the risk of SWC (Table 2) [1]. However, pulmonary pathology was not identified as an independent risk factor (Table 3). The effect of pulmonary problems on the risk on SWC can probably be considered an indirect risk.

It may be a point of criticism that preoperative variables as chest radiation, use of steroids, affecting wound healing [12] are not included as preoperative variables in this analysis. However, the number of patients that could be included in these subgroups is very low (<2%), and these patients have mostly also other pre-operative risk factors. So the power and the sense of these subgroup analysis would be very low and questionable as we have already seen with the variable kidney disease.

4.2. The choice of grafts

The use of grafts is significantly associated with the risk on SWC (Table 2). The differences in risk in the three categories, ‘No-IMA-use’ (risk 4.0%), one-IMA-use (risk 2.0%) and ‘BIMA-use’ (risk 2.9%) seems in contradiction with other studies identifying IMA and BIMA use as predictors for SWC [1,2,13]. It must be clear, that the use or the no-use of an IMA graft depends on surgeons’ decision, depending on several (subjective) risk factors. Certainly in the first time cohort (1987–1989) there was some reserve in using IMA grafts in elderly patients, urgent/emergency operations. Patients with ‘No IMA-use’ have a mean age of 64 years; patients with ‘BIMA-use’ are on average 7 years younger. Also the distribution of sex and obesity appears to be different in the three categories (Table 6). But also other factors,
as pre-operative radiotherapy, use of steroids, have influenced the no-use of an IMA-graft [13]. It must be clear that the patients operated without IMA-use are for a certain reason ‘a priori’ susceptible for SWC. And in fact it is logical that these patients have more SWC than the others, because we need a good reason for no-use of an IMA-graft for myocardial revascularization [14]. This selection process leads to selection bias very likely to a bias in the results of the statistical analysis.

We can suppose, however, that in our group of patients <50 years operated without IMA-use (71 patients, no SWC), the no-use of an IMA-graft was especially determined by the coronary artery anatomy, only a vein graft to a distal right coronary artery, or distal circumflex, diagonal coronary artery. Comparing this group without IMA-use, with patients younger than 50 years with ‘IMA-use’ and ‘BIMA-use’, we see an increasing percentage of SWC (Table 3). It is difficult to determine in model B (Table 4) the precise effect of the graft-use on the risk of SWC, because the inclusion of pre- and post-operative predictors can mask it. If the post-operative variables are let out from model B there is an indication that ‘BIMA-use’ is also an independent predictor \((P = 0.09, \ OR = 1.6) \). To a certain extent this may be due to the finding that ‘BIMA-use’ is related with a higher percentage of reoperations, an independent predictor of SWC (Table 6).

4.3. Post-operative predictors

That the post-operative variables, reoperation, nephrological problems and pulmonary problems are strong predictors for SWC is confirmed by several studies [1–3]. The importance of these variables for the prediction is illustrated by the subgroup analysis (Table 6). In case of resternotomy for cardial problems the risk increase to nearly 20% in contrast with 0% if there is resternotomy for other reasons, as removal of a fixed drain; also in case of postoperative renal dysfunction and dialysis the risk amounts to 17%, respectively 25%. In case of a pulmonary infection the risks amounts to 16%. In fact in post-operative situations in relation with cardiac performance (low cardiac output), there is a strong relation with the occurrence of SWC.

5. Conclusion

The post-operative problems, reoperation, nephrological and pulmonary problems, are strong predictors of sternal wound complications. Obesity and age (young age decreases the risk) are independent preoperative risk factors. There is an indication that BIMA-use is also an independent predictor; however, the choice of a graft is related to knowledge of pre-operative patient characteristics, which leads to selection bias. Furthermore the graft-choice is associated with the post-operative predictors.

The importance of this study is that in clinical practice, where we are performing CABG’s, taking in account several pre- and per-operative risk factors, to minimize the risk for SWC, a certain percentage of SWC occurs. These SWC were in the first place predicted by postoperative variables.

Acknowledgements

We thank Mrs Lisette Peters for her work in the secretarial function of the CORRAD database.

References