Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator

Xavier Flores-Alsina, Krist V. Gernaey and Ulf Jeppsson

ABSTRACT

This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weather files describing diurnal, weekend and seasonal variations through the combination of different generic model blocks, i.e. households, industry, rainfall and infiltration. The GSA is carried out by combining Monte Carlo simulations and standardized regression coefficients (SRC). Cluster analysis is then applied, classifying the influence of the model parameters into strong, medium and weak. The results show that the method is able to decompose the variance of the model predictions ($R^2 > 0.9$) satisfactorily, thus identifying the model parameters with strongest impact on several flow rate descriptors calculated at different time resolutions. Catchment size (PE) and the production of wastewater per person equivalent (QperPE) are two parameters that strongly influence the yearly average dry weather flow rate and its variability. Wet weather conditions are mainly affected by three parameters: (1) the probability of occurrence of a rain event (Lrain); (2) the catchment size, incorporated in the model as a parameter representing the conversion from mm rain · day$^{-1}$ to m3 · day$^{-1}$ (Qpermm); and, (3) the quantity of rain falling on permeable areas (aH). The case study also shows that in both dry and wet weather conditions the SRC ranking changes when the time scale of the analysis is modified, thus demonstrating the potential to identify the effect of the model parameters on the fast/medium/slow dynamics of the flow rate. The paper ends with a discussion on the interpretation of GSA results and of the advantages of using synthetic dynamic flow rate data for WWTP influent scenario generation. This section also includes general suggestions on how to use the proposed methodology to any influent generator to adapt the created time series to a modeller’s demands.

Key words | activated sludge modelling, benchmarking, BSM, influent modelling, Monte Carlo simulations, standardized regression coefficients (SRC)

NOMENCLATURE

A_k Vector of model parameters used in the SRC analysis. The number of model parameters is k

AADF Average annual daily flow rate [m3 · d$^{-1}$]

aH A parameter determining the direct contribution of rainfall falling on impermeable surfaces in the catchment area to the flow rate in the sewer (‘Rain generator’ model block) [%]

ASMs Activated Sludge Models

b_0 Off-set in the SRC model

b_k Slope in the SRC model. The number of slopes corresponds to the number of studied parameters (k)

BSM1 Benchmark Simulation Model no. 1

BSM2 Benchmark Simulation Model no. 2

CK Coefficient of kurtosis [-]

CS Coefficient of skewness [-]

GSA Global Sensitivity Analysis

DISG Dynamic influent scenario generator

doi: 10.2166/wst.2012.089
HH Households model block

H_{lev} Height of the invert level (‘Soil’ model block) [m]

IndS Industries model block

InfAmp Amplitude of the sine wave for generating seasonal effects due to infiltration (‘Seasonal correction factor’ model block) $[m^3 \cdot d^{-1}]$

InfBias Mean value of the sine wave signal for generating seasonal effects due to infiltration (‘Seasonal correction factor’ model block) $[m^3 \cdot d^{-1}]$

IWA International Water Association

K Soil permeability constant (‘Soil’ model block) $[m^3 \cdot m^{-2} \cdot d^{-1}]$

K_{down} Gain for adjusting the flow rate to downstream aquifers (‘Soil’ model block) $[m^2 \cdot d^{-1}]$

K_{inf} Infiltration gain (‘Soil’ model block) $[m^{2.5} \cdot d^{-1}]$

Length A parameter that forms a measure of the size of the catchment area. It will determine the number of variable volume tanks in series that will be used for describing the sewer system (‘Sewer’ model block) [-]

L_{rain} A constant converting the random number generator output to a value representing rainfall intensities (‘Rain generator’ model block) $[\text{mm rain} \cdot \text{d}^{-1}]$

MaxD Average maximum flow sustained for a period of one day $[m^3 \cdot d^{-1}]$

MaxH Average maximum flow sustained for a period of one hour $[m^3 \cdot d^{-1}]$

MaxM Average maximum flow sustained for a period of one month $[m^3 \cdot d^{-1}]$

MC Monte Carlo

MinD Average minimum flow sustained for a period of one day $[m^3 \cdot d^{-1}]$

MinH Average minimum flow sustained for a period of one hour $[m^3 \cdot d^{-1}]$

MinM Average minimum flow sustained for a period of one month $[m^3 \cdot d^{-1}]$

PE Person equivalent (‘Households’ model block) [-]

$Q_{\text{per mm}}$ Flow rate per mm rain (‘Rain generator’ model block) $[m^3 \cdot mm^{-1}]$

$Q_{\text{per PE}}$ Wastewater flow rate per person equivalent (‘Households’ model block) $[m^3 \cdot d^{-1}]$

Q_{Ind} Average wastewater flow rate from industry on normal week days (Monday to Thursday) (‘Industry’ model block) $[m^3 \cdot d^{-1}]$

RAIN Rain model block

RangeD Difference between MaxD and MinD $[m^3 \cdot d^{-1}]$

RangeH Difference between MaxH and MinH $[m^3 \cdot d^{-1}]$

RangeM Difference between MaxM and MinM $[m^3 \cdot d^{-1}]$

SD Standard deviation of daily flow rate $[m^3 \cdot d^{-1}]$

SEWER Sewer model block

SOIL Soil model block

SCF Seasonal correction factor

SRC Standardized regression coefficient

$subareas$ Catchment size [-]

X_j Regression model prediction. The number of model predictions is j

WWTP Wastewater treatment plant

SOFTWARE AVAILABILITY

The source code for generation of WWTP influent files can be obtained for free. Contact Krist V. Gernaey, Center for Process Engineering and Technology (PROCESS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby, Denmark. E-mail: kvg@kt.dtu.dk

RESEARCH HIGHLIGHTS

- Monte Carlo simulations and standardized regression coefficients can satisfactorily decompose the variance of the influent flow rate model predictions.
- Cluster analysis allows identifying the set of parameters explaining the main contributions to the total variance.
- The relative importance of the different model parameters changes depending on: (1) dry/wet weather conditions; and (2) the evaluated time scale (hour, day or month).
- GSA is useful to gain deeper knowledge of the model behaviour. This insight can be exploited to: (1) adapt the model to the modeller’s needs; and (2) to generate additional WWTP influent scenarios.

INTRODUCTION

Dynamic influent disturbance scenario generators (DIDSG) have recently gained interest in the field of wastewater treatment plant (WWTP) modelling. In essence, synthetic data
can overcome one of the main limitations when performing simulation studies: a sufficiently long set of influent data representing the inherent natural variability of the flow rate and pollutant concentrations at the plant inlet is often not available. If inadequate dynamic influent disturbances are applied to the WWTP in a simulation study, the system will not be sufficiently excited and thus the simulations will result in a too optimistic picture of the plant performance (Ráduly et al. 2007).

During recent years, several DIDSG have been developed with multiple applications (see for example Muschalla et al. 2006; Langergraber et al. 2008; Alex et al. 2009). de Keyser et al. (2010) developed a model that creates time series of traditional and micro-pollutants from their emission sources in the urban catchment. Similarly, Ort et al. (2005) developed a stochastic model describing short-term variations of benzotriazole concentrations (a chemical in dishwasher detergents). Additionally, Rosen et al. (2008) used a Markov chain approach to describe the occasional occurrence of either toxic or inhibitory influent shock loads. One successful application of an influent wastewater generator was developed by Gernaey et al. (2011), and was used to generate influent data for the different Benchmark Simulation Models (BSM) (Spanjers et al. 1998; Copp 2002; Rosen et al. 2004; Jeppsson et al. 2007; Nopens et al. 2010; Gernaey et al. 2012), widely used in the wastewater modelling community. The latter influent generator will be investigated in more detail in this paper.

The BSM2 DIDSG is comprised of a set of generic model blocks and takes into account the contributions of households, industries, infiltration and run-off from impermeable surfaces. The model also includes the ‘smoothing’ effect of the sewer network. Although the BSM2 DIDSG is applied to create the disturbance influent file used to evaluate different control strategies in the BSM2 platform, the tool is general and has a wide range of applications. Benedetti et al. (2008) combined a preliminary version of this approach with different rainfall time series to come up with a wide range of influent conditions including variation in weather scenarios (Alpine, Oceanic, Continental, Mediterranean), loading (ratio between households and industry) and holiday activities (tourism) to evaluate the robustness of different plant designs. Another example can be found in Flores-Alsina et al. (2012) where the influent model was combined with the ASM-X approach (Plösö et al. 2010) to describe occurrence and transport of micro-pollutants, i.e. pharmaceuticals, taking into account: (1) oral administration patterns; (2) body residence time; and (3) discharge patterns. Other applications of the influent model can be found elsewhere (Gernaey et al. 2006; Lindblom et al. 2006; Béraud et al. 2007).

The software for generating influent data is intended to be flexible. Nevertheless, the full potential of the influent model, the possibility to export the model to describe different systems, i.e. catchments, or to explore additional scenarios cannot be exploited to the full extent possible unless a comprehensive global sensitivity analysis (GSA) is made. This analysis will help to elucidate which inputs are the major causes of variability in the outputs. Also, the study can give an idea about the effort that the modeller has to invest in finding realistic values for a certain parameter if he/she does not have any measurements/expert knowledge available for the design study under investigation.

The purpose of this paper is to present the global sensitivity analysis (GSA) of the model parameters used to create the BSM2 influent flow rate produced by the DIDSG presented in Gernaey et al. (2011). As such, this manuscript should also be seen as a first step in adopting the influent model for applications that fall outside the influent model benchmarking applications. The analysis is carried out by combining Monte Carlo (MC) simulations with Standardized Regression Coefficients (SRC), and decomposes the variance of the flow rate predictions under different weather conditions. Finally, for different flow rate descriptors, calculated at different time resolutions, the influence of the model parameters on the generated flow rate data is classified into strong, medium and weak. The manuscript is organized as follows: First, the problem framing for the DIDSG for flow rate generation, the parameter ranges and the different techniques for GSA are described. Next the results for both dry and wet weather conditions are presented and interpreted. The study is complemented by a critical discussion of the results, focusing on the practical implications of the GSA results. Finally, general guidelines about how to use the presented methodology to other influent generators are given.

METHODS

Dynamic WWTP influent disturbance scenario generator

The DIDSG is based on the work presented in Gernaey et al. (2011). The proposed phenomenological approach produces dynamic influent flow rate, pollutant concentrations and temperature profiles using different model blocks and it was used during the development of the BSM2 (Nopens et al. 2001). The software for generating influent data is intended to be flexible. Nevertheless, the full potential of the influent model, the possibility to export the model to describe different systems, i.e. catchments, or to explore additional scenarios cannot be exploited to the full extent possible unless a comprehensive global sensitivity analysis (GSA) is made. This analysis will help to elucidate which inputs are the major causes of variability in the outputs. Also, the study can give an idea about the effort that the modeller has to invest in finding realistic values for a certain parameter if he/she does not have any measurements/expert knowledge available for the design study under investigation.
The generation of the influent flow rate is achieved by combining the contributions of households (HH), industry (IndS), rainfall (Rain) and infiltration (SCF) (see Figure 1). Rainfall (RAIN) contributes to the total flow rate in two ways: the largest fraction \((aH/100)\) originates from the run-off of impermeable surfaces, and is thus transported directly to the sewer. Rainfall on permeable surfaces, a fraction \((100-aH)/100\), will influence the groundwater level, and thus the contribution of infiltration to the influent flow rate. An additional snow melting module could be included as well, and can have important implications in certain geographical regions, but for simplicity it is not considered in this case study. Assuming a cold and a warm season, the seasonal correction factor modifies the amount of infiltration, which is attributed to changes in the groundwater level over the year, i.e. different evapotranspiration regimes. The seasonal correction factor is combined with the rainfall falling on permeable surfaces, and the sum of both flows is passed through the soil model. The soil model (SOIL) is described as a variable volume tank model and it is used to represent the assumed storage of water in the soil. Afterwards, the net contribution of infiltration is combined with the overall flow rate resulting from households and industry and the flow contribution from rainfall on impermeable surfaces. The conceptual principle of the sewer model block (SEWER) is based on a number of variable volume tank models in series, which modifies the dynamics of the generated time series. Due to the model simplicity neither CSOs nor backflow effects are included during liquid transport. The list of model parameters ruling each model block (HH, IndS, Rain, SCF, SOIL and SEWER) is specified in Table 1.

Figure 2 (left) shows a dynamic profile of the dry weather flow rate generated with the influent model using the default set of parameters, i.e. the ones used to create the BSM2 influent file (Gernaey et al. 2011). The flow rate time series presents daily, weekly and seasonal variations (e.g. holiday period and closing of industries). The starting date of the flow rate time series is July 1st. In addition, a slight increase of the flow rate during winter due to the effect of infiltration is visible. During the cold season, it is indeed assumed that the groundwater level is high resulting in increased infiltration to the sewer system. Figure 2 (right) shows the dynamic profile of the wet weather flow rate generated with the influent model using the default set of parameters. Besides the above mentioned daily, weekly, yearly and seasonal phenomena there are sudden increases of the flow rate due to rain events.

Problem statement

The problem framing for the uncertainty and sensitivity analysis follows the approach presented by Sin et al. (2011). Given the catchment characteristics, such as ratio households/industry, the quantity of infiltration, the seasonal variation, the rainfall periodicity, the length of the sewer, etc., the main question to be answered is: what are the most significant model inputs that contribute to the variability of the different flow rate descriptors? Default parameters and their assumed variability ranges are summarized in Table 1. These ranges of variability are defined based on a combination of expert knowledge and process understanding. All the probability distributions are assumed to be uniform, mainly due to lack of information on the real distributions.

MC simulation and SRCs

The MC simulation methodology is based on four steps: (1) specification of the input ranges, i.e. model parameters (Table 1); (2) sampling from the input ranges using the Latin Hypercube Sampling method (Iman et al. 1981); (3) propagation of the sampled values through the DIDSG (Gernaey et al. 2011); and finally (4) analysis of the results to obtain distributions of the values for the outputs, i.e. flow rate descriptors (Tchobanoglous et al. 2003).
The SRC method involves performing a linear regression on the output of the MC simulation revealing the relationship between the model parameters and the flow rate characteristics (Saltelli et al. 2004) as follows:

\[
\hat{X}_j = b_0 + \sum_{k=1}^{n} b_k A_k
\]

where \(\hat{X}_j\) is the regression model prediction for a flow rate calculation \(j\), \(b_0\) is the offset, \(b_k\) are the slopes and \(n\) is the total number of model parameters \(A_k\). The standardized regression coefficients (SRCs) are then obtained by scaling the slopes \(b_k\) using the standard deviations of the parameters (\(\sigma_{A_k}\)) and the outputs (\(\sigma_{\hat{X}_j}\)) as

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model compartment (bold) / parameter description (normal font)</th>
<th>Default value</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QperPE</td>
<td>Wastewater flow rate per person equivalent [m(^3) · d(^{-1})]</td>
<td>150</td>
<td>±10</td>
</tr>
<tr>
<td>PE</td>
<td>Person equivalent [-]</td>
<td>80,000</td>
<td>±10</td>
</tr>
<tr>
<td>QInd</td>
<td>Average wastewater flow rate from industry on normal week days [m(^3) · d(^{-1})]</td>
<td>2,500</td>
<td>±10</td>
</tr>
<tr>
<td>InfAmp</td>
<td>Amplitude of the sine wave for generating seasonal effects due to infiltration [m(^3) · d(^{-1})]</td>
<td>1,200</td>
<td>±10</td>
</tr>
<tr>
<td>InfBias</td>
<td>Mean value of the sine wave signal for generating seasonal effects due to infiltration [m(^3) · d(^{-1})]</td>
<td>7,100</td>
<td>±10</td>
</tr>
<tr>
<td>LLrain</td>
<td>A constant converting the random number generator output to a value representing rainfall intensities [mm rain · d(^{-1})]</td>
<td>3.5</td>
<td>±25</td>
</tr>
<tr>
<td>Qpermm</td>
<td>Flow volume per mm rain [m(^3) · mm(^{-1})]</td>
<td>1,500</td>
<td>±25</td>
</tr>
<tr>
<td>aH</td>
<td>Direct contribution of rainfall falling on impermeable surfaces in the catchment area to the flow rate in the sewer [%]</td>
<td>75</td>
<td>±25</td>
</tr>
<tr>
<td>Hinv</td>
<td>Height of the invert level [m]</td>
<td>2</td>
<td>±50</td>
</tr>
<tr>
<td>Subareas</td>
<td>Number of subareas (discrete), measure of the size of the catchment area [-]</td>
<td>4</td>
<td>±50</td>
</tr>
<tr>
<td>K</td>
<td>Soil permeability constant [m(^3) · m(^{-2}) · d(^{-1})]</td>
<td>1</td>
<td>±50</td>
</tr>
<tr>
<td>Kdown</td>
<td>Gain to adjust the flow rate to downstream aquifers [m(^2) · d(^{-1})]</td>
<td>1,000</td>
<td>±50</td>
</tr>
<tr>
<td>Length</td>
<td>Number of sewer sections (discrete), measure of the length of the sewer system [-]</td>
<td>4</td>
<td>±50</td>
</tr>
</tbody>
</table>

The SRC method involves performing a linear regression on the output of the MC simulation revealing the relationship between the model parameters and the flow rate characteristics (Saltelli et al. 2004) as follows:

\[
\hat{X}_j = b_0 + \sum_{k=1}^{n} b_k A_k
\]
stated in Equation (2).

\[\text{SRC} = b_k \frac{\sigma_{A_k}}{\sigma_{X}} \]

(2)

According to Saltelli et al. (2004) the SRC is a valid measure of sensitivity if the coefficient of determination \(R^2 > 0.7 \). When the model is linear, the \(\sum_k (\text{SRC})^2 = 1 \), but the normal non-linear case is \(\sum_k (\text{SRC})^2 \leq 1 \) and equal to \(R^2 \) (Saltelli et al. 2008). The higher the absolute values of the SRC, the stronger the influence of the corresponding input \(A_k \) on determining the output \(X \).

The results of the absolute values of the SRCs are then classified in three groups using \(k \)-means clustering (Hair et al. 1998), and as a result parameters are grouped into three categories which correspond to a strong, medium and weak influence on the output, respectively. The cluster with the highest and lowest (absolute) SRC values are labelled as strong and weak, respectively, while the intermediate values are categorizes as medium. Direct or indirect correlations are specified using positive (+) and negative (−) signs of the regression coefficients. Coefficients close to zero mean that the output is not sensitive to a certain input.

RESULTS

Monte Carlo simulation results

In Table 2, the respective distributions for all flow rate descriptors are summarized by their mean, coefficient of variation, 5% and 95% percentile values. The mean values of the average annual daily flow (AADF), the standard deviation (SD), the coefficient of skewness (CS), the coefficient of kurtosis (CK) and the hourly, daily and monthly maxima, minima and ranges are higher in wet weather conditions. However, comparatively, the relative differences between (dry/wet) maximum average values are more extreme compared with the (dry/wet) minimum values for the different statistics summarized in Table 2. For example, the dry/wet weather differences between the maximum flow rate values are 20% (MaxH), 46% (MaxD) and 3% (MaxM) when considering a time scale of hours, days and months, respectively. On the other hand, differences between the minimum values are 6% (MinH), 4% (MinD) and 3% (MinM) for a time scale of hours, days and months, respectively. This is mainly due to: (1) the buffering effect of the soil model in the influent generator; and (2) the possibility to divert rain water directly (via run-off) into the sewer system (see Figure 1). The 5% and 95% percentiles can be interpreted in a probabilistic way, e.g. the 95% percentile

<table>
<thead>
<tr>
<th>Item conditions</th>
<th>Mean DRY</th>
<th>Mean WET</th>
<th>Coefficient of variation DRY</th>
<th>Coefficient of variation WET</th>
<th>5% percentile DRY</th>
<th>5% percentile WET</th>
<th>95% percentile DRY</th>
<th>95% percentile WET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average annual daily flow (AADF)</td>
<td>1,856.9</td>
<td>2,060.5</td>
<td>7.3</td>
<td>8.2</td>
<td>1,631.6</td>
<td>18,009.5</td>
<td>20,879.1</td>
<td>23,529.4</td>
</tr>
<tr>
<td>Standard deviation (SD)</td>
<td>6,277.8</td>
<td>8,300.1</td>
<td>10.6</td>
<td>15.8</td>
<td>5,233.1</td>
<td>6,421.4</td>
<td>7,443.5</td>
<td>1,076.89</td>
</tr>
<tr>
<td>Coefficient of skewness (CS)</td>
<td>0.4</td>
<td>1.2</td>
<td>32.5</td>
<td>31.7</td>
<td>0.2</td>
<td>0.6</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Coefficient of kurtosis (CK)</td>
<td>2.5</td>
<td>5.9</td>
<td>6.2</td>
<td>27.0</td>
<td>2.3</td>
<td>3.6</td>
<td>2.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Maximum hour (MaxH)</td>
<td>29,498.8</td>
<td>35,441.1</td>
<td>8.1</td>
<td>12.9</td>
<td>25,759.5</td>
<td>28,918.4</td>
<td>33,648.8</td>
<td>44,336.3</td>
</tr>
<tr>
<td>Maximum day (MaxD)</td>
<td>21,276.8</td>
<td>30,999.5</td>
<td>6.7</td>
<td>17.5</td>
<td>18,909.5</td>
<td>23,454.2</td>
<td>23,719.9</td>
<td>40,884.6</td>
</tr>
<tr>
<td>Maximum month (MaxM)</td>
<td>20,017.8</td>
<td>23,211.8</td>
<td>6.9</td>
<td>9.7</td>
<td>17,783.8</td>
<td>19,976.2</td>
<td>22,383.8</td>
<td>27,218.4</td>
</tr>
<tr>
<td>Minimum hour (MinH)</td>
<td>9,410.7</td>
<td>9,983.7</td>
<td>10.2</td>
<td>10.1</td>
<td>7,804.8</td>
<td>8,307.8</td>
<td>10,937.2</td>
<td>11,615.3</td>
</tr>
<tr>
<td>Minimum day (MinD)</td>
<td>15,018.2</td>
<td>15,560.0</td>
<td>8.5</td>
<td>8.3</td>
<td>12,892.8</td>
<td>13,439.4</td>
<td>17,152.3</td>
<td>17,718.8</td>
</tr>
<tr>
<td>Minimum month (MinM)</td>
<td>17,647.5</td>
<td>18,184.3</td>
<td>7.5</td>
<td>7.5</td>
<td>15,411.7</td>
<td>15,943.4</td>
<td>19,903.2</td>
<td>20,462.2</td>
</tr>
<tr>
<td>MaxH-MinH (RangeH)</td>
<td>20,088.1</td>
<td>25,457.4</td>
<td>10.4</td>
<td>16.9</td>
<td>16,750.6</td>
<td>19,501.7</td>
<td>25,610.4</td>
<td>33,885.3</td>
</tr>
<tr>
<td>MaxD-MinD (RangeD)</td>
<td>6,258.6</td>
<td>15,439.4</td>
<td>4.3</td>
<td>33.0</td>
<td>5,841.4</td>
<td>8,633.0</td>
<td>6,703.4</td>
<td>24,857.4</td>
</tr>
<tr>
<td>MaxM-MinM (RangeM)</td>
<td>2,370.3</td>
<td>5,027.5</td>
<td>4.8</td>
<td>28.8</td>
<td>2,189.0</td>
<td>3,209.2</td>
<td>2,552.9</td>
<td>7,904.0</td>
</tr>
</tbody>
</table>

Table 2 Summary statistics of the MC propagation

X. Flores-Alsina et al. | Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator
Water Science & Technology | 65.11 | 2012
Downloaded from https://iwaponline.com/wst/article-pdf/65/11/1912/442072/1912.pdf by guest

Downloaded from https://iwaponline.com/wst/article-pdf/65/11/1912/442072/1912.pdf by guest
of MaxH for the wet weather scenario means there is a probability of 95% that the average (hourly) flow rate is below 44336.3 m³·d⁻¹. Finally, the differences between Max and Min (ranges) decrease when the length of the time scale increases (for the different statistics). For example, the (mean) range of dry and wet weather flow rate values is decreased when the scale is changed from hours (RangeH) to months (RangeM). For example, in dry conditions RangeH is 20088 m³·d⁻¹ and RangeM is only 2370 m³·d⁻¹.

GSA of the WWTP influent generator during dry weather conditions

The parameters with the strongest influence on the dry weather flow rate are summarized in Table 3. These parameters are the result of clustering the absolute SRC values for the different flow rate outputs. It is important as well to highlight that R² values were above 0.9 in all the cases reported. Average annual daily (AADF), maximum hourly (MaxH), daily (MaxD) and monthly (MaxM) flow rate values are strongly (positively) influenced by the HH model block parameters. These parameters represent the flow rate generated per person equivalent (QperPE) and the number of person equivalents in the catchment area (PE). The length of the sewer system (Length) has a considerable effect on the standard deviation (SD), skewness (CS), kurtosis (CK) and MaxH/MinH/Range hourly values. When the value of the parameter Length is higher, the sewer system is assumed to increase in size and there is consequently a larger smoothing effect on the flow rate values. In the Appendix section (Figure A1, available online at http://www.iwaponline.com/wst/065/089.pdf) additional information can be found regarding the influence that: (1) PE & QperPE; and (2) the parameter Length may have on one year of simulated dry weather flow rate data. In addition, the SRC and R² values for the AADF and the SD can also be found there (Table A1, available online at http://www.iwaponline.com/wst/065/089.pdf).

The Seasonal Correction Factor (SCF) and the soil (SOIL) model parameters mainly influence the quantities of water: (1) originating from upstream aquifers; (2) undergoing evapo-transpiration; (3) accumulated in soil; (4) passing to the sewer via infiltration; and (5) diverted to downstream aquifers. The amplitude of the sine wave (InfAmp) basically modifies process (2) and has a strong effect on RangeM because it increases/decreases the differences between winter and summer periods, corresponding to different evapo-transpiration regimes for the cold and the warm season. The height of the invert level in soil (Hinv) and the gain for adjusting the flow rate to the downstream aquifers (Kdown) influence processes (3), (4) and (5) and have a strong impact on the quantity of water leaving the soil model block (see Figure 1). As a result, there is a dramatic reduction of the infiltration flow to the sewer system and as a consequence a decrease of minimum hourly (MinH), daily (MinD) and monthly (MinM) flow rate values. The rest of the SCF/SOIL model parameters show poor sensitivity. The limited amounts of industrial wastewater compared with the HH contribution means that the effect of the IndS related model parameters on the flow rate are almost unnoticeable.

<table>
<thead>
<tr>
<th>Item</th>
<th>Dry weather</th>
<th>Wet weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average annual daily flow (AADF)</td>
<td>PE (+), QperPE (+), Kdown (-), Hinv (-)</td>
<td>Lbrain (-), PE (+), QperPE (+), Kdown (-)</td>
</tr>
<tr>
<td>Standard deviation (SD)</td>
<td>Length (-), PE (+), QperPE (+)</td>
<td>Lbrain (-), Qpermm (+), ah (+)</td>
</tr>
<tr>
<td>Coefficient of skewness (CS)</td>
<td>Length (-)</td>
<td>Lbrain (-), Qpermm (+), ah (+)</td>
</tr>
<tr>
<td>Coefficient of kurtosis (CK)</td>
<td>Length (-)</td>
<td>Lbrain (-), Qpermm (+), ah (+)</td>
</tr>
<tr>
<td>Maximum hour (MaxH)</td>
<td>PE (+), QperPE (+), Length (-)</td>
<td>Lbrain (-)</td>
</tr>
<tr>
<td>Maximum day (MaxD)</td>
<td>PE (+), QperPE (+), Kdown (-)</td>
<td>Lbrain (-)</td>
</tr>
<tr>
<td>Maximum month (MaxM)</td>
<td>PE (+), QperPE (+), Kdown (-)</td>
<td>Lbrain (-), PE (+), QperPE (+), Kdown (-), Hinv (-)</td>
</tr>
<tr>
<td>Minimum hour (MinH)</td>
<td>Kdown (-), Hinv (-), Length (+)</td>
<td>Hinv (-), Kdown(-), Length (+)</td>
</tr>
<tr>
<td>Minimum day (MinD)</td>
<td>Kdown (-), Hinv (-), PE (+), QperPE (+)</td>
<td>Hinv (-), Kdown(-), PE (+), QperPE (+)</td>
</tr>
<tr>
<td>Minimum month (MinM)</td>
<td>Kdown (-), Hinv (-), PE (+), QperPE (+)</td>
<td>Hinv (-), Kdown(-), PE (+), QperPE (+)</td>
</tr>
<tr>
<td>MaxH-MaxH (RangeH)</td>
<td>Length (-), PE (+), QperPE (+)</td>
<td>Lbrain (-), Length (-)</td>
</tr>
<tr>
<td>MaxD-MaxD (RangeD)</td>
<td>PE (+), QperPE (+)</td>
<td>Lbrain (-)</td>
</tr>
<tr>
<td>MaxM-MaxM (RangeM)</td>
<td>InfAmp (+)</td>
<td>Lbrain (-)</td>
</tr>
</tbody>
</table>
GSA of the WWTP influent generator during wet weather conditions

RAIN related model parameters (Qpermm, Ltrain and aH) have a strong impact on the total flow rate quantity and variability (see Table 3). On the one hand, the parameter ruling the occurrence of rain events (Ltrain) directly influences the probability of having wet weather episodes (low Ltrain values result in increased occurrence of rain events). On the other hand, the parameter converting mm rain to flow rate (Qpermm) and the % impermeable area (aH) strongly influence: (1) the intensity of these rain events; (2) the quantity of water entering the soil; and (3) the quantity of water that is diverted directly to the sewer (see Figure 1).

As can be expected when the number of rain events is increased (parameter Ltrain decreases), AADF, SD and hourly (RangeH), daily (RangeD) and monthly (RangeM) range values are higher. Qpermm and aH are catchment dependent and have a major influence on the shape of the resulting flow rate distribution, i.e. increasing its asymmetry (CS) and peak height (CK). This situation is mainly due to the fact that most of the flow rate values are moved to the right-hand side of the distribution when the values of those parameters are increased. It is important to highlight that RAIN related parameters have a strong influence on flow rate descriptors that are sustained for a short period of time, for example MaxH and MaxD (peak values). For longer time horizons, i.e. MaxM and MinM, the parameters with the strongest impact are the same for both wet and dry weather conditions, i.e. HH and SOIL. Finally, minimum values, i.e. MinH, MinD and MinM, are strongly influenced by the soil model parameters, similar to dry weather conditions. Again, it is possible to see the buffer effect of the soil model. Unless there is either a dramatic decrease in the quantity of water accumulated by the soil (parameter Hinv) or an increase in the quantity of water going to downstream aquifers, minimum values are more or less constant for both dry and wet weather conditions (see Table 3).

In the Appendix section (Figure A2, available online at http://www.iwaponline.com/wst/065/089.pdf) additional information can be found about the influence that (1) Ltrain and (2) Qpermm and aH may have on one year of simulated wet weather flow rate data. In addition, the SRC and R^2 values for the AADF and the SD are provided (Table A1).

DISCUSSION

The presented results necessitate a thorough discussion. First of all, it is important to highlight that the results presented herein will to a large extent depend on the framing of the problem (selection of model parameters, definition of input ranges, sampling methodologies) (Sin et al. 2011). The results of the GSA presented in this paper are specific for this case study and they should be interpreted within that context, i.e. the analysis should be repeated if the problem framing is set up in a different way (Helton & Davis 2005).

Secondly, the GSA provides a better picture about how the DIDSG behaves, by determining the strength of the relation between the input ranges (model parameters) and the different outputs (flow rate descriptors in this case). For example, Figure 5 shows the effect (for dry weather flow rate) of some model parameters on the flow rate descriptors. SCF parameters can increase the monthly differences between summer and winter times (see Figure 3 top, see Table 2 RangeM). The parameters PE and QperPE increase ADFD, MaxH, MaxD and MaxH (see Figure 3 middle, see Table 2). Finally, a stronger smoothing effect can be obtained if the length of the sewer network is increased (Figure 3 bottom, Table 2 MaxH). In wet weather conditions, the periodicity of rain events is mainly determined by the parameter Ltrain (see Figure 4). Figure 4 shows the generated time series in dry (rain generator is turned off) and wet (default) weather conditions. In addition, when the parameter Ltrain is decreased, the number of rain events is increased and so are the peak flow rate values. In the case of using pluviometric data as input – an option that is available for the user of the influent model – the parameter Ltrain is no longer used and the adjustment should be carried out by means of modifying the parameters aH and Qpermm. As in the dry weather case, hourly peaks in the wet weather scenario can be influenced by adjusting the parameter Length.

The result of the GSA will allow users of the influent model to adapt the generated time series to each modeller’s demands. We are indeed convinced that the influent generator developed for the BSM2 can be useful outside the original benchmarking applications as well. An interesting example is shown in Figure 5, where a stepwise procedure to create the different dry weather time series is demonstrated. PE, QperPE, K_{down}, H_{inv} can be used to adjust the AADF to the user desired conditions. Additional features, such as influent variability (SD, CS and CK) or seasonal – i.e. summer/winter – variation, could be adjusted by modifying the parameters Length and InfBias, respectively. Finally, for wet weather influent profile generation, the occurrence of rain events (AADF) and their intensity (MaxH, MaxD, MaxM) can be adjusted with Ltrain. In addition, alternative scenarios can be generated following the same catchment...
principles: What would be the effect of changing the rain regime or infiltration dynamics (due to, for example, climate change) in the wastewater influent profile? What is the effect of a population increase (changes in the number of population equivalents) or higher industrial activity on the influent wastewater flow rate? All these scenarios can in principle be investigated with the influent model, on condition that the model user has a proper understanding of the meaning and the importance of each parameter in the influent model. This paper provides a first clue towards obtaining this understanding.

Finally, it should be emphasized that even though the authors run the analysis using the influent generator developed by BSM Task Group (Gernaey et al. 2011) the methodology presented herein is general. Other influent generators could be analysed as well (e.g. Muschalla et al. 2006; Langergraber et al. 2008; Alex et al. 2009; de Keyser et al. 2010), obtaining valuable information about the parameters with the strongest influence related to short-term and long-term dynamics. In the case of using a different influent generator, the same flow rate descriptors could be calculated, e.g. AADF, MaxM, MinM …, identifying the
responsible parameters for the time series dynamics by means of combining MC simulations and SRC.

CONCLUSIONS

This paper presented the results of performing a Global Sensitivity Analysis on the output of a DIDSG. The high R^2 values showed that variance decomposition for a range of different flow rates was possible. The key findings can be summarized as follows:

In dry weather conditions:

1. HH parameters (Q_{perPE}, PE) have the strongest influence on dry weather influent flow rate quantity and variability. The sewer parameter Length has a direct influence on the peaks;
2. SCF (InfBias) and SOIL related (H_{inv}, K_{down}) parameters influence the quantity of a) infiltration and b) water accumulation in soil, decreasing (to a certain extent) average, ranges and minimum flow rate values.

In wet weather conditions:

1. RAIN related parameters (L_{rain}, Q_{permmm} and aH) have a strong influence on wet weather influent flow rate quantity and variability;
2. RAIN related parameters (L_{rain}) clearly affect short-term evaluation criteria (hour, day), but in the long run (month) the HH related parameters have a stronger influence;
3. SOIL related parameters (H_{inv}, K_{down}) influence (as for dry weather conditions) minimum values, no matter the time scale.

The GSA has been extended with: (i) a critical discussion about how to interpret the results of the GSA; (ii) some hints on how to use the influent model to adapt the generated time series to each modeller’s demands; (iii) a section focused on the advantages of using synthetic flow rate data for WWTP influent scenario generation; and (iv) a perspective on how the methodology can be used with other influent generators.

REFERENCES

Alex, J., Hetschel, M. & Ogurek, M. 2009 Simulation study with minimized additional data requirements to analyze control and operation of WWTP Dorsten, Germany. Wat. Sci. Tech. 60 (6), 1371–1377.

First received 17 October 2011; accepted in revised form 16 January 2012