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Abstract
Infectious complications resulting from resection of colorectal cancer (CRC) elevates the risk of cancer

recurrence and metastasis, but the reason for this risk relationship is unknown. Defining the mechanisms
responsible may offer opportunities to improve outcomes in a majority of patients whose tumors are resected as
part of their therapy. The complex formed between Toll receptor TLR4 and myeloid differentiation factor MD2
defines a major cell surface receptor for lipopolysaccharide (LPS), a gram-negative bacterial antigen that has
been implicated in infectious complications after CRC resection. As the TLR4/MD2 complex is expressed on CRC
cells, we hypothesized that LPS may promote liver metastasis in CRC by stimulating TLR4 signaling. In support
of this hypothesis, we report here that LPS enhances liver metastasis of human CRC cells that express TLR4/MD2
after intrasplenic graft of immunocompromised nudemice. Compared with TLR4 nonexpressing, nonmetastatic
CRC cells, we observed increased in vitro adherence to different extracellular matrices and human umbilical vein
endothelial cells (HUVEC). Furthermore, we observed an increased likelihood of in vivo capture within hepatic
sinusoids after LPS treatment. No differences were apparent in phosphorylation of p38 and MAPK isoforms, but
in metastatic CRC cells expressing surface TLR4 treatment with LPS increased Ser473 phosphorylation of AKT
kinase. We showed that enhanced adherence elicited by LPS in these cells could be blocked at three different
levels, using Eritoran (TLR4 small molecule antagonist), PI-103 (PI3K inhibitor), or anti-b1 integrin blocking
antibodies. Taken together, the results indicate that stimulation of the TLR4/MD2 complex by LPS activates
PI3K/AKT signaling and promotes downstream b1 integrin function, thereby increasing the adhesiveness and
metastatic capacity of CRC cells. Our findings suggest that inhibiting LPS-induced TLR4 signaling could improve
therapeutic outcomes by preventing cancer metastasis during the perioperative period of CRC resection.
Cancer Res; 71(5); 1989–98. �2011 AACR.

Introduction

Colorectal cancer (CRC) is the fourth most common cancer
and the second most common cause of cancer-related deaths
in Canada (1) and the United States (2). As resection of the
primary tumors is the treatment of choice, 30% of patientswith
stage III CRC develop local recurrence or distant metastasis
within 5 years after curative resection (3). Despite lymph node

negative status, 10% of patients with stage I/II diseases still
develop recurrence within 5 years after curative resection (3).
The basis for such high rate of recurrence is poorly understood.

Emerging data suggest surgical resection of CRC itself may
promote local recurrence or distant metastasis (4). On the one
hand, circulating tumor cells (CTC) can be detected in over
20% of the venous drainage blood collected from patients with
lymph node negative CRC during curative resection (5).
Quantity of these CTC can be significantly increased in the
portal venous drainage during surgery suggesting manipula-
tion of primary tumor may disrupt its structural integrity and
increase hematogenous dissemination of tumor cells (6). On
the other hand, surgical resection causes significant tissue
trauma and systemic inflammation and bears risks of post-
operative infectious complications. There are mounting evi-
dences linking systemic inflammation and postoperative
infection to recurrence of CRC (7–10). Surgical stress and
postoperative infection trigger a cascade of inflammatory
response mediated by various inflammatory cell types that
can regulate tumor angiogenesis, secrete various chemokines
and cytokines favoring tumor migration, survival and growth,

Authors' Affiliation: 1LDMcLean Surgical Research Laboratories, Depart-
ment of Surgery, McGill University, 2Meakins-Christie Laboratories, McGill
University Heath Centre Research Institute, and 3Division of Thoracic
Surgery, Department of Surgery, McGill University, Montreal, Quebec,
Canada

R.Y.C. Hsu and C.H.F. Chan contributed to this work equally.

Corresponding Author: Lorenzo E. Ferri, Division of Thoracic Surgery,
McGill University, The Montreal General Hospital, Room L9–112, 1650
Cedar Ave, Montreal, Quebec, Canada H3G 1A4. Phone: 514-934-1934
ex. 44327; Fax: 514-934-4432; E-mail: lorenzo.ferri@mcgill.ca

doi: 10.1158/0008-5472.CAN-10-2833

�2011 American Association for Cancer Research.

Cancer
Research

www.aacrjournals.org 1989

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/71/5/1989/2663391/1989.pdf by guest on 08 D

ecem
ber 2023



and release various proteases facilitating extravasation of CTC
to distant organs (11).

Lipopolysaccharide (LPS), a gram-negative bacterial anti-
gen involved in the intraabdominal infectious complication
from colorectal surgery, can cause significant systemic inflam-
mation and severe sepsis. In addition, LPS-induced systemic
inflammation was shown to increase hepatic recruitment of
cancer cells in mice (12). LPS has been shown to bind directly
to the TLR4/MD2 receptor complex (13, 14) that initiates the
intracellular signaling cascade in a MyD88-dependant or
MyD88-independent manner (15). LPS-induced TLR4 signal-
ing leads to activation of various downstream Mitogen-Acti-
vated Protein Kinases (MAPK) that have been shown to play
key roles in cell proliferation, apoptosis, and adhesion (15–19).
Eritoran (E5564), second-generation lipid A analog, competes
with LPS for the same hydrophobic binding pocket of MD2
and induces a different conformational change than LPS that
reduces the stability of TLR4/MD2 complex and inhibits TLR4
signaling (13, 20).

As TLR4 expression has been found on several cancer cell
types including human CRC cell lines (19, 21–24) and that its
high expression is associated with liver metastasis and poor
clinical prognosis in CRC patients (25), we aim to show the
effects of LPS-induced TLR4 signaling on liver metastasis of
CRC cells. Here we show LPS enhances liver metastasis of HT-
29 cells in athymic nude mice after intrasplenic injection.
These cells are more adherent to different ECM and HUVEC in
vitro and are more likely to be attenuated within the hepatic
sinusoids in vivo after LPS treatment. Although the phosphor-
ylation of p38 and p42/44 (ERK1/2) MAPK remains unaltered,
LPS increases serine-473 phosphorylation of AKT in HT-29
cells. The enhanced adherent effects can be blocked at 3
different levels using Eritoran (TLR4 antagonist), PI 103
(PI3K inhibitor) and anti-b1 integrin functional blocking
antibodies. These data suggest LPS binding to TLR4/MD2
complex signals through PI3K/AKT pathway that activates b1
integrin increasing the adhesiveness and metastatic potential
of CRC cells. Inhibition of LPS-induced TLR4 signaling may
have a therapeutic value in the prevention of cancer metas-
tasis during the perioperative period.

Materials and Methods

Antibodies and reagents
LPS derived from E. coli strain 055:B5, propridium iodide

(PI), bovine serum albumin (BSA), and Poly-HEMA were
purchased from Sigma-Aldrich. Kinase inhibitors (SB203580,
PD184352, PI 103) were purchased from InvivoGen, US Bio-
logical, and Cayman Chemical, respectively. TLR4 antagonist
(Eritoran) was a kind gift from Eisai Inc. Goat polyclonal anti-
human TLR4 antibody was purchased from RnD Systems.
Biotin-conjugated mouse anti-TLR4 antibody (clone HTA125),
biotin-conjugated isotype control mouse IgG2a and Strepta-
vidin–phycoerythrin were purchased from BD Pharmingen.
Rabbit polyclonal anti-MD2 and anti-MyD88 antibodies were
purchased from Abcam Inc. Rabbit monoclonal anti-CD14
antibody was purchased from Epitomics Inc. Mouse mono-
clonal anti-b1 integrin functional blocking antibody (4B4) and

isotype control mouse IgG1 were purchased from Beckman
Coulter. Rabbit polyclonal anti-AKT, anti-phospho-AKT
(Ser473), anti-p44/42 and anti-phospho-p44/42 (Thr202/
Tyr204) antibodies were purchased from Cell Signaling Tech-
nologies, Inc. Mouse monoclonal anti-p38a antibody and
rabbit polyclonal anti-phospho-p38a (Thr180/Tyr182) anti-
body were purchased from Millipore, Inc. Collagen I, collagen
IV, fibronectin and laminin were purchased from Roche
Applied Science. Crystal violet was purchased from EM
Science and carboxyfluorescein succinimidyl ester (CSFE)
was purchased from Invitrogen, Inc.

Cell culture
Human colorectal carcinoma cell lines (HT-29, LS-174T,

CaCO2, and SW1222) were kind gifts from Nicole Beau-
chemin's laboratory (McGill University, Montreal, Canada).
Cells were maintained in a subconfluent state using a-mod-
ified Minimum Essential Media (aMEM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin and strepto-
mycin. Human umbilical vein endothelial cells (HUVEC) were
cultured using Dulbecco's Modified Eagle Medium (DMEM)
supplemented with 20% FBS, 1% penicillin and streptomycin,
10 mmol/LHEPES, 2 mmol/L L-glutamine, 1500 U/mL
heparin, and 37.5ug/mL endothelial cell growth supplement
(Biomedical Technologies). Human leukemic monocyte lym-
phoma cell line U937 was a kind gift from Sabah Hussain's
laboratory (McGill University, Montreal, Canada) and grown
in DMEM supplemented with 10% FBS. All cells were incu-
bated at 37�C with 5% CO2. All cell culture reagents except
endothelial cell growth supplement were purchased from
Wisent, Inc. For LPS treatment, subconfluent cultures of
HT-29 or CaCO2 cells were treated with 1 mg/mL LPS for 4
hours. For TLR4 inhibition, 100 nmol/L Eritoran was added to
the cell culture at the same time as LPS. For p44/42, p38 and
PI3K inhibition, PD184352 (10 mmol/L), SB203580 (5 mmol/L),
and PI 103 (5 mmol/L), respectively, were added 1 hour prior to
the addition of LPS. For b1 integrin blockade, b1 integrin
functional blocking antibody (2.0 mg/mL) or isotype control
IgG1 (2.0 mg/mL) were incubated with single cell suspensions
for 30 minutes on ice after LPS treatment.

Flow cytometry
To detect TLR4 cell surface expression, single cell suspen-

sions were washed with staining buffer (PBS containing 1%
FBS). Cells were then incubated with biotin-conjugated mouse
anti-human TLR4 antibody at a concentration of 20 mL/1 �
106 cells for 30 minutes on ice. After washing with staining
buffer, the cells were mixed with Streptavidin-phycoerythrin
and immediately analyzed with a flow cytometer FACScan and
CellQuest Software. Background staining was determined by
staining cells with biotin-conjugated isotype control mouse
IgG2a followed by Streptavidin–phycoerythrin incubation.

Cell proliferation assay
Cells of 0.2 � 106 with 100 mL of medium were seeded into

each well of 96-well flat bottom plates. Cell proliferation was
assessed by MTT assay kit as described in the manufacturer's
protocol (RnD Systems) at 24, 48, and 72 hours.
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Anoikis assay
Cells of 0.75�106 were seeded onto poly-HEMA coated 48-

well plates. At 12 and 24 hours, 0.1�106 cells were stained with
propridium iodide (5 mg/mL) for 15 minutes at room tempera-
ture and membrane integrity was assessed by flow cytometry.

Extracellular matrix adhesion assay
Ninety-six–well plates were coated with 100 mL/well of

50 mg/mL collagen I, 50 mg/mL collagen IV, 10 mg/mL fibro-
nectin or 20 mg/mL laminin overnight at 4�C and blocked by
1% BSA for 1 hour at 37�C before seeding cells. 5�104 cells
resuspended in 100 mL media were seeded in each well and
incubated at 37�C for 1 hour. Each well was washed gently
with PBS twice and attached cells were stained with 100 mL 1%
crystal violet dissolved in PBS for 1 hour. Wells were washed
with distilled water and left to air-dry overnight. Dyes were
solubilized in 100 mL of 2% SDS at room temperature for
1 hour. Concentration was determined by measuring absor-
bance at 570 nm using a spectrophotometric microplate
reader (Biotek Inc.).

In vitro endothelial adhesion assay
Cells were stained with 25 mmol/L CSFE at room tempera-

ture for 15 minutes. Cells of 10�103 were resuspended in
300 mL of HUVEC media and seeded on top of each HUVEC
monolayer in a 48-well plate at 37�C for 1 hour. After washing
with media and fixed with 4% paraformaldehyde, the number
of adhered CSFE-labeled HT-29 cells was counted using an
inverted fluorescent microscope (Nikon TE300).

Intravital fluorescent microscopy
Cells were stained with 25-mmol/L CSFE at room tempera-

ture for 15 minutes. About 6–8 week-old C57BL6 male mice
(Charles River Canada) were anesthetized using subcutaneous
injections of ketamine and xylazine. The abdomen was opened
with a midline incision and then subcostal incisions. The
falciform ligament was dissected away from the gallbladder
and anterior surface of liver. CSFE-labeled cells of 50�103 were
injected intrasplenically into each animal. Animals were then
placed in a left lateral position on a plexiglass stage and the left
lobe of liver was gently positioned on a glass cover slip that
was then positioned over a 20� microscope objective of an
inverted fluorescent microscope (Nikon TE300). Blood flow to
the liver sinusoids was assessed to eliminate artifacts owing to
severe hypotension. CSFE-labeled cancer cells were visualized
along the edges of the exposed liver using epifluorescence.
Numbers of attenuated fluorescently labeled cancer cells in 10
random microscope fields were counted between 5–10 min-
utes postinjection for each animal. Observer was blinded
regarding to the treatment groups.

Experimental hepatic metastasis assay
Athymic nude mice (Taconic Farms, Inc) were anesthetized

using isoflurane. Spleens were exposed through a small
abdominal incision. 1�106 cells resuspended in 100 mL PBS
were injected intrasplenically and the mice were splenecto-
mized 1 minute later. Mice were sacrificed 5 weeks later.
Surface liver metastases were counted.

Immunoblot analysis
Cells were treated with 1 mg/mL LPS for different time

points (10, 20, 30 60, and 240 minutes). Cells were then lysed in
30 mmol/L Tris-HCl (pH 8.0), 1% Triton X-100, 150-mmol/L
NaCl, 1-mmol/L Na3VO4, 1-mmol/L NaF, 1-mmol/L iodoace-
tamide, 0.5% deoxycholic acid sodium salt, 1-mmol/L phenyl-
methylsulfonyl fluoride, and 10% of a mini EDTA-free Protease
Inhibitor cocktail tablet (Roche Applied Science) for 30 min-
utes on ice and collected by scraping. For the analysis of TLR4,
MD2, CD14, and MyD88 total protein expression, various cell
lines were detached and lysed with 10% SDS lysis buffer. After
removing insoluble debris by centrifugation, supernatants
were collected and protein concentration was quantified by
Bradford protein assay according to manufacturer's instruc-
tion (Bio-Rad Laboratories). For each sample, 20-mg proteins
were separated by 12% SDS-polyacrylamide gel. After transfer
onto PVDFmembranes, nonspecific binding was blocked with
5% milk for 1 hour at room temperature before incubation of
various primary antibodies in a 1:1000 dilution. After washing
extensively with TBS-T buffer (10 mmol/L Tris-HCL (pH 7.4),
100 mmol/L NaCl, and 0.1% Tween-20), the membranes were
incubated with the corresponding HRP-conjugated secondary
antibodies in a 1:5000 dilution. After exposing the membrane
with the Pierce ECL substrate (Fisher) for 5 minutes, chemi-
luminescence was detected by Fuji Medical X-Ray films.

Statistical analysis
The differences between experimental groups were ana-

lyzed using the Student's t-test. In all cases, a P < 0.05 was
considered statistical significant.

Results

Expression of TLR4 signaling molecules in human CRC
cell lines

Four different human CRC cell lines (HT-29, LS174T,
CaCO2, and SW1222) have been tested for the expression of
TLR4, which is essential for the downstream signaling cascade
induced by LPS. Comparing with U937 cells, a monocytic cell
line that is widely known to express TLR4 and responds to
LPS, TLR4 expression was detected at a lower level in all CRC
cell lines tested by immunoblot analyses (Fig. 1A). LS174T cells
seemed to express relatively the lowest level of TLR4. Despite
TLR4 expression detected with immunoblots in these CRC cell
lines, cell surface expression of TLR4 could not be shown in
CaCO2 cells by FACS analysis (Fig. 1B). Furthermore, CaCO2
cells were found to have the lowest level of MD2 and minimal
MyD88 expression (Fig. 1A). These molecules have been
shown to play an important role in LPS-induced TLR4 signal-
ing pathway (15). In sum, HT-29 cells were found to have a
more complete repertoire of TLR4 signaling molecules
whereas CaCO2 cells were very limited.

LPS enhances experimental liver metastasis of HT-29
cells

Given that HT-29 cells express all the necessary components
of LPS-inducedTLR4 signaling, we aim to investigate if LPS can
directly stimulate HT-29 cells and increase their metastatic
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potential. CaCO2 cells lacking TLR4 surface expression were
notusedmainlybecause it is knownasanonmetastatic cell line.
Subconfluent monolayer cultures of HT-29 cells were treated
withorwithoutLPS for 4hours. LPS-treatedoruntreatedHT-29
cells were injected intrasplenically into athymic nude mice.
After 5weeks of incubation,mice injectedwithLPS-treatedHT-
29 cells had a significantly higher number of liver surface
metastatic nodules compared with those with untreated HT-
29 cells (P ¼ 0.031, Fig. 2). Coincubation of LPS and Eritoran
(specific TLR4 antagonist) withHT-29 cells tended to attenuate
the effect exerted by LPS (Fig. 2). These results indicated that
LPS could increase the metastatic potential of HT-29 cells in
vivo via activation of the TLR4 signaling pathway.

LPS does not increase proliferation or survival of HT-29
cells

To decipher the possible mechanism that LPS enhances
liver metastasis, we first examined the proliferative activity of
HT-29 cells with or without LPS treatment. LPS-treated and
untreated HT-29 cells were trypsinized and reseeded into 96-
well plates at the same concentration. At various time points,
using MTT assay, no significant change in cellular prolifera-
tion of HT-29 cells could be shown with LPS pretreatment
(Fig. 3A). Similar result was obtained without trypsinization
and reseeding of HT-29 cells (data not shown).

As proper anchorage to ECM is essential for normal cell
survival, we then examined whether LPS-treated HT-29 cells

were more resistant to anoikis, a form of apoptosis induced by
lack of anchorage to ECM, so that they could survive longer in
the circulation. LPS-treated and untreated HT-29 cells were
kept on suspension by incubating on poly-HEMA coated
plates at 37�C for 12 or 24 hours. Using propridium iodide
staining for dying or dead cells that lack plasma membrane
integrity, no significant difference in the percent cell death
was detected between HT-29 cells pretreated with or without
LPS (Fig. 3B). These results suggest that enhanced metastatic
potential of LPS-treated HT-29 cells were not dependent on
cellular proliferation or resistance to anoikis.

LPS enhances endothelial adhesion and hepatic
recruitment of HT-29 cells

Without any evidence of proliferative and apoptotic
changes after LPS treatment, we sought to determine if any
alteration in the adhesive properties of CRC cells could explain
the enhanced metastatic phenotype. To investigate the adhe-
sive properties of HT-29 cells after LPS treatment, LPS-treated
HT-29 cells were incubated on confluent monolayers of
HUVEC at 37�C for 1 hour. A 50% increase in endothelial
adhesion was observed in LPS-treated versus untreated HT-29
cells (P < 0.05; Fig. 4A). The latter effect was partially reversed
by Eritoran indicating again the direct involvement of LPS-
induced TLR4 signaling (Fig. 4A).

Using intravital fluorescent microscopy of the liver (12),
recruitment of fluorescently labeled cancer cells can be
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Figure 1. Expression of TLR4 signaling molecules in human CRC cell lines. A, immunoblot analysis using anti-TLR4, MD2, CD14 and MyD88 antibodies.
B, cell surface expression of TLR4 detected by flow cytometry using anti-TLR4 antibody. Filled histograms denote background fluorescence; Line
histograms denote TLR4 staining; Y-axis represents the number of cells; X-axis represents the level of fluorescence (FL-2) in a logarithmic scale
[geometric mean: 14.4 (U937—positive control cell line), 12.1 (HT29) and 5.1 (CaCO2)].
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directly observed in the hepatic sinusoidal circulation after
intrasplenic injection. A 2-fold increase in hepatic recruitment
was observed in LPS-treated HT-29 cells comparing with
untreated HT-29 cells (P < 0.05; Fig. 4B). This effect was
not observed in CaCO2 cells (Fig. 4B) that lacked cell surface
expression of TLR4 suggesting the involvement of LPS/TLR4
signaling at the cell membrane level. The latter speculation
was further reinforced by the partial reversal using Eritoran, a
specific TLR4 antagonist (Fig. 4B). These results suggest LPS
induces TLR4 signaling cascade leading to an increase in
adhesive properties of HT-29 cells that likely have direct
impact on endothelial adhesion, hepatic recruitment, and
liver metastasis.

LPS-induced adhesion of HT-29 cells is b1 integrin
dependent
To investigate the molecular changes responsible for the

increased adhesion after LPS treatment, cell surface levels of
various adhesion molecules were tested by FACS analysis. No
change in the expression levels of ICAM1, NCAM, CEACAM,

sialyl-LeX, and various integrins (a2, a5, aV, and b1) could be
detected in the HT-29 cells after 4 hours of LPS treatment by
FACS analysis (data not shown).

Despite the lack of evidence of increased surface expres-
sion level of the adhesion molecules tested, increased bind-
ing to various ECM substrates, collagen in particular, were
observed in HT-29 cells, but not CaCO2 cells, after LPS
treatment (Fig. 5A and B). These effects were completely
reversed by coincubation of LPS with Eritoran in HT-29 cells
and not observed in CaCO2 cells suggesting again a TLR4-
dependent mechanism (Fig. 5A and B). As HT-29 cells bound
mostly to collagen I/IV and much less to fibronectin and
laminin, activation of b1 integrin, the major subunit for
collagen binding (26), was most likely responsible for such
phenotypic changes. The latter speculation was further
supported by the complete phenotypic reversal through
functional blockade of b1 integrin by specific antibody in
vitro (Fig. 5C) and in vivo (Fig. 4C). These findings suggest
increased adhesion of HT-29 cells induced by LPS was TLR4
and b1 integrin dependent.
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PI3K/AKT is the central link between LPS/TLR4
signaling and b1 integrin-mediated adhesion

LPS-induced TLR4 signaling has been shown to activate a
number of kinases including p38 MAPK, p42/44 (ERK1/2)
MAPK and AKT in various cell types (15–19, 27). As CaCO2

cells lacked cell surface expression of TLR4 and were unre-
sponsive to LPS treatment, no change of phosphorylation in
these kinases following LPS treatment was observed as
expected (Fig. 6A). In contrast, the serine-473 residue of
AKT was phosphorylated upon LPS treatment in HT-29 cells

whereas no change in p38 and p42/44 (ERK1/2) MAPK phos-
phorylation was observed (Fig. 6B).

Upon LPS/TLR4 binding, PI3K has previously been shown
to physically bind to MyD88, an immediate downstream
signaling molecule of TLR4, and to mediate phosphorylation
of its immediate downstream effector molecule AKT (27). To
confirm the central role of PI3K/AKT in LPS-induced TLR4
signaling, phosphorylation of AKT and LPS-induced collagen
binding were inhibited by Eritoran (TLR4 inhibitor) and PI 103
(a PI3K inhibitor), but not SB203580 (p38 inhibitor) or
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PD184352 (p42/44 inhibitor) (Fig. 6C and D). In sum, these
results suggest LPS can induce PI3K/AKT pathway via TLR4
signaling that subsequently transduces an inside-out signaling
cascade activating b1 integrin (28).

Discussion

Emerging evidences suggest systemic inflammation and
postoperative infections lead to cancer recurrence (7–10).
The mechanisms by which postoperative gram-negative

bacterial infections promote cancer recurrence are poorly
understood. Although LPS-induced systemic inflammation
can increase cancer cell recruitment to the hepatic sinusoids
(12) and liver metastasis in vivo (29), knowledge on the direct
impact of LPS on the metastatic potentials of cancer cells in
vivo is very limited. In this study, we have documented an
increase in adhesion to endothelial cells and various ECM
substrates in vitro and an enhancement in hepatic recruitment
and liver metastasis in vivo by human colorectal cancer cells
through LPS-induced TLR4 signaling.
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Although LPS may alter proliferation and apoptosis in
cancer cells (30, 31), and potentially explain the increased
metastasis with LPS incubation of cancer cells, we did not
show any proliferative or apoptotic changes in vitro after 4
hours of LPS treatment. Thismay be owing to the duration and
dose of LPS used. However, these findings do not exclude the
possibility that these cells have a better capacity to survive and
grow in the in vivo environment after hepatic recruitment. In
fact, some studies have shown that LPSmay induce secretion of
immunosuppressive cytokines and proangiogenic chemokine
(30–32). Nonetheless, themajor phenotypic change observed in
this study is the LPS-induced adhesion of human CRC cells.
Despite the big debate on whether cell adhesion or sinusoidal
size restriction play a more important role in hepatic recruit-
ment of CTC, cell arrest in hepatic sinusoids has been recently
shown to be reduced by anti-b1 or b4 integrin antibodies (33)
and anti-sialyl-LeX antibodies in vivo (12) suggesting cell adhe-
sion plays a significant role in hepatic recruitment of cancer
cells. Barthel et al. have recently shown that cell surface level of
sialyl-LeX moieties, selectin ligands contributing to the initial
step of endothelial adhesion of circulating cells, can be upre-
gulated by overexpressing a1,3-fucosyltransferases in prostate
cancer cells (34). Although changes of cell surface level of sialyl-
LeX could not be detected 4 hours after LPS treatment in our
present study, we have recently determined that sialyl-LeX

surface level on esophageal cancer cells can be increased after
48 hours of LPS treatment (Rousseau and Ferri, manuscript in
preparartion). However, the ability of LPS to induce the expres-
sion of fucosyltransferases remains to be elucidated.

In contrast to the study published by Andrews et al. in
which surface expression of b1 integrin was significantly
increased in LS-174T cells, another metastatic human CRC
cell line, as early as 1 hour after LPS treatment (35), cell surface
expression level of b1 integrin did not change significantly in
our HT-29 cells. Instead, we have seen an increase in b1
integrin-dependent adhesion, indicating a functional activa-
tion rather than an up-regulation or translocation onto the
cell surface, which has been previously reported (36, 37). On
the one hand, CTC-associated integrins can mediate cell
adhesion by interacting directly with different ECM compo-
nents within the hepatic sinusoids. Collagen has been shown
to be present in the space of Disse where CTC can gain access
through the fenestration on the hepatic sinusoidal endothe-
lium (38, 39). On the other hand, integrins can bind directly to
their binding partners on endothelial cells. For instance,
VCAM1 has been shown to be the hepatic endothelial ligand
of integrin a4b1 (40, 41).

Although LPS-mediated signaling in host cells is becoming
clearer, the signaling pathways linking TLR4 binding and b1
integrin activation in cancer cells are largely unknown. In host
cells, PI3K/AKT has previously been shown to be immediately
downstream of MyD88-dependent LPS-induced TLR4 signal-
ing (27). Upon LPS binding to TLR4, PI3K was shown to
physically interact with MyD88 subsequently leading to the
phosphorylation of AKT. Additionally, AKT was shown to
activate b1 integrin as part of the inside-out signaling cascade
(28). Through PI3K inhibition, we have shown here the essen-
tial role of PI3K/AKT in the crosstalk between LPS-induced
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TLR4 downstream signaling cascade and integrin inside-out
signaling pathway in CRC cells. On the contrary, p38 and p44/
42 MAPK inhibitors failed to show independently any sig-
nificant blockade of collagen binding, a b1 integrin-dependent
adhesion (26). These results suggest that these MAP kinases
may play a redundant role or may not be involved in this
process.
This novel LPS-induced signaling pathway represents an

interesting therapeutic target for patients undergoing curative
resection of colorectal cancers. We have shown for the first
time that LPS treatment on cancer cells can increase liver
metastases in vivo and the cellular changes can be inhibited at
three different levels using Eritoran (TLR4 antagonist), PI 103
(PI3K inhibitor) and anti-b1 integrin functional blocking anti-
body. TLR4may be a better therapeutic target among the three
candidates identified in this signaling pathway for the follow-
ing reasons: (1) LPS binding to TLR4 is the triggering event in
the cancer cells; (2) PI3K and b1 integrin are expressed inmany
cell types and involved in many normal cellular processes;
nonspecific effects are anticipated with their inhibition. How-
ever, based on the conditions tested in this study, Eritoran can
only partially reverse the LPS effect in our in vivo experiments.
Further studies are required to optimize the pharmacody-
namics and pharmacokinetics of Eritoran for the in vivo
inhibition of TLR4 in the context of cancer metastasis.
Although these results may raise a significant interest in

cancer therapeutics, especially on those patients who have
infectious complications, the real question is when to treat
these patients, that is, before or after anastomotic leak or
abscess formation. Gram-negative bacterial infectious com-
plications are frequent after colonic and rectal surgery, and
the LPS/TLR4 signaling pathway could potentially be targeted

in patients who are at high risk of developing these complica-
tions (e.g., obesity, malnutrition, prior-radiotherapy, periph-
eral vascular disease, and rectal anastomoses). Furthermore,
there is evidence suggesting colon cancer cells may be exposed
to low levels of systemic endogenous LPS within the tumors
(42) in the absence of infections. Thus, targeting this pathway
may be proven beneficial to patients with or without post-
operative infectious complication.

In conclusion, we have shed light on the molecular and
cellular mechanism of LPS-induced signaling pathway in CRC
cells in this manuscript. LPS-induced TLR4 signaling in CTC
contributes to their adhesiveness and metastatic capability
and the blockage of this signaling pathway may prove to be
beneficial to eradicate distal organmetastases. Further studies
may include preclinical and clinical trials of the therapeutic
agents used.
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