Physiologic Cold Shock Increases Adherence of Moraxella catarrhalis to and Secretion of Interleukin 8 in Human Upper Respiratory Tract Epithelial Cells

Violeta Spaniol,1 Rolf Troller,1 and Christoph Aebi1,2

1Institute for Infectious Diseases and 2Department of Pediatrics, University of Bern, Switzerland

Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid and prolonged downshifts of environmental temperature when humans breathe cold air. In the present study, we show that a 26°C cold shock up-regulates the expression of UspA1, a major adhesin and putative virulence factor of M. catarrhalis, by prolonging messenger RNA half-life. Cold shock promotes M. catarrhalis adherence to upper respiratory tract cells via enhanced binding to fibronectin, an extracellular matrix component that mediates bacterial attachment. Exposure of M. catarrhalis to 26°C increases the outer membrane protein–mediated release of the proinflammatory cytokine interleukin 8 in pharyngeal epithelial cells. Furthermore, cold shock at 26°C enhances the binding of salivary immunoglobulin A on the surface of M. catarrhalis. These data indicate that cold shock at a physiologically relevant temperature of 26°C affects the nasopharyngeal host-pathogen interaction and may contribute to M. catarrhalis virulence.

Moraxella catarrhalis colonizes the surface of the human nasopharynx and is a major cause of acute otitis media in children and exacerbations of chronic obstructive pulmonary disease (COPD) in adults [1, 2]. Clinical studies have revealed that the prevalence of both colonization and infections caused by this pathogen display seasonal variation and are greatest in winter [3–6]. This phenomenon is incompletely understood. Viral infections occurring during the cold season pave the way for subsequent secondary bacterial infection by T cell–mediated release of interferon γ, which inhibits bacterial phagocytosis by macrophages [7] and increases the expression of adhesion receptors on epithelial cells (eg, carcinoembryonic antigen-related cell adhesion molecule 1) [8]. Also, virus-induced inflammation results in exposure of extracellular matrix proteins, which facilitates adherence of bacterial pathogens.

In addition—and this has received little attention in the literature—the human nasopharyngeal flora is repeatedly exposed to rapid downshifts of environmental temperature. Breathing cold air (eg, −1°C at 10–20 L/min) reduces the nasopharyngeal temperature from 34°C at room temperature to ~25°C within several minutes and for extended periods of time [9]. Temperature is a critical environmental factor, and cold shock (as it has been characterized for Escherichia coli) affects the bacterial transcriptome in a concerted attempt to maintain essential cellular functions [10]. Our previous findings established that a 26°C cold shock results in up-regulation of the UspA1 adhesin of M. catarrhalis and enhances adherence to human conjunctival cells [11]. This response occurs in both phylogenetic lineages of M. catarrhalis and entails adaptive events in multiple outer membrane (OM) components. Cold shock, which occurs when humans inspire cold air [9], is a physiologic phenomenon during the cold season and can affect the host-pathogen interaction in...
several ways. First, enhanced adherence may increase the bacterial density on the nasopharyngeal surface. Studies in children have indicated that the density of *M. catarrhalis* in the nasopharynx is positively associated with prolonged respiratory tract symptoms [12] and a greater likelihood of otitis media [13]. Second, temperature-induced variation in OM composition, symptoms [12] and a greater likelihood of otitis media [13].

Cold shock enhanced bacterial adherence to pharyngeal cells. Cold shock induced an elevated interleukin-8 (IL-8) response in comparison with those for bacteria incubated at 37°C. Furthermore, cold shock increased the binding of salivary immunoglobulin A (IgA) to the surface of *M. catarrhalis*.

MATERIALS AND METHODS

Cell lines and growth conditions. Detroit 562 pharyngeal cells (ATCC CCL-138) were maintained in Eagle minimal essential medium (Invitrogen), supplemented with 10% of heat-inactivated fetal calf serum (FCS), 2 mmol/L L-glutamine, 1 mmol/L sodium pyruvate (Sigma), 1% nonessential amino acids (Sigma), 100 U/mL penicillin, and 100 μg/mL streptomycin at 37°C in 5% CO₂. Hep-2 laryngeal cells (ATCC CCL 23) were grown in the Eagle minimal essential medium supplemented with 10% FCS, 2 mmol/L L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin.

Bacterial strains and culture conditions. *M. catarrhalis* strain O35E, its isogenic uspA1 (O35E.uspA1) and lpxA (O35E.lpxA) mutants, and the clinical isolates 300, 415, and 420 have been described elsewhere [11, 19]. Bacteria were cultured at 37°C and 200 rpm in brain-heart infusion (BHI) broth (Difco) or on BHI agar plates in an atmosphere containing 5% CO₂. Cold shock experiments were performed as described elsewhere [11]. Bacteria were cultured overnight at 37°C, resuspended in fresh BHI medium, and grown to an optical density at 600 nm (OD₆₀₀) of 0.3. Subsequently, bacteria were exposed to 26°C or 37°C, respectively, for 3 h (unless otherwise stated), harvested by centrifugation, resuspended in cell culture medium, adjusted to an OD₆₀₀ of 1 (~5 × 10⁶ colony-forming units/mL), and used for infecting epithelial cells at indicated multiplicities of infection. To investigate inactivated *M. catarrhalis*, bacteria were re-suspended in phosphate-buffered saline (PBS) and heat-killed by incubation at 60°C for 1 h.

Preparation of *M. catarrhalis* OM vesicles and LOS. OM vesicles (OMVs), composed of OMPs and LOS [20], and purified LOS from strain O35E exposed for 3 h to either 26°C or 37°C, respectively, were prepared as described elsewhere [19, 21].

Cell infection. Cells were seeded onto 24 well plates at a density of 2.5 × 10⁵ cells/well in medium without antibiotics 24 h before infection. After adhesion, cells were starved in serum-free medium for 18 h to avoid increased adherence of bacteria, considering the ability of serum components (such as fibronectin) to facilitate binding [22, 23] and to get rid of the serum growth factors that can influence cytokine secretion. Cells were infected with *M. catarrhalis* at the indicated multiplicity of infection, centrifuged for 5 min at 165 g, and incubated at 37°C in 5% CO₂. To assess the proinflammatory effects of OMPs or LOS, cells were stimulated with purified OMVs or LOS at the indicated concentrations. Lipopolysaccharide (LPS) from *Salmonella enterica* (Sigma) was used as a positive control. Cell viability was evaluated morphologically and by trypan blue exclusion.

IL-8 enzyme-linked immunosorbent assay. Cells were infected as described above. Growth media were collected, centrifuged, and stored at −80°C. IL-8 was determined using a commercially available enzyme-linked immunosorbent assay (ELISA) kit according to the manufacturer’s protocol (R&D Systems).

Adherence assay. The ability of *M. catarrhalis* exposed to 26°C or 37°C, respectively, to adhere to epithelial cells was measured, as described elsewhere [11, 24].

Assessment of messenger RNA stability. Messenger RNA (mRNA) stability was determined as described elsewhere [25, 26]. An overnight culture of strain O35E was resuspended in fresh BHI broth and grown to an OD₆₀₀ of 0.3. Subsequently, bacteria were exposed to 26°C or 37°C, respectively, for 1 h. Portions (5 mL) were then removed and mixed with an equal volume of 50 mmol/L sodium azide and kept on ice. Rifampicin (Sigma) was added to the rest of the bacterial cultures at a final concentration of 150 μg/mL. Additional 5-mL portions of the cultures were removed after 2, 5, and 10 min and treated as described above. RNA was isolated and used for complementary DNA synthesis as described elsewhere [11]. To assess for DNA contamination, RNA samples were also run without reverse transcriptase. Quantitative real-time polymerase chain reaction (PCR) was performed in triplicate for both target (*uspA1* and *recA*) and normalizer (16S ribosomal RNA [rRNA]) genes. Primers and probes for *uspA1*, *recA*, and 16S rRNA were used as described elsewhere [11, 27]. Relative quantification of gene expression was performed using the comparative threshold method. The ratios obtained after normalization were expressed.
Physiologic Cold Shock of Moraxella catarrhalis

Figures 1. Increases in adherence of Moraxella catarrhalis to epithelial cells of the upper respiratory tract due to cold shock. Shown is adherence of strain O35E, its isogenic mutant O35E.uspA1, and isolates 300, 415, and 420 to Detroit 562 (A and C) and Hep-2 (B) cells in vitro after exposure to 26°C or to 37°C for 3 h, using a 30-min incubation period for attachment. The level of adherence is expressed as the percentage of bacteria attached to human cells relative to that for the original inoculum added to the well. Means ± 1 standard deviation for 2 or 3 independent experiments performed in triplicate are shown. The corresponding OMP profiles of M. catarrhalis strain O35E exposed to 26°C or 37°C for 3 h were visualized by Coomassie brilliant blue staining (D). *P < .05 for 26°C versus 37°C (1-way analysis of variance [A and B] or t test [C]).

Flow cytometry. The capacity of M. catarrhalis to bind to fibronectin was analyzed by flow cytometry [22]. Bacteria grown to mid-logarithmic phase were exposed to either 26°C or 37°C for 3 h. Subsequently, the OD₆₀₀ was adjusted to 0.2, and 200-µL aliquots were centrifuged, washed in PBS–1% bovine serum albumin (BSA), resuspended, and incubated in 200 µL of 50 µg/mL fibronectin (Sigma) for 1 h. Bacteria were harvested and incubated for 1 h at room temperature in 200 µL of a 1:100 dilution of mouse anti–human fibronectin monoclonal antibody (Sigma) for 1 h. Bacteria were washed, incubated for 30 min in 200 µL of a 1:100 dilution of Alexa 488–conjugated goat anti–mouse antibody (Invitrogen), transferred to 2 mL of PBS containing 1% paraformaldehyde, and analyzed on a FACScan cytometer using CellQuest software (version 4.2; BD Biosciences). Anti–human fibronectin antibody and Alexa 488–conjugated anti–mouse antibody were added separately as negative controls.

The ability of M. catarrhalis to bind to salivary and colostrum IgA (Sigma) was analyzed as described elsewhere [17].

Statistical analysis. Data were expressed as mean ± 1 standard deviation (SD). Differences between groups were analyzed by a 2-tailed t test and 1- or 2-way analysis of variance (ANOVA) with a Bonferroni posttest using Prism software (version 5.01; GraphPad). P < .05 was defined as statistically significant.

RESULTS

Increases in adherence of M. catarrhalis to epithelial cells of the upper respiratory tract due to cold shock. Because cold shock induces expression of UspA1, we investigated whether it affects the attachment of M. catarrhalis strain O35E to human pharyngeal and laryngeal epithelial cells. As shown in Figure 1, cold shock significantly enhanced adherence to pharyngeal (2.5-fold; Figure 1A) and laryngeal (3-fold; Figure 1B) cells, in comparison with exposure to 37°C. Furthermore, cold shock increased adherence of other M. catarrhalis clinical isolates to pharyngeal cells (Figure 1C), indicating that this effect is a general characteristic of M. catarrhalis that express UspA1. To evaluate whether increased adherence at 26°C is attributable to UspA1 only, the isogenic mutant O35E.uspA1 was tested. The
Figure 2. Increased levels of *Moraxella catarrhalis uspA1* and *recA* mRNA stability due to cold shock. *M. catarrhalis* strain O35E, grown to midlogarithmic phase (optical density read at 600 nm of 0.3), was exposed for 1 h to 26°C or 37°C. RNA isolated at different time points after the addition of rifampicin was analyzed by quantitative real-time reverse-transcription polymerase chain reaction to determine the amount of *uspA1* (A) and *recA* (B) transcripts. The percentage of mRNA remaining at each time point was determined. Results are expressed as means ± 1 standard deviation for 2 or 3 separate experiments performed in triplicate. *P* < .05 for 26°C versus 37°C (2-way analysis of variance).

Figure 3. Binding of *Moraxella catarrhalis* to fibronectin. Strain O35E and its UspA1-deficient mutant (O35E.upsA1) were exposed to 26°C or 37°C for 3 h, harvested, and incubated with soluble fibronectin, followed by a mouse anti–human fibronectin antibody, Alexa 488–conjugated anti–mouse antibody was added, followed by flow cytometry analysis. Representative flow cytometry profiles of *M. catarrhalis* strain O35E (A) and O35E.upsA1 (B) after exposure at 26°C (gray) or 37°C (black) show UspA1-dependent binding to soluble fibronectin. The dotted line represents the negative control (bacteria incubated with secondary antibodies only). The geometric mean fluorescence intensity ± 1 standard deviation for 2 experiments performed is shown in panel C. *P* < .05 for 26°C versus 37°C (1-way analysis of variance).

Absence of UspA1 substantially reduced adherence of M. catarrhalis to both cell lines (Figures 1A and 1B), demonstrating that UspA1 is a key adhesin; however, a cold shock effect was still observed in the mutant, indicating that other adhesins may also be involved. This concept is supported by comparative analysis of OMPs visualized by Coomassie blue staining, demonstrating some differences in the OMP profile of strain O35E exposed to the different temperatures (Figure 1D).
Physiologic Cold Shock of *M. catarrhalis* • JID 2009:200 (15 November) • 1597

Figure 4. Increase in the outer membrane protein–mediated release of the proinflammatory cytokine interleukin 8 (IL-8) in Detroit 562 epithelial cells due to cold shock. Cells were either incubated for 16 h with increasing doses of heat-inactivated strain O35E (A) and isolates 300, 415, and 420 (B) exposed to 26°C or 37°C or stimulated with OMP isolated from *Moraxella catarrhalis* exposed to 26°C or 37°C (C). IL-8 secretion in the supernatants was measured by an enzyme-linked immunosorbent assay. A representative experiment of 2 or 3 independent experiments is shown. Results are expressed as means ± 1 standard deviation of duplicate wells. *P < .05 for 26°C versus 37°C (2-way analysis of variance).

Figure 5. Lack of effect of cold shock on immunostimulatory properties of lipooligosaccharide (LOS) deficiency. A, Detroit 562 epithelial cells were infected (multiplicity of infection, 10) for 16 h with the heat-inactivated *M. catarrhalis* strain O35E or the LOS-deficient mutant O35E.lpxA, which were exposed to either 26°C or 37°C. B, Interleukin 8 (IL-8) secretion by LOS-stimulated Detroit 562 cells. Cells were stimulated for 16 h with LOS isolated from strain O35E, which was exposed to either 26°C or 37°C at the indicated concentrations. Lipopolysaccharide (LPS) (10 μg/mL) isolated from *Salmonella enterica* was used as a positive control. IL-8 secretion in the supernatant was measured by an enzyme-linked immunosorbent assay. Results are expressed as means ± 1 standard deviation for 2 separate experiments performed in duplicate. *P < .05 for 26°C versus 37°C (2-way analysis of variance).
Enhanced binding of fibronectin due to cold shock. UspA1 and, in some strains, UspA2 mediate adherence to epithelial cells by binding to cell-associated fibronectin [22]. In strain O35E, binding to fibronectin is exclusively dependent on UspA1 [22, 28]. Because a temperature drop from 37°C to 26°C induces an increase in surface expression of UspA1, we investigated whether it also affects binding to fibronectin. Strain O35E and its UspA1-deficient mutant were grown to mid-logarithmic phase, exposed to 26°C or 37°C, and incubated with soluble fibronectin. Binding to fibronectin was significantly increased (63%) when bacteria were exposed to 26°C ($P < .05$) (Figures 3A and 3C). In contrast, the UspA1-deficient mutant did not bind to fibronectin (Figures 3B and 3C). These results indicate that the ability to bind to fibronectin is strongly enhanced by cold shock–induced UspA1 expression.

Inducement of IL-8 release in pharyngeal epithelial cells due to cold shock. To study the contribution of cold shock to the proinflammatory response, we infected Detroit cells with bacteria grown at 37°C or after a temperature downshift to 26°C. Heat inactivation was performed before infection of cells to prevent bacterial replication during prolonged exposure at 37°C. Interaction between host cells and bacteria was investigated by comparing the release of IL-8 in cells after 16 h of incubation. Dose-specific IL-8 responses are shown in Figures 4A (O35E) and 4B (clinical isolates 300, 415, and 420). Cold-shocked bacteria induced a significantly greater release of IL-8 ($P < .05$). Similar (although not statistically significant) results for IL-8 secretion were obtained when pharyngeal cells were infected with the isogenic mutant O35E::uspA1 (data not shown). Thus, cold-shocked M. catarrhalis whole cells induce a greater proinflammatory IL-8 response in pharyngeal epithelial cells than do control bacteria incubated at 37°C.

Enhancement of IL-8 release due to OMVs isolated from cold-shocked bacteria. During infections, M. catarrhalis releases OMVs that contain OMPs and LOS [29]. OMVs are known to induce the secretion of various proinflammatory mediators, including IL-8, which contributes to bacterial pathogenesis [15]. To address the question of whether cold shock affects the immunostimulatory properties of the OM, we stimulated Detroit cells for 16 h with OMVs isolated from strain O35E exposed to either 26°C or 37°C and assessed IL-8 secretion. As shown in Figure 4C, OMVs isolated from M. catarrhalis grown at 26°C induced greater IL-8 release than did OMVs isolated from bacteria grown at 37°C. Similar results for IL-8 secretion were observed when pharyngeal cells were stimulated with OMVs isolated from the isogenic UspA1-negative mutant (data not shown).

Immunostimulatory properties of LOS not affected by cold shock. To study the contribution of LOS to the cold shock–induced inflammatory response, we assessed IL-8 secretion using the isogenic lpxA mutant of strain O35E [19, 30]. Detroit pharyngeal cells were infected for 16 h with heat-inactivated M. catarrhalis wild-type strain O35E and the LOS-deficient mutant O35E::lpxA, both exposed to either 26°C or 37°C. As shown in Figure 5A, the LOS-deficient mutant exposed at both temperatures elicited levels of IL-8 similar to the wild-type strain incubated at 37°C. To investigate whether cold shock affects the immunostimulatory properties of purified LOS, we stimulated pharyngeal cells for 16 h with LOS (1–10 μg/mL) isolated from strain O35E exposed to both temperatures. Again, there was no difference in IL-8 secretion (Figure 5B). Furthermore, the LOS-stimulated pharyngeal cells produced significantly lower levels of IL-8 than did the cells treated with whole bacteria or OMVs.

Increases in sIgA binding on the surface of M. catarrhalis due to cold shock. Salivary and sputum IgA antibodies are known to react with OMPs and LOS [17, 18]. Given that cold shock induces UspA1, we hypothesized that a temperature downshift might increase surface binding of sIgA. We preincubated saliva samples from healthy adults with M. catarrhalis grown at 37°C or 26°C and determined sIgA binding by flowed cytometry. Figures 6A and 6C demonstrate significantly increased binding of salivary IgA on the surface of cold shock–induced M. catarrhalis ($P < .05$). The absence of UspA1 significantly decreased binding of IgA (Figures 6B and 6C), and cold shock had no significant effect. The absence of expression of other major OMPs, such as UspA2 and Hag, had little influence on IgA binding to M. catarrhalis (data not shown). Similar cold shock–dependent IgA binding was found using IgA isolated from human colostrum (data not shown). Thus, UspA1 is required for the maximal binding of salivary IgA on the surface of cold shock–induced M. catarrhalis.

Impairment of the adherence to pharyngeal cells due to binding of sIgA to M. catarrhalis. Because sIgA binds to UspA1, we investigated whether it also affects bacterial adherence to Detroit cells. Bacteria exposed to either 26°C or 37°C were incubated with or without sIgA and layered on confluent Detroit cells; adherence was then determined. Precoating of M. catarrhalis with sIgA significantly impaired the adherence to pharyngeal epithelial cells (Figure 6D). While binding of sIgA similarly inhibited (∼3-fold) the adherence of M. catarrhalis exposed to both temperatures, the adherence of IgA-coated M. catarrhalis after cold shock exceeded the adherence of IgA-coated bacteria grown at 37°C.

DISCUSSION

We have demonstrated in vitro that cold shock imitating physiologic downshifts in human nasopharyngeal temperature increases M. catarrhalis adherence to pharyngeal and laryngeal epithelial cells (Figure 1). This effect is mediated by increased expression and/or function of several surface adhesins. Foremost, rapid downshift of temperature from 37°C to 26°C in-
Physiologic Cold Shock of *M. catarrhalis* • JID 2009:200 (15 November) • 1599

creases the expression of UspA1, a trimeric autotransporter adhesin that mediates binding to the host cell surface via cell-associated fibronectin [22]. Our data indicate that fibronectin binding was significantly increased when *M. catarrhalis* was exposed to 26°C (*P* < .05) (Figures 3A and 3C). Clinical experiments have revealed that *Staphylococcus aureus* isolates that exhibited greater adhesion to fibronectin and endothelial cells led to persistent bacteremia [31]. Therefore, the finding that cold shock increases the adherence of *M. catarrhalis* to upper respiratory tract cells and enhances binding to fibronectin could be clinically relevant during the cold season by temporarily increasing the organism’s virulence.

Our results indicate that UspA1 is not the only cold shock–induced adhesin. Enhanced adherence was also observed in the UspA1-deficient mutant, indicating that other adhesins may also be involved. This observation warrants additional investigation because *M. catarrhalis* expresses several adhesins that interact with different host cell receptors, whose levels of expression appear to be specific to cell type [22, 32–34]. This strategy could enable the organism to colonize different regions of the respiratory tract.

The cold shock response in bacteria is organized as a complex stimuon in which posttranscriptional events play an important role [10]. It was recently demonstrated that cold shock–dependent alterations in transcript abundances in *S. aureus* can be attributed mainly to alterations in mRNA stability [26]. Thus, we analyzed whether increased expression of UspA1 is a direct result of cold-induced stabilization of mRNA molecules and found that 26°C stabilizes *uspA1* transcripts (Figure 2A).

The proinflammatory cytokine IL-8 plays a pivotal role in mucosal inflammation during respiratory tract infections [35]. We demonstrate that cold-shocked *M. catarrhalis* enhances the release of IL-8 in pharyngeal epithelial cells in comparison with bacteria incubated at 37°C (Figures 4A and 4B). An enhanced proinflammatory response was also observed when epithelial cells were stimulated with OMVs isolated from bacteria exposed to 26°C (Figure 4C), thus indicating that cold-shock conditions affect the immunostimulatory properties of OMPs. Greater local concentrations of IL-8 may promote the recruitment of inflammatory cells, which cause respiratory tract symptoms (e.g., purulent nasal discharge, swelling and edema of the Eustachian tube, and purulent otitis media). Pharyngeal epithelial cells infected with the *M. catarrhalis* mutant that lacked expression isolated from human colostrums for 30 min and layered on confluent Detroit 562 epithelial cells; the number of adherent bacteria was determined after a 30-min incubation period. The level of adherence is expressed as the percentage of bacteria attached to human cells relative to that for the original inoculum added to the well. Means ± 1 SD for 3 independent experiments performed in triplicate are shown. *P* < .05 for 26°C versus 37°C (1-way analysis of variance).
of UspA1 showed a similar degree of IL-8 release as did cells infected with the wild-type strain, suggesting that *M. catarrhalis*-induced IL-8 release is not dependent on UspA1 (or at least is so to a lesser degree).

LOS is an important virulence factor inducing proinflammatory responses in related bacteria, such as *Haemophilus influenzae* [36], *Neisseria meningitidis* [37], and *Neisseria gonorrhoeae* [38]. Our data, however, demonstrate that *M. catarrhalis* LOS appears to be a minor contributor to the stimulation of IL-8 by epithelial cells and that its inflammatory properties are not dependent on cold shock.

Respiratory tract infections typically are mucosal, and protection against them is at least in part mediated by mucosal immune responses. Asymptomatic colonization with *M. catarrhalis* is associated with a greater frequency of sputum IgA than COPD exacerbation, indicating that IgA may protect against infection [39]. Here, we demonstrate that cold shock increases UspA1-mediated binding of sIgA to the surface of *M. catarrhalis*. This emphasizes its role as an important target of protective immune responses. Consequently, children who lack UspA1-specific sIgA may be more susceptible to *M. catarrhalis* infections, particularly after exposure to cold air. This concept is supported by the fact that the presence of sIgA against the pneumococcal surface protein PspA in early childhood was significantly associated with a lower risk of pneumococcal acute otitis media [40].

We also found that precoating bacteria with sIgA from human colostrum inhibited bacterial adherence to pharyngeal epithelial cells. In contrast, the presence of sIgA increases pneumococcal adherence to pharyngeal epithelial cells [41]. UspA1 is a major adhesin of *M. catarrhalis*, and anti-UspA1 IgA antibodies may have the potential to block the attachment of *M. catarrhalis* to epithelial cells by inhibiting binding to receptors on the host cell surface. Adherence of sIgA-coated *M. catarrhalis* after cold shock was greater than that of sIgA-coated bacteria incubated at 37°C, indicating that cold-shocked bacteria may require more sIgA to be prevented from attaching to epithelial cells than bacteria exposed to 37°C.

Interestingly, during infection, *M. catarrhalis* releases OMVs carrying UspA1 that bind to human C3 and protect *H. influenzae* from complement-mediated killing [29]. Hence, increased presence of UspA1 in *M. catarrhalis* OMVs after cold shock may have a collateral effect by promoting the survival of *H. influenzae* during coinfection.

Thus, “catching a cold”—unquestionably a viral infection in most instances—may also induce adaptive events in the residual upper respiratory tract flora, whose clinical implications (based on our study results) deserve to be the focus of future studies addressing this particular aspect of the transition from asymptomatic colonization to bacterial secondary infection. This study demonstrates that a 26°C cold shock up-regulates OM adhesin expression of *M. catarrhalis* by prolonging the mRNA half-life, promotes bacterial adherence to host cells via enhanced binding to fibronectin, increases the OMP-mediated proinflammatory activity of pharyngeal epithelial cells, and enhances sIgA binding on the bacterial surface. These findings indicate that cold air in the human upper respiratory tract may affect the nasopharyngeal host-pathogen interaction.

References

11. Heiniger N, Troller R, Meier PS, Aebi C. Cold shock response of the cold-shocked bacteria may enhance sIgA binding on the bacterial surface. These findings indicate that cold air in the human upper respiratory tract may affect the nasopharyngeal host-pathogen interaction.
22. Tan TT, Nordstrom T, Forsgren A, Riesbeck K. The respiratory patho-
32. Hill DJ, Edwards AM, Rowe HA, Virji M. Carcinomembrinous antigen-related cell adhesion molecule (CEACAM)-binding recombinant poly-
peptide confers protection against infection by respiratory and uro-
33. Hill DJ, Edwards AM, Rowe HA, Virji M. Carcinomembrinous antigen-related cell adhesion molecule (CEACAM)-binding recombinant poly-
peptide confers protection against infection by respiratory and uro-