Estimation of Atmospheric Motion Vectors from Kalpana-1 Imagers

C. M. KISHTAWAL, S. K. DEB, P. K. PAL, AND P. C. JOSHI

Atmospheric Sciences Division, Meteorology and Oceanography Group, Remote Sensing Applications Area, Space Applications Centre, ISRO, Ahmedabad, India

(Manuscript received 19 November 2008, in final form 2 June 2009)

ABSTRACT

The estimation of atmospheric motion vectors from infrared and water vapor channels on the geostationary operational Indian National Satellite System Kalpana-1 has been attempted here. An empirical height assignment technique based on a genetic algorithm is used to determine the height of cloud and water vapor tracers. The cloud-motion-vector (CMV) winds at high and midlevels and water vapor winds (WVW) derived from Kalpana-1 show a very close resemblance to the corresponding Meteosat-7 winds derived at the European Organisation for the Exploitation of Meteorological Satellites when both are compared separately with radiosonde data. The 3-month mean vector difference (MVD) of high- and midlevel CMV and WVW winds derived from Kalpana-1 is very close to that of Meteosat-7 winds, when both are compared with radiosonde. When comparing with radiosonde, the low-level CMVs from Kalpana-1 have a higher MVD value than that of Meteosat-7. This may be due to the difference in spatial resolutions of Kalpana-1 and Meteosat-7.

1. Introduction

During the 1970s and early 1980s, satellite winds were produced using a combination of automated and manual techniques (Leese et al. 1971; Young 1975). The operational derivation of atmospheric motion vectors such as cloud-motion vector (CMV) and water vapor winds (WVW) from infrared and water vapor channels of three successive geostationary satellite images started in the early 1970s (Fujita 1968; Hubert and Whitney 1971). The uses of geostationary water vapor imagery have allowed the determination of upper-level moisture content and winds in cloud-free regions as well. Furthermore, for the last decade the extraction of atmospheric motion vectors from satellite images [like IR and water vapor (WV)] has become an important component for operational numerical weather prediction (NWP). With the advancement of different numerical weather prediction and data assimilation techniques at different operational centers, a significant contribution of both middle and upper-air wind information is derived from satellite observations that use the movement of cloud and water vapor tracers to determine winds operationally several times per day. These satellite wind products, assimilated in both regional- and global-scale models, result in positive impacts on weather forecasts (Kelly 2004; Bedka and Mecikalski 2005), especially over the tropics. The substantial works related to the derivation of operational satellite winds and their impacts in numerical weather prediction are currently available from the Geostationary Operational Environmental Satellite (GOES) series (Nieman et al. 1997; Velden et al. 1997), the European Meteosat series (Schmetz et al. 1993), and the Japanese Geostationary Meteorological Satellite series (Tokuno 1996). However, not much work has been done for wind retrieval from the meteorological geostationary Indian National Satellite System (INSAT) series (e.g., INSAT-3A, Kalpana-I). In this study, an attempt has been made to derive the atmospheric motion vectors operationally using the data from these INSAT platforms. With the availability of IR-window (10.5 \(\mu m\)) and WV (6.3 \(\mu m\)) channels on the Kalpana-I Very High Resolution Radiometer (VHRR), an attempt has been made here to derive cloud-tracked winds (900–100 hPa) and WV winds (500–100 hPa) from INSAT images. Sections 2 and 3 briefly summarize the retrieval technique of winds from IR and WV channels. The method for validating the retrieved winds and...
verification results are given in section 4. Section 5 summarizes the conclusions from this study.

2. Algorithm for cloud-motion winds retrieval

The schematic diagram shown in Fig. 1a summarizes the procedure for the detection of CMV winds using Kalpana-1 IR data. Three consecutive images at 30-min intervals are used to determine the CMVs. The following steps are involved in this process: 1) image "thresholding," 2) feature selection and tracking for CMV extraction, 3) use of image triplet and basic quality control, and 4) height assignment. These steps are briefly described below.

a. Image thresholding

Gray-level threshold values (GV) are predetermined for the identification of land/ocean, low-level clouds (900–700 hPa), and high-level clouds (100–300 hPa). These values were determined by histogram analysis of a large number of images (Prasad et al. 2004). Threshold values for inverted IR images (10 bit) are fixed as follows: if GV ≥ 520 then it is land/ocean and no vector is extracted, if 521 ≤ GV ≤ 640 then it is low clouds, and if 641 ≤ GV ≤ 880 then it is high clouds.

b. Feature selection and tracking for CMV extraction

At the National Environmental Satellite, Data, and Information Service (NESDIS), the initial features are selected by locating the highest pixel brightness values for each target domain and computing the local gradients around those locations (Nieman et al. 1997). Any gradients greater than 15 K are assigned as target locations, and prospective targets also undergo a spatial coherence analysis (Coakley and Bretherton 1982) to filter out unwanted targets. At the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the tracers in the Meteosat (first-generation satellites) images are selected using multispectral histogram analysis (Tomassini 1981), which extracts the dominating scenes in an image segment corresponding to the area of 32 × 32 IR pixels or about 160 km × 160 km at the sub-satellite point. Later the selected templates undergo a spatial coherence technique (Coakley and Bretherton 1982) to filter the image, to enhance the upper-level cloud. Because the spatial resolution of the infrared channel of Kalpana-1 (8 km) is coarser relative to GOES (5 km) or Meteosat-7 (5 km), we used a 20 × 20 window (called a template) to identify features in Kalpana-1 images. The maximum and average GV of a template are used to determine the “class” of the template (e.g., low cloud/high cloud). Further, if the distribution of gray levels is “coherent” within a template, it is assumed that it does not contain a traceable feature, and such templates are rejected. Coherence is measured in terms of the variance of GV within the template. If a traceable feature is found in the first image, the match of this template is searched in the second image within a “search window” of 64 × 64 pixels, centered at the same point as the template window. The 20 × 20 template in the second image that lies within the search window should have the same class as the template in the first image; otherwise the template in the second window is rejected.

The matching is done using the “cross correlation” (CC) method (Schmetz et al. 1993), in which the CC is defined as

\[
CC = \frac{\sum (g(i,j) - \bar{g})(h(i,j) - \bar{h})}{\sigma_g \sigma_h},
\]

where \(g\) and \(h\) represent the spatial distribution of GV in the first and second image templates, respectively, overbars denote spatial averaging, and \(\sigma\) is the standard deviation of GV. Templates with CC < 0.8 are rejected. The center of the template with the maximum value of CC is considered to be the location of the feature in the second image. This is the first set of the motion vector for the given template location. Then the template is shifted in the \(x\) and \(y\) directions and the motion vectors are determined using the procedure given above.

c. Use of image triplet and basic quality control

The step described in section 2b is repeated for the second and third IR images, and a second set of motion vectors is generated. In both of the above sets of CMVs there are several vectors that are spurious. This may be due to several factors. For example, clouds may not always act as rigid bodies. Some clouds may dissipate, and other clouds may form. Also, with atmospheric motion, clouds may change shape, and maximum correlation may appear at some false location. Some rectification of this problem can be done using basic quality-control measures. The quality check is generally based on vector acceleration checks and simple threshold techniques that compare the derived vectors with their surrounding vectors or with collocated forecast fields. All vectors that show unrealistic retrievals or speed and directional deviations with respect to the surroundings by larger than a predefined value are rejected. In this study, we have employed the automatic quality-control procedure used at EUMETSAT (Holmlund 1998). A brief description is given in appendix A.
FIG. 1. The schematic diagrams of the procedure for the estimation of (a) cloud-motion winds and (b) water vapor winds from Kalpana-1 imagers.
d. Height assignment

The old method of assigning heights to cloud-motion winds is the infrared-window sampling (Fritz and Winston 1962) method. In this method the window-channel brightness temperatures (BT) within the target area and a mean value for the coldest 20% of the sample were used to represent the temperature at cloud top. Later, this temperature was compared with a numerical forecast of the vertical temperature profile to arrive at the height of the cloud. Although this method had serious problems in determining the heights of semitransparent cirrus (Menzel et al. 1983), it remains a credible backup method in the current automated processing scheme when the more sophisticated height-assignment methods fail to deliver the correct height.

The carbon dioxide (CO2) slicing algorithm (Menzel et al. 1983) remains the most accurate and dependable means of assigning heights to semitransparent tracers (Nieman et al. 1993). As derived by Smith et al. (1970), the ratio of the deviations in observed radiances and the means of assigning heights to semitransparent tracers still remains the most accurate and dependable means of assigning heights to semitransparent tracers (Nieman et al. 1993). As derived by Smith et al. (1970), the ratio of the deviations in observed radiances and the corresponding clear-air radiances for the IR and CO2 absorption bands viewing the same field of view can be expressed in terms of cloud amount, emissivity for ice cloud, and the Planck blackbody radiance for opaque cloud. Planck blackbody radiance can also be a function of cloud-top pressure. Because the emissivities are approximately equal for the IR and CO2 channels, clear-sky radiances are computed from the radiative transfer equation and a numerical forecast of the vertical temperature and moisture profiles, which are then used to calculate the cloud-top pressure. This method is very successful in computing the cloud tracer’s height in GOES-7 data, most of the time (Nieman et al. 1997). If the satellite is lacking a CO2-absorption channel, the H2O-intercept algorithm (Schmetz et al. 1993) becomes the best method for calculating the height of semitransparent cloud tracers. Comparisons of the two methods have demonstrated that the H2O-intercept algorithm is an adequate replacement (Nieman et al. 1993), especially for upper-level tracers. The algorithm is based on the fact that the radiances from a single-level cloud layer for two spectral bands vary linearly with cloud amount. Radiances from the IR window and H2O absorption bands are measured and compared with Planck blackbody radiances as a function of cloud-top pressure. A numerical forecast of temperature and humidity profiles in the region is used for the necessary radiative transfer calculations. Measured and calculated radiances should agree for clear-sky and opaque cloud conditions. The cloud-top height is inferred from the linear extrapolation of measured radiances onto the calculated curve of opaque cloud radiance.

However, for this study and for the first time, an empirically derived height assignment technique based on a genetic algorithm (GA) is developed and tested. A very short description of the GA is given in appendix B. A number of studies have been reported using GA for the prediction of space–time variability of the sea surface temperature (Alvarez et al. 2000), estimation of surface heat fluxes (Singh et al. 2006), and monthly mean air-sea temperature differences (Singh et al. 2005) from satellite observations. In this study, an attempt has been made to use this empirical approach to determine the height of the cloud tracers.

The development of the retrieval algorithm for the estimation of cloud-tracer height involves a number of steps. In the first step, a number of independent variables from the imagers such as brightness temperature of the coldest pixel, warmest pixel, cosine of latitude and zenith angle information of the center of the template window, and so on are considered in a large set of possible parameters. In the second step we choose randomly a large number of Meteosat-5 IR images and corresponding cloud-motion winds derived by EUMETSAT from a 1-month (October 2006) period as the training/validation dataset. Approximately 120 000 valid wind vectors were available in the above dataset, but only 20% of the data were further selected randomly for the purpose of training, and the remaining data were used for validation. A small ratio of training and validation data size is expected to ensure the robustness of the retrieved functions and also prevents the possibility of overfitting. A 20×20 template window was considered to be “cloudy” if the average brightness temperature of the 25 coldest pixels was less than 220 K. The GA is an automatic method that determines the most fitting relationship between dependent and independent fields using a random search and optimization criteria. In this case, the optimized GA solution retains only the following independent parameters that are needed for height assignment of a tracer: 1) average BT of the 25 coldest pixels, 2) average BT of the 25 warmest pixels, and 3) cosine of latitude at the center of the template window.

One advantage of the GA method is that the complex and often nonlinear relations can be obtained in functional forms that are easier to use than lookup tables. Later, a mapping was defined between Meteosat-5 and Kalpana-1 using the sensor response function (SRF) of both satellites so that the function generated using Meteosat-5 can be used in Kalpana-1 CMVs. Last, these functions for cloud tracers are used to find the tracer height in Kalpana-1 through the mapping. The tracer heights derived by the above method are in hectopascals. The current GA-based approach is an ad hoc method and tries to mimic statistically the operational height assignment method used in Meteosat-5, which has its own limitations. A
3. Algorithm for water vapor winds retrieval

Water vapor images are used for detection and movement of water vapor tracers both in clouds and in cloud-free regions. A procedure for the detection of WVW using Kalpana-1 WV imager data is presented here, and a schematic diagram is shown in Fig. 1b. Three consecutive images at 30-min intervals are used to determine the WVW. The following steps are involved in the estimations: 1) feature selection and tracking for WVW extraction, 2) use of image triplet and quality control, and 3) height assignment. These steps are briefly described below.

a. Tracer selection and tracking for WVW extraction

The original WV images are filtered to isolate frequencies that are of physical interest from those that are not. The filtered images are reconstructed by using the equation

\[I_j = \frac{(I_{j+1}^o + 2I_j^o + I_{j-1}^o)}{4}, \]

(2)

Here \(I^o \) represents the old gray values of the images and \(j \) represents the \(j \)th pixel. This is called the triangular one-two-one filtering function. This filtering function is used to remove high-frequency noise or low-frequency trends from the images. Water vapor tracers are generally identified using the local bidirectional gradients in a template of specified size and compared with empirically determined thresholds to identify the features with sufficient variability (Velden et al. 1997), and those that pass the threshold value are identified as tracers for cloud-free environments. The pixel with the maximum bidirectional gradient is the location of the tracer. However, in this study tracers are selected by computing the local image anomaly in a 20 \(\times \) 20 template window, both in clouds and cloud-free regions. The local image anomaly is calculated using the following formula:

\[a(i, j) = \sum_i \sum_j [I(i, j) - \bar{I}], \]

(3)

where \(I(i, j) \) represents the gray value for the \((i, j) \) pixel of a template window and the bar represents the mean of gray values within that template. The anomaly-based tracers are generally produced by a smooth feature field in comparison with the gradient-based features. This difference can help in reducing the tracking errors (Deb et al. 2008).
The cross-correlation technique is used operationally for tracking the tracer between two WV images in most operational centers. However, in this study the degrees of matching between two successive images are calculated by the Nash–Sutcliffe model efficiency (Nash and Sutcliffe 1970) coefficient E. It is defined as

$$E = 1 - \frac{\sum_{i=1}^{n} (I_i - I_s)^2}{\sum_{i=1}^{n} (I_i - \bar{I})^2}.$$

where I_i and I_s are the variance of the gray values for the template window and search window and \bar{I} is the average of variance of the template window. Here $n = 20 \times 20$ is the size of the template window and corresponding template of the same size in the searching area. The size of the searching area in the subsequent image is taken as 64×64. The coefficient E is normalized to values between $-\infty$ and $+1$. An efficiency $E = 1$ corresponds to a perfect match, $E = 0$ means that the search window is as accurate as the mean of the template window, and $E < 0$ implies a lack of matching between the template and search window. The closer the model efficiency is to 1, the more accurate is the matching between the windows. A cutoff value of $E = 0.8$ is defined, below which a matching of target is not considered. Toward the higher end (e.g., as $E \to 1.0$), the value of E approaches r^2, where r is the correlation coefficient. Thus a value of $E = 1$ is exactly equivalent to a correlation of 1.0 between two objects. The maximum value of E is chosen as the best fit for tracking. One of the main advantages of this matching technique is that it reduces the possibility of multiple maxima, because the parameter E has a higher sensitivity to differences between two features when compared with the maximum cross-correlation coefficient (MCC). Thus, when the degree of mismatch between two objects increases, the value of E falls more sharply when compared with that of MCC, making E a better index for matching two objects. The application of this tracking method in the estimation of WVW using Meteosat-5 images has shown some improvement over the Indian Ocean region (Deb et al. 2008).

b. Use of image triplet and basic quality control

The previous step in section 3a is repeated for the second and third WV images, and a second set of motion vectors is generated. In both the above sets of WVWs there are several vectors that are spurious, and rectification of this problem is done using the automatic quality-control procedure used at EUMETSAT (Holmlund 1998). This technique is used for quality control of CMV winds using infrared images and is discussed in appendix A.

c. Height assignment

The height assignment of WVW is a long-standing problem. In cloud-free regions, the radiometric signal from pure WV structure is a result of emittance over a finite layer and is further complicated by the radiance contributions from multiple moist layers (Weldon and Holmes 1991). The challenge is to assign a height that best represents the motion of the moisture feature. The most common height assignment technique for water vapor tracers is to take the effective brightness temperature and assess the height at which displacement of the tracers is attributed (Velden et al. 1997). In this method, the brightness temperature of the target box is averaged and matched with a collocated model guess temperature profile and the level of optimum fit is then used to assign the initial pressure height. This pressure height is then corrected with 3D objective analysis using a recursive filter (Hayden and Purser 1995). This method is currently operational at NESDIS. At EUMETSAT, the clear-sky WVW available with a 160-km resolution are derived from the Meteosat satellites using the single-level height assignment based on the cluster equivalent blackbody temperature method. Another method based on the WV contribution function calculated from a radiative transfer model was also used to calculate the WV tracer’s height (Rattenborg and Holmlund 1996).

As discussed in detail in section 2d and in appendix B, the GA-based empirical technique was also used to determine the height of the WV tracers. In the first step, a number of independent variables from the imagers such as BT of the coldest pixel, BT of the warmest pixel, cosine of latitude, zenith angle information of the center of template window, and so on are considered in a large set of possible parameters. In the second step we choose randomly a large number of Meteosat-5 WV images and corresponding water vapor winds derived by EUMETSAT from a 1-month (October 2006) period as the training/validation dataset. After successful training, separate optimized functions were generated for cloudy and noncloudy scenes (templates). Like in section 2d, the optimized GA solution retains 1) an average BT of the 25 coldest pixels, 2) an average BT of the 25 warmest pixels, and 3) the cosine of latitude at the center of the template window as independent parameters for height assignment. However, the form of the function changes from cloudy to noncloudy tracers in WV images (Deb et al. 2008). Later a mapping is defined between Meteosat-5 and Kalpana-1 using SRF of both satellites so that the function generated using Meteosat-5 can be used in Kalpana-1 WVW. Last, the functions for cloudy and noncloudy regions are used to find the WV tracer heights in Kalpana-1 through the mapping. The current
GA-based approach is an ad hoc method and tries to statistically mimic the operational height assignment method used in Meteosat-5, which has its own limitations. A typical example of WV winds derived over the Indian Ocean region (50°S–50°N, 30°–130°E) from Kalpana-1 VHRR valid at 0000 UTC 12 September 2007 using the algorithm presented here (Fig. 3a) and Meteosat-7 VHRR derived at EUMETSAT (Fig. 3b) are shown. It shows that the present technique is able to produce the wind with uniform coverage, that large-scale and synoptic-scale features are well captured, and that the vertical distribution of information is between the 100- and 500-hPa portion of the troposphere.

4. Validation with radiosonde and Meteosat-7 data

The quantitative evaluations of derived winds are calculated according to the Coordination Group for Meteorological Satellites (CGMS) guidelines (Tokuno 1998). According to CGMS guidelines, the vector difference (VD) between an individual wind (subscript i) and the collocated rawinsonde wind (subscript r) used for verification is given by

\[VD = \left[(U_i - U_r)^2 + (V_i - V_r)^2 \right]^{1/2}. \] (5)

The speed bias (BIAS) is calculated as

\[BIAS = \frac{1}{N} \sum_{i=1}^{N} \left[\left(U_i^2 + V_i^2 \right)^{1/2} - \left(U_r^2 + V_r^2 \right)^{1/2} \right]. \] (6)

The mean vector difference (MVD) is reported as

\[MVD = \frac{1}{N} \sum_{i=1}^{N} (VD_i). \] (7)

The standard deviation (SD) about the MVD traditionally reported is

\[SD = \left[\frac{1}{N} \sum_{i=1}^{N} (VD - MVD)^2 \right]^{1/2}. \] (8)

The root-mean-square error (RMSVD) traditionally reported is the square root of the sum of the squares of the MVD and the SD:

\[RMSVD = \left[MVD^2 + SD^2 \right]^{1/2}. \] (9)

It is suggested that one report MVD and SD, along with mean radiosonde speed (SPD) and number of collocation (NC) with radiosonde data. Here the unit of MVD, RMSVD, SD, SPD, and BIAS is meters per second. These statistics can provide a fixed measure of product quality over time and can be employed in determining the observation weight in objective data assimilation.

To validate the algorithm, we applied these techniques to 3 months (September, October, and November 2007) of Kalpana-1 images (both IR and WV) consisting of two triplets (centered at 0000 and 0730 UTC) for each day, and the corresponding EUMETSAT atmospheric motion vectors are acquired. The height of EUMETSAT
winds is derived by EUMETSAT height-assignment techniques. The derived CMVs as well as WVWs obtained by the present algorithm from Kalpana-1 and corresponding EUMETSAT winds (derived at EUMETSAT using Meteosat-7) are compared with collocated radiosonde for each day by calculating different statistical parameters as discussed above for the region 50°N–50°S and 30°–130°E. During collocation, the nearest radiosonde and retrieved winds within a 1° × 1° grid box are compared. Levelwise error statistics were then generated (high, mid-, and low levels) according to the CGMS guidelines. The points for which either the difference of speed between retrieved and radiosonde winds was more than 30 m s⁻¹ or the difference of direction was more than 90° were considered to be erroneous points (due either to wrong retrieval or to errors in radiosonde observation) and were filtered out from the validation dataset. A total of around 5%–7% of cases lie beyond this category, out of which 1%–2% are due to the speed differences and the rest are due to directional differences for both satellites for this period of validation.

a. Cloud-motion winds

Table 1 shows the values of statistical parameters calculated for CMV winds for the months of September, October, and November 2007 as derived from Meteosat-7 (upper part of table) and Kalpana-1 (lower part of table) when both are compared with radiosonde data. The parameters are calculated considering all acquisitions together. During the validation of 0000 UTC acquisitions all available 0000 UTC radiosonde data are used. However, the number of radiosonde observations for 0730 UTC acquisitions is very small; all available radiosonde data between 0600 and 0900 UTC are used for validation at 0730 UTC. It is seen from Table 1 that for the month of September at high and midlevels, the statistical parameters for Meteosat-7 and Kalpana-1 are very close to each other, whereas at the low-level RMSVD for Meteosat-7 and Kalpana-1 they are 4.8 and 7.3 m s⁻¹, respectively. This may be due to the difference of spatial resolution of Kalpana-1 and Meteosat-7. The horizontal resolution of Kalpana-1 is 8 km, whereas in Meteosat-7 it is 5 km. Similar to September 2007, the statistical parameters for Meteosat-7 and Kalpana-1 in October 2007 are also very close to each other at high and midlevels, whereas at the low level RMSVD for Meteosat-7 and Kalpana-1 are 5.3 and 9.8 m s⁻¹, respectively. However, it is surprising that at all three levels the statistical values in November 2007 are very close each other, which was not case for September and October. Another interesting feature is that total NC in Kalpana-1 is larger at high levels than the corresponding Meteosat-7 derived winds in all of the cases. However, low-level NCs of Kalpana-1 are less when compared with low-level NCs of Meteosat-7. This may be due to the difference of cloud-tracer height for the low-level winds in Meteosat-7 and Kalpana-1 cloud-motion winds. Another set of validations is also carried out by collocating Meteosat-7, Kalpana-1, and radiosonde data together. Table 2 shows the statistical parameters calculated in this collocation procedure for the three different cases of 1) Meteosat-7 versus radiosonde, 2) Kalpana-1 versus radiosonde, and 3) Kalpana-1 versus Meteosat-7, respectively. It is also seen in Table 2 that Meteosat-7 and Kalpana-1 values are very close to each other at all three levels when both are compared with radiosonde data. However, when Kalpana-1 and Meteosat-7 are compared with each other, RMSVD at high, mid-, and low levels is coming out to be 6.0, 6.1, and 3.5 m s⁻¹.
respectively. The 3-month average MVD of high- and midlevel CMV derived from Kalpana-1 is 8.96 and 8.56, respectively; however, the corresponding figures from Meteosat-7 winds are 8.63 and 7.73, when both are compared with radiosonde. However, when comparing with radiosonde the low-level CMVs from Kalpana-1 have an MVD value of 7.63 while Meteosat-7 has 5.0.

b. Water vapor winds

Like CMVs, WVWs derived from Kalpana-1 and Meteosat-7 are also validated with radiosonde data for September, October, and November 2007. Unlike the CMV winds, where validation is done for three different levels, here validation is done for the high level (100–500 hPa) only (according to CGMS guidelines), because derived WV winds lie between 100 and 500 hPa. Table 3 shows the values of statistical parameters calculated for WV winds for September, October, and November 2007 as derived from Meteosat-7 and Kalpana-1, when both sets are compared with radiosonde separately. The parameters are calculated by considering all acquisitions together. During the validation of 0000 UTC acquisitions, all available 0000 UTC radiosonde data are used; for 0730 UTC acquisitions, all available radiosonde data between 0600 and 0900 UTC are used. It is seen from Table 3 that all of the statistical parameters for Meteosat-7 and Kalpana-1 are very close to each other for September 2007. For example, the RMSVD value for Kalpana-1 is 9.9. Similar to September 2007, the RMSVD values for Meteosat-7 and Kalpana-1 are 9.2 and 9.5, respectively, in October 2007 when both are collocated separately with radiosonde. Similar trends are also observed in November 2007 for both Meteosat-7 and Kalpana-1, when RMSVD values are 9.8 and 10.4, respectively. One interesting feature is that total NC in Kalpana-1 is higher than the corresponding Meteosat-7 derived winds in all cases. Another set of validations is also carried out by collocating Meteosat-7, Kalpana-1, and radiosonde data together. In this case, because the number of collocations for a single month is not very high, winds from all 3 months are considered together. Table 3 also shows the statistical parameters calculated in this collocation for the three different cases: (i) Meteosat-7 versus radiosonde, (ii) Kalpana-1 versus radiosonde, and (iii) Kalpana-1 versus Meteosat-7, respectively. It is also seen from Table 3 that Meteosat-7 and Kalpana-1 values are very close to each other when both are compared with radiosonde data. However, when Kalpana-1 and Meteosat-7 are compared, RMSVD is 7.9 m s$^{-1}$.

5. Conclusions

In this paper a description of the retrieval algorithms of cloud-motion and water vapor winds from Indian geostationary satellite Kalpana-1 imagers over the Indian Ocean region is presented. For the first time, an empirical height-assignment technique based on GA is developed for operational use. The current GA-based approach is computationally inexpensive and looks promising; however, it is an ad hoc method and tries to mimic statistically the operational height-assignment method used in Meteosat-5, which has its own limitations. These errors add to the errors from other primary sources such as characteristic noise of the Kalpana-1 imager. However, GA uses only image information such as average BT of the 25 coldest pixels, average BT of the 25 warmest pixels, and cosine of latitude at the center of the template window, and external information such as numerical model outputs (both for tracking and height assignment) is not used in this algorithm. Moreover, the use of a numerical model forecast as the background field can help in tracking and improve the accuracy of height assignment. This also enhances the probability of derived winds to be accepted by the numerical models. One advantage of the GA method is that the complex and often nonlinear relations can be obtained in functional forms that are easier to use than lookup tables.

The CMVs and WVWs derived from Kalpana-1 for September, October, and November 2007 are validated against independent radiosonde data. To get the confidence of the winds estimated from Kalpana-1, the

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MET vs RS</th>
<th>KAL vs RS</th>
<th>KAL vs MET</th>
<th>MET vs RS</th>
<th>KAL vs RS</th>
<th>KAL vs MET</th>
<th>MET vs RS</th>
<th>KAL vs RS</th>
<th>KAL vs MET</th>
<th>MET vs RS</th>
<th>KAL vs RS</th>
<th>KAL vs MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVD</td>
<td>8.7</td>
<td>9.2</td>
<td>5.7</td>
<td>10.0</td>
<td>7.5</td>
<td>6.1</td>
<td>3.1</td>
<td>3.5</td>
<td>3.5</td>
<td>3.1</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>RMSVD</td>
<td>9.2</td>
<td>9.7</td>
<td>6.0</td>
<td>10.0</td>
<td>7.5</td>
<td>6.1</td>
<td>3.1</td>
<td>3.5</td>
<td>3.5</td>
<td>3.1</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>SD</td>
<td>1.6</td>
<td>1.7</td>
<td>1.08</td>
<td>0.02</td>
<td>0.06</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BIAS</td>
<td>-4.9</td>
<td>-3.3</td>
<td>-1.5</td>
<td>-1.7</td>
<td>-1.7</td>
<td>0.0</td>
<td>1.2</td>
<td>3.2</td>
<td>2.0</td>
<td>1.2</td>
<td>3.2</td>
<td>2.0</td>
</tr>
<tr>
<td>SPD</td>
<td>18.1</td>
<td>18.1</td>
<td>18.1</td>
<td>15.7</td>
<td>15.7</td>
<td>15.7</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>NC</td>
<td>118</td>
<td>118</td>
<td>118</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
corresponding winds from EUMETSAT using Meteosat-7 imagers are also acquired and validated. The WVWs derived from Kalpana-1 have very good resemblance to the corresponding winds from Meteosat-7 derived at EUMETSAT. This may be due to the robust tracer selection and tracking procedure used in the derivation of WVW. The 3-month average MVD of high- and mid-level CMV and WVW winds derived from Kalpana-1 is 8.96, 8.56, and 8.40, respectively; however, the corresponding figures from Meteosat-7 winds are 8.63, 7.73, and 8.73, when both are compared with radiosonde. However, when comparing with radiosonde the low-level CMVs from Kalpana-1 have an MVD value of 7.63, whereas Meteosat-7 has 5.00. This difference may be because of the empirical height-assignment technique used for this estimation as well as the difference of spatial resolution between Kalpana-1 and Meteosat-7. The retrieval verification, besides being assessed against collocated radiosondes and other satellite-derived winds, can also be assessed, indirectly, from NWP verification. Work in this direction has already been initiated to see the performance of Kalpana-1 derived winds by assimilating them in the numerical models. The use of NWP short-term forecasts for tracking and height assignment is one of the future plans. Also, in this study, the height retrieved by the EUMETSAT algorithm was used as truth for the training procedure of GA. In the future, we will use more independent observations of cloud heights for development of the height-assignment algorithm. Observations from some state-of-the-art satellite sensors like the satelliteborne Geoscience Laser Altimeter System provide valuable information on cloud height. However, the statistical approach described will be totally dependent on a different satellite, a different sensor, and a different wind retrieval algorithm. Furthermore, with upgrades of the network and computing resources, the implementation of other height-assignment techniques (i.e., IR-window and H₂O-intercept techniques) used by different operational agencies will be taken as a high priority.

Acknowledgments. The authors thank the three anonymous reviewers for their critical and insightful comments/valuable suggestions, which were helpful in substantially improving the content and quality of presentation of this manuscript. The authors are thankful to EUMETSAT for providing one-month Meteosat VHRR images and the corresponding derived winds, which were used for the development of the height assignment algorithm and also the derived winds of September, October, and November 2007 from Meteosat-7 for validation. The encouragement and help from the director and deputy director of RESA/SAC/ISRO Ahmedabad are acknowledged. The authors are also thankful to Deputy Director Shri A. S. Kiran Kumar of SEDA for his critical comments and suggestions during the initial phase of the development of this algorithm.

APPENDIX A

Quality-Control Procedure

The scheme derives a quality indicator (QI) for each individual vector based on the properties of the vector itself and its consistency with other vectors. The scheme consists of four different tests, which are normalized by a hyperbolic tangent function that returns a value between 0 and 1. A weighted average of these individual quality indicators is then used for the screening of poor quality vectors from final output. If S is the mean “speed” of a vector computed from two pairs of images, then different quality functions are computed as follows. The direction consistency function is

$$ DCF = 1.0 - \left\{ \tanh \left[\frac{\Delta \theta}{A_1 \exp(-S/B_1) + C_1} \right] \right\}^D_1. $$

(A1)
The speed consistency function is
\[\text{SCF} = 1.0 - \left\{ \tanh \left[\frac{\Delta S}{\max(A_S, B_S) + C_S} \right] \right\}^{D_S}. \quad (A2) \]

The vector consistency function is
\[\text{VCF} = 1.0 - \left\{ \tanh \left[\frac{\Delta V}{\max(A_V, B_V) + C_V} \right] \right\}^{D_V}. \quad (A3) \]

In the above formulation, \(\Delta \theta, \Delta S, \) and \(\Delta V \) represent the difference of direction (in degrees), difference of speed, and the length of the difference vector between the first and second satellite wind component. Quantities \(A_S, B_S, C_S, \) and \(D_S \) are constants. The final quality indicator of a wind vector is given as
\[\text{QI} = \frac{w_1 \times DCF + w_2 \times SCF + w_3 \times VCF}{3.0}. \quad (A4) \]

All vectors with \(\text{QI} < 0.6 \) are rejected. The values of the constants \(A_S, B_S, C_S, \) and \(D_S \) and the weights \((w_1, w_2, \) and \(w_3) \) are assigned according to the procedure used in the EUMETSAT (2005) report.

APPENDIX B

Genetic Algorithm: Basic Concept

The GA is one of the best techniques (Szpiro 1997; Alvarez et al. 2000; Singh et al. 2006) to determine the optimum relationship between the independent and dependent parameters. The genetic algorithm is programmed to approximate the equation, in symbolic form, that best describes the relationship between independent and dependent parameters. The GA considers an initial population of potential solutions that is subjected to an evolutionary process, by selecting those equations (individuals) that best fit the data. The strongest strings (made up from a combination of variables, real numbers, and arithmetic operators) choose a mate for reproduction whereas the weaker strings become extinct. The newly generated population is subjected to mutations that change fractions of information. The evolutionary steps are repeated with the new generation. The process ends after a number of generations, determined a priori by the user.

Let \(p() \) be a smooth mapping function that explains the relationship between a desired variable \(x \) and a set of independent variables \((a, b, c, d, e, \ldots) \) so that
\[x = p(a, b, c, d, e, \ldots). \quad (B1) \]

First, for an amplitude function \(x \), a set of candidate equations for \(p() \) is randomly generated. An equation is stored as a set of characters that define the independent variables, \(a, b, c, d, e, \) and so on, in the above equation, and four arithmetic operators \((+, -, \times, \text{and})\). A criterion that measures how well the equation strings perform on a training set of the data is its fitness to the data, defined as the sum of the squared differences between data and the parameter derived from the equation string. The equations with best fits are then selected to exchange parts of the character strings between them while the equations with less fits are discarded. Last, a small percentage of the equation strings, single operators, and variables are mutated at random. The process is repeated for a large number of times to improve the fitness of the evolving equations. The fitness strength of the best-scoring equation is defined as
\[R^2 = 1 - \frac{\sum (x_i - \langle x_i \rangle)^2}{\sum (x_i - \langle x_i \rangle)^2}. \quad (B2) \]

where \(\Delta^2 = \sum (x_i - \langle x_i \rangle)^2 \). \(x_i \) is the parameter value estimated by the best scoring equation, \(\langle x_i \rangle \) is the corresponding “true” value, and \(\langle x_i \rangle \) is the mean of the true values of \(x \). Szpiro (1997) has shown the robustness of the GA in forecasting the behavior of a one-dimensional chaotic dynamical system.

REFERENCES

