Searching for the Ideal Endobronchial Blocker

To the Editor:
We read with great interest the editorial in which Edmond Cohen1 extensively reviews the use of endobronchial blockers (BBs) versus double-lumen tubes. We support his message that the anesthesiologist should be familiar with alternative devices for a double-lumen tube. However, some of our comments on our work2 on the EZ-blocker (EZB) deserve our attention.

First, Cohen points out that the most important limitation of the EZB is its inability to remove secretions through this blocker or to apply any effective suction. Indeed, the central lumen of the EZB is narrower than that of other BBs. It is, however, doubtful whether thick slimy secretions can be successfully removed through any of the BBs. All BBs are also in a fixed position and cannot be moved forth and back in search of a collection of secretions. Therefore, one needs a larger suction catheter or a flexible bronchoscope that can be used only with a double-lumen tube.

There is no immediate need to aspirate air from the lung with our technique of acquiring lung collapse, i.e., 3-min preoxygenation, followed by disconnection of the single-lumen tube from the ventilator for 60 s (starting just before the surgeon opens the pleural space), then insufflation of the cuff of the EZB. In our study, the quality of lung collapse with an EZB was comparable to that with a double-lumen tube, and it was not necessary to aspirate residual air. In cases outside our study, it proved to be possible to remove residual air through the lumen of the EZB by intermittent suction. This practice must be performed with caution because of the risk of negative pressure edema. Oxygen can be administered through the lumen of the EZB to the collapsed lung with a continuous positive airway pressure system because of a low flow suffices, e.g., when hypoxemia occurs during one-lung ventilation.

Second, there seems to be confusion about some properties of the EZB versus those of other BBs. As reported,1 BBs such as the Arndt blocker, the Cohen blocker, or the Uniblocker have low-pressure, high-volume cuffs. This does certainly not apply to the EZB, which often needs cuff pressures2 of more than 110 cm H₂O. Another difference is that the pilot balloons at the proximal end of the EZB are larger. A substantial amount of the volume that is insufflated remains in the pilot balloon and does not contribute to the volume of the distal cuff. Thus, the cuffs of the EZB should rather be classified as high pressure and low volume.

The authors obtained 50 EZ-blockers from the former manufacturer (AnaesthetIQ BV, Rotterdam, The Netherlands) for an equal price as 50 L-DLT’s.

Jo Mourisse, M.D., Ph.D.,* Jos Lerou, M.D., Ph.D.
*Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands. j.mourisse@anes.umcn.nl

References

In Reply:
I would like to thank Mourisse et al.1 for their comments on my recent editorial. It was not my intention to review the properties of each endobronchial blocker but rather to encourage all anesthesiologists to become familiar with the use of these devices as an alternative to a double-lumen tube (DLT). I appreciate Mourisse et al.’s support of this concept.

The first issue raised by Mourisse et al. is the feasibility of suctioning through the lumen of the EZ-blocker. I agree that it is more effective to suction through a DLT using a suction catheter because unlike an endobronchial blocker in position, the suction catheter can be advanced and withdrawn. However, the perception that thick secretions can be suctioned through a DLT can be misleading. Suctioning through a DLT is performed using a long 10-French catheter, which is provided in the DLT kit. Figure 1 shows the three 9-French endobronchial blockers (Arndt, Cohen, Uniblocker) and the 10-French suction catheter (provided in a 37-French DLT Mallinckrodt kit; Covidien, Mansfield, MA) in cross-section to show the sizes of the lumens. There is no appreciable difference among the sizes of the lumens. The EZ-blocker has a 7.0-French lumen divided in two, which practically reduces the lumen of each individual suction channel to a bare minimum. This makes it practically impossible to remove secretions when the EZ-blocker is used.

Deflating the endobronchial blocker cuff to allow passive deflation of the lung through the single-lumen tube is

Dr. Cohen developed “The Cohen Flexi tip Endobronchial Blocker” with Cook Critical Care (Bloomington, IN). He receives lectures honoraria from Cook Critical Care.