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P REDICTION of adverse events, from tornadoes to 
tsunamis, makes life-saving advance preparation pos-

sible. Yet in the operating room or the intensive care unit, 
clinicians often must manage the onset of arterial hypoten-
sion with essentially no warning. Hypotension during sur-
gery, defined as mean arterial pressure (MAP) less than 65 
mmHg,1 is associated with increased rates of postoperative 
myocardial infarction2 and acute kidney injury,3 both predic-
tors of poor long-term patient outcome.4,5 In the intensive 
care unit setting, hypotension has been linked to an increased 
incidence of acute kidney injury.6 The risk of serious com-
plications increases with the duration of hypotension, but it 
can begin to develop within only a few minutes.3 Advance 
warning that hypotension is imminent, even if the warning 
comes only 10 to 15 min ahead, could facilitate diagnostic 
and therapeutic measures to lessen the clinical impact.

Machine learning—a discipline within computer sci-
ence used to analyze large data sets and develop predictive 
models—has evident applications to health care.7–10 In the 
intensive care unit and operating room settings, physiologic 
waveforms represent a major source of information.11,12 

Typically, clinical monitors analyze physiologic waveforms 
to extract and display data that clinicians use to make deci-
sions.13,14 In 2009, an open challenge from PhysioNet 
and Computers in Cardiology prompted participants to 
develop tools to forecast acute hypotensive episodes, and 

Editor’s Perspective

What We Already Know about This Topic

•	 The ability to predict intraoperative hypotension may advance 
the ability to prevent hypotension-associated complications 
effectively

•	 The extent to which advanced waveform analysis of invasive arterial 
lines may provide meaningful forewarning remains unknown

What This Article Tells Us That Is New

•	 A machine-learning algorithm based on thousands of arterial 
waveform features can identify an intraoperative hypotensive 
event 15 min before its occurrence with a sensitivity of 88% 
and specificity of 87%

•	 Further studies must evaluate the real-time value of such 
algorithms in a broader set of clinical conditions and patients
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ABSTRACT

Background: With appropriate algorithms, computers can learn to detect patterns and associations in large data sets. The 
authors’ goal was to apply machine learning to arterial pressure waveforms and create an algorithm to predict hypotension. The 
algorithm detects early alteration in waveforms that can herald the weakening of cardiovascular compensatory mechanisms 
affecting preload, afterload, and contractility.
Methods: The algorithm was developed with two different data sources: (1) a retrospective cohort, used for training, consist-
ing of 1,334 patients’ records with 545,959 min of arterial waveform recording and 25,461 episodes of hypotension; and (2) 
a prospective, local hospital cohort used for external validation, consisting of 204 patients’ records with 33,236 min of arterial 
waveform recording and 1,923 episodes of hypotension. The algorithm relates a large set of features calculated from the high-
fidelity arterial pressure waveform to the prediction of an upcoming hypotensive event (mean arterial pressure < 65 mmHg). 
Receiver-operating characteristic curve analysis evaluated the algorithm’s success in predicting hypotension, defined as mean 
arterial pressure less than 65 mmHg.
Results: Using 3,022 individual features per cardiac cycle, the algorithm predicted arterial hypotension with a sensitivity and 
specificity of 88% (85 to 90%) and 87% (85 to 90%) 15 min before a hypotensive event (area under the curve, 0.95 [0.94 to 
0.95]); 89% (87 to 91%) and 90% (87 to 92%) 10 min before (area under the curve, 0.95 [0.95 to 0.96]); 92% (90 to 94%) 
and 92% (90 to 94%) 5 min before (area under the curve, 0.97 [0.97 to 0.98]).
Conclusions: The results demonstrate that a machine-learning algorithm can be trained, with large data sets of high-fidelity 
arterial waveforms, to predict hypotension in surgical patients’ records. (Anesthesiology 2018; 129:663-74)
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10 different approaches were presented.15 Most of these 
techniques were based on the analysis of static or abso-
lute measures obtained from arterial pressure waveforms. 
However, recent studies have suggested that the prodromal 
stage of hemodynamic instability is characterized by subtle, 
complex changes in different physiologic variables. These 
changes reflect altered compensatory mechanisms resulting 
in unique dynamic signatures in arterial waveforms.16,17 
Although the overt clinical signs of hypotension occur late, 
dynamic changes in the variability, complexity, and physi-
ologic associations of features in the arterial pressure wave-
form can herald the occurrence of hypotensive events.17 
Recently, machine learning and complex feature extraction 
techniques have been proposed to make use of this subtle 
information contained in arterial waveforms in a way that 
was previously impossible.16–21

In this study, machine learning was used to fine-tune an 
algorithm, the Hypotension Prediction Index, based on the 
complex analysis of features in high-fidelity arterial pres-
sure waveform recordings. The algorithm was developed to 
observe subtle signs that could predict the onset of hypoten-
sion in surgical and intensive care unit patients, and subse-
quent analysis validated the performance of the algorithm in 
two unique data sets.

Materials and Methods

Databases
This manuscript follows the “Guidelines for Developing and 
Reporting Machine Learning Predictive Models in Biomedical 
Research: A Multidisciplinary View.”22 Data used in the devel-
opment and internal validation came from the Multiparameter 

Intelligent Monitoring in Intensive Care II11,23 database (specifi-
cally the Multiparameter Intelligent Monitoring in Intensive Care 
II Waveform Database Matched Subset; collaboration between 
Massachusetts Institute of Technology, Boston, Massachusetts, 
and Beth Israel Medical Center in Boston, Massachusetts),24 
a freely accessible critical care database, and from an Edwards 
Lifesciences database (Edwards Lifesciences, USA) of operating 
room and intensive care unit patients. The data for external vali-
dation came from the University of California at Irvine Medical 
Center (Irvine, California) as part of an ongoing data collection 
effort (fig. 1). In all cases, the data consisted of Health Insurance 
Portability and Accountability Act–compliant patient demo-
graphic information and arterial pressure waveforms (sampling 
rates, 100 to 500 Hz). For patients from all data sets whose data 
were collected during surgery, waveform data between anesthe-
sia induction and tracheal extubation were used. For intensive 
care unit patients from the Edwards database, waveform data 
between 24 and 72 h postarterial line placement were used. For 
intensive care unit patients from the Multiparameter Intelligent 
Monitoring in Intensive Care II database, waveform data from 
admission until arterial line withdrawal were used.

The Multiparameter Intelligent Monitoring in Intensive 
Care II Waveform Database Matched Subset database con-
tains 4,897 waveform records and 5,266 numeric records 
matched with 2,809 Multiparameter Intelligent Monitoring 
in Intensive Care II clinical database records.12,25 From the 
2,809 patient records, 2,100 waveform and numeric records 
were randomly selected and processed by the Multiparameter 
Intelligent Monitoring in Intensive Care II Waveform Data-
base software package for MATLAB (version R2014a, The 
Mathworks Inc., USA). Of the 2,100 processed records, 326 
included invasive arterial blood pressure recordings, and those 

Fig. 1. Patient flow diagram. ICU, intensive care unit; MIMIC II, Multiparameter Intelligent Monitoring in Intensive Care II data-
base; OR, operating room; UCI, University of California Irvine.
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patient records were used in our analysis. The Edwards data-
base contains 1,358 records of operating room and intensive 
care unit patients with invasive arterial pressure waveform 
recordings. These data sets were collected from 35 sites world-
wide between 2005 and 2014, and all data were deidentified 
according to Health Insurance Portability and Accountability 
Act protocols. Ethics review and institutional review board 
exemptions were obtained with Quorum: Seattle Board, North 
American Board, and Daily Board (Quorum, USA) coordinat-
ing 12 Institutional Review Boards (United States), 15 Ethics 
Committees (European Union), and 1 Ethics Board (Canada). 
Before model training, 350 patient records were randomly 
selected from the Edwards and Multiparameter Intelligent 
Monitoring in Intensive Care II databases and set aside for the 
model testing and internal validation cohort. The remaining 
1,334 records were used for the training cohort. This cohort 
was randomly divided between 293 patient records used for 
model training and 1,041 records used for cross-validation to 
adjust the model.

The University of California at Irvine database, accessed for 
external validation of the algorithm, contains records of surgi-
cal patients more than 18 yr old, collected prospectively from 
December 2015 to January 2017 at University of California 
at Irvine Medical Center as part of an Institutional Review 
Board–approved data collection study (HS#2011-1924). 
Waveform data were collected with a data integration sys-
tem (Bernoulli, Cardiopulmonary Corp., USA). The external 
validation cohort consisted of 204 University of California at 
Irvine patients (fig. 1) whose arterial waveform records were 
included after informed, written consent was obtained.

Development of the Model
Our new algorithm is based on a machine-learning model for 
classification (see also Supplemental Digital Content, http://
links.lww.com/ALN/B732). This model relates a large set of 
features calculated from the arterial pressure waveform to the 
prediction of an upcoming hypotensive event. In the learning 
phase, available clinical databases containing arterial pressure 
waveforms were first prepared for training. Periods of hypo-
tension and nonhypotension were annotated in the databases 
to serve as the training data set. The arterial pressure wave-
forms were then processed to extract waveform features. These 
features were mapped for prediction of hypotensive events 
with the training data. Figure 2 shows a higher-level overview 
of the predictive model development. The key steps in devel-
opment of the algorithm are summarized as follows:

1.	 Data conditioning, including signal preprocessing, 
heartbeat detection, and data selection;

2.	 Featurization of the arterial pressure waveform (extrac-
tion of key features or signatures);

3.	 Annotation of the training data set for periods of hypo-
tension and nonhypotension;

4.	 Model training.

The development steps are explained briefly below and 
described in detail in the Supplemental Digital Content 
(http://links.lww.com/ALN/B732).
Data Conditioning: Signal Preprocessing, Heartbeat Detec-
tion, and Data Selection. All arterial pressure waveforms data 
were downsampled to 100 Hz. The arterial pressure wave-
forms were then processed through the Edwards (FloTrac, 

Fig. 2. Summarizing arterial pressure waveform featurization and model training. Higher-level overview of the predictive model 
development.
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Edwards Lifesciences) algorithm, as explained in detail in the 
Supplemental Digital Content (http://links.lww.com/ALN/
B732).
Featurization of the Arterial Pressure Waveform (Feature 
Extraction). The arterial pressure waveform was first divided 
into unique beats and then separated into five phases (fig. 2 
and Supplemental Digital Content, http://links.lww.com/
ALN/B732), which paved the way for calculating the hemo-
dynamic parameters used as model features:

1.	 Arterial pressure waveform time, amplitude, area, and 
slope features;

2.	 FloTrac algorithm features;
3.	 CO-Trek features;
4.	 Complexity features;
5.	 Baroreflex features;
6.	 Variability features;
7.	 Spectral features;
8.	 “Delta-change” features;
9.	 Combinatorial features.

Briefly, the Edwards FloTrac algorithm computes key 
hemodynamic parameters, such as cardiac output, stroke 
volume, vascular tone (the Kai-factor26), Windkessel com-
pliance,27 systemic vascular resistance, stroke volume varia-
tion,28 and several measures of the morphology of the arterial 
pressure waveform.26 The Edwards CO-Trek algorithm is the 
pulse-contour cardiac output algorithm obtained from the 
ClearSight noninvasive arterial pressure monitoring system 
(ClearSight, Edwards Lifesciences, formerly Nexfin, Bmeye 
BV, The Netherlands). Please refer to the Supplemental Dig-
ital Content (http://links.lww.com/ALN/B732) for further 
detail.

After feature extraction of 3,022 individual features, base 
features were determined by performing receiver-operating 
characteristic analysis for each of the individual features on 
the positive and negative data segments of the training data 
set (see section below on “Model Feature Selection and Train-
ing” for the definitions of positive and negative data seg-
ments). The 51 individual features with an area under the 
receiver-operating characteristic curve greater than 0.85 were 
selected as the base features. All permutations of the 51 base 
features were computed with either one, two, or a maximum 
of three features at a time, and power levels in the range of 
[−2, −1, 0, 1, 2]. The permutation process generated a total 
of 2.6 million combinatorial features, which we created to 
ensure features that captured linear and nonlinear interac-
tions. The exact number of combinatorial features obtained 
this way was

51
3

5
51 51 1 51 2

3
5 2 603 1253 3



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× =
−( ) −( ) × =

!
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Please see figure  2 and Supplemental Digital Content 
(http://links.lww.com/ALN/B732) for details.

Primary Outcome. MAP was calculated directly from arte-
rial pressure waveform data. Hypotension was defined as any 
period with MAP < 65 mmHg for at least 1 min, based on 
studies suggesting that MAP < 65 mmHg is the threshold at 
which the probability of acute kidney injury and myocardial 
injury increase.1 MAP > 75 mmHg was considered nonhypo-
tension. Clearly, the real-world, clinical definition of hypoten-
sion cannot be based on a purely binary, all-or-none threshold. 
We considered that the flex point where the incidence of com-
plications rises is in the MAP range between 65 to 75 mmHg, 
which may be thought of as a “gray zone” in which ambiguity 
and some risk coexist.29 Yet in any binary classification prob-
lem, it is important to have two easily separable and mutu-
ally exclusive labels. In the interests of precision, we based our 
model only on definite hypotension (MAP < 65 mmHg) and 
definite nonhypotension (MAP > 75 mmHg) data.

To eliminate the effect of sudden drops in pressure due 
to artifact or external event, rather than to the patient’s own 
physiologic responses, hypotensive data segments with a rate 
of decrease in MAP faster than 0.5 mmHg/s were excluded 
from the analysis (see also Supplemental Digital Content, 
http://links.lww.com/ALN/B732). A rate of decrease greater 
than 0.5 mmHg/s is equivalent to a decline in MAP greater 
than 30 mmHg in 1 min, which we considered outside 
the scope of prediction of our algorithm, as it would relate 
more likely to an acute event (e.g., sudden blood loss or 
alteration of transducer height) than to progressive onset of 
hypotension.

To ensure clarity with relation to the algorithm, the early 
identification period for hypotension was defined as 15 min 
before an actual event where MAP fell less than 65 mmHg 
for at least 1 min. For comparison, we also assessed whether 
hypotensive events could be predicted with percent change 
in MAP (ΔMAP). Four different ΔMAPs were calculated 
and evaluated: ΔMAP20s, ΔMAP1min, ΔMAP3min, and 
ΔMAP5min (the difference between two MAP values that are 
20 s, 1, 3, and 5 min apart, respectively).
Model Feature Selection and Training. A hypotensive event 
was calculated by identifying a section of at least 1-min dura-
tion such that all data points in the section showed MAP < 
65 mmHg. An event, or positive data point, was chosen as 
the sample recorded 5, 10, or 15 min before the hypotensive 
event. A nonhypotensive event was calculated by identify-
ing a 30-min continuous section of data points such that 
the section was at least 20 min apart from any hypotensive 
event, and all data points in that section showed MAP > 75 
mmHg. A nonevent, or negative data point, was the center 
point of the nonhypotensive event.
Model Feature Selection. Totals of 3,022 individual features and 
2,603,125 combinatorial features were extracted from the arterial 
pressure waveforms of the training data set (see also Supplemental 
Digital Content, http://links.lww.com/ALN/B732). For model 
training, a data matrix of these features for the positive and nega-
tive data points was used with a logistic regression model with 
“binomial” distribution and without regularization. This process 
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of training was repeated several times, with different patient sub-
sets from the training data set, and also with different definitions 
for positive and negative data points. Performance of each model 
after features selection and training was evaluated with the cross-
validation data set. The final model was chosen based on the per-
formance, both in terms of prediction error and general behavior 
in each patient, on the cross-validation data set. To keep only the 
most useful features, these features were put through a two-step 
feature selection process: (1) features were retained where the area 
under the curve was greater than 0.8 for positive and negative 
data segments of the training data set; and (2) sequential forward 
features were selected with logistic regression.
Model Type and Output. Machine learning was used to map 
the arterial pressure waveform features into a prediction 
of hypotension. We chose logistic regression as our model 
type because it outputs an interpretable prediction of an 
event and because it provides smooth transitions between 
two classes. Logistic regression is a classification method for 
prediction of a binary response based on one or more model 
input features. It has the benefit of generating a numerical 
score to reflect the degree of the severity. This is achieved 
by using the “logit” transformation of the dependent binary 
variable and conducting a linear regression. The following 
equation represents this concept mathematically:

log
h x

h x
xTω

ω

ω( )
− ( )





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=
1

where “x” is the independent variable (features) vector, 
“ω” the corresponding vector of coefficients, and hω(x) is 
the logistic model for the dependent variable. Solving for the 
logistic function yields:

h x
e

T xω ω
( ) =

+ −

1
1

The logistic function is a continuous function within the 
range [0, 1]. During model training, the optimum coeffi-
cient vector “ω” is calculated from a set of the model input 
feature vectors “xi” and the corresponding observed class of 
the training set “yi” (0 = no event, 1 = event) for i = 1, 2, …, 
N, with a log-likelihood cost function shown below:

J
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The solution is obtained by minimizing the above con-
vex cost function with respect to the coefficient vector “ω.” 
Once “ω” is determined with available training data, the 
logistic model is used on new data (xt) for calculating the 
prediction of event “p(xt).”

p x
e

t xT
t

( ) =
+ −

1
1 ω

The prediction produced by the logistic regression model, 
ranging from 0 to 1, is then multiplied by 100 for scaling. 
We name the resulting prediction the Hypotension Predic-
tion Index.

Statistical Methods
Data are expressed as mean ± SD (median and [25th–75th] 
quartiles) and/or number (percentage). (See also Supple-
mental Digital Content, http://links.lww.com/ALN/
B732.) All statistics were performed with MATLAB (ver-
sion R2014a).
Validation Data and Methods. Receiver-operating charac-
teristic curve analysis was performed to evaluate the perfor-
mance of the algorithm and ΔMAP (ΔMAP20s, ΔMAP1min, 
ΔMAP3min). Sensitivity and specificity were calculated from 
receiver-operating characteristic curves with thresholds that 
minimized the difference between sensitivity and specificity. 
To correctly assess the receiver-operating characteristic per-
formance of the algorithm, it is critical to correctly define 
hypotension (positives) and nonhypotension (negatives) to 
ensure that the positives are truly positives and the negatives 
are truly negatives (see also Supplemental Digital Content, 
http://links.lww.com/ALN/B732).

As outlined above in the section on “Model Feature Selec-
tion and Training,” a hypotensive event was calculated by 
identifying a section of at least 1-min duration, with MAP 
< 65 mmHg for all data points in the section. A positive 
data point was chosen as the sample recorded at 5-, 10-, 
and 15-min intervals before the hypotensive event. All posi-
tive data points were included in the analysis regardless of 
their MAP values. A nonhypotensive event was calculated 
by identifying a 30-min continuous section of data points 
at least 20 min apart from any hypotensive event and MAP 
> 75 mmHg for all data points in that section. A nonevent, 
or negative data point, was the center point of the nonhypo-
tensive event. This was done in order to reduce the impact of 
intraclass correlation. The algorithm generates a value every 
20 s, but we selected only one data point out of a 30-min 
window because selecting all the data points within the win-
dow would have introduced statistical bias. We considered 
that adjacent 20-s data points are nearly at the same hemo-
dynamic state, and including all data points would have 
introduced repetitive information. We selected the middata 
point of a 30-min window, but a random data point or the 
average could have been selected as well.

From a clinical perspective, the most important objec-
tive of the receiver-operating characteristic analysis is to test 
whether hypotensive events can be predicted by the algo-
rithm x-min in advance, independent of the current MAP 
level. The next most important feature of the receiver-oper-
ating characteristic analysis is to test whether the algorithm 
correctly predicts period of hemodynamic stability when 
hypotension will not occur, according to our definition 
of negative events. A true positive is any event data point 
with the algorithm value greater than or equal to a chosen 
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threshold. Sensitivity is the ratio of true positives to all 
events. A true negative is any nonevent data point with the 
algorithm value less than a chosen threshold. Specificity is 
the ratio of true negatives to all nonevents. Positive predic-
tive value was calculated as the ratio of the true positives to 
all positives (true positives + false positives). Negative pre-
dicted value was calculated as the ratio of the true negatives 
to all negatives (true negatives + false negatives).

Our receiver-operating characteristic analysis captures false 
negatives, or occurrences when the algorithm is erroneously low 
before hypotension, including both the unequivocal hypoten-
sion zone of MAP < 65 mmHg and the borderline hypotension 
gray zone between 65 and 75 mmHg. Our receiver-operating 
characteristic analysis also captures false positives, or occur-
rences when the algorithm is erroneously high, when hypo-
tension does not occur, and MAP is above 75 mmHg. The 
only limitation in the receiver-operating characteristic analysis 
of selecting negatives as data points of MAP > 75 mmHg is 
that the receiver-operating characteristic analysis may not show 
the impact of false positives in the borderline 65 to 75 mmHg 
range. We did not consider this as a fundamental limitation. 
Clinically, the MAP between 65 and 75 mmHg remains an 
important intermediate zone, where the risk of complications 
may still exist, and in which a false positive could be beneficial 
if it prompts heightened attention to the patient’s hemody-
namic profile. Of note, in a recent publication on early warn-
ing systems by Scully and Daluwatte from the U.S. Food and 
Drug Administration, negatives are not even considered in 
analyses of performances of early warning systems.30

Analysis of Hypotension Prediction Compared to Actual 
Occurrence of Hypotensive Events (Algorithm Output and 
Frequency of Hypotension Analysis). In this analysis, we 
plotted the frequency of occurrence of hypotensive events 
in the data samples at different ranges of the algorithm out-
put. The analysis was performed as follows: (1) hypotensive 
episodes were defined as MAP < 65mmHg for at least 1 min; 
(2) event samples were taken going back exactly “t” min (t 
= 5, 10, 15 min) before the start of a hypotensive episode; 
(3) nonhypotensive episodes with MAP > 75 mmHg were 
at least 20 min apart from any hypotensive episode; (4) non-
event samples were taken as the midpoint of every 30-min 
nonhypotensive episode; (5) all algorithm output values for 
the above event and nonevent samples, for a given data set, 
were accumulated and segmented into algorithm output 
bins; and (6) for each bin, the percentage of event samples 
in that bin was the rate of events, as the event samples have 
an event happening in “t” min (see Supplemental Digital 
Content, http://links.lww.com/ALN/B732).

Results

Descriptive Statistics
Model Training, Cross-validation, Internal Validation, and 
External Validation Data. The model training cohort (n = 
293 patients) presented 25,461 positive segments (total 

duration, 127,921 min) and 56,143 negative segments (total 
duration, 418,038 min). These included 87 ± 248 (12 [0, 
60]) hypotensive events per patient representing 10 ± 21% 
(4 [0, 17]) of each patient’s monitoring time. Each hypoten-
sive event lasted 7.1 ± 7.3 min (5.2 [2.7, 7.9]). See table 1 for 
detailed results.

The cross-validation cohort (n = 1,041 patients) contained 
33,915 positive segments (total duration, 239,629 min) and 
87,902 negative segments (total duration, 708,535 min), 
including 33 ± 59 (14 [4, 36]) hypotensive events per patient 
representing 13 ± 22% (11 [2, 30]) of each patient’s moni-
toring time. Each hypotensive event lasted 7.0 ± 10.1 min  
(4.8 [2.7, 8.0]).

The internal validation cohort (n = 350 patients) 
contained 14,969 positive segments (total duration, 
125,999 min) and 49,011 negative segments (total duration, 
391,537 min). These included 43 ± 60 (23 [5, 56]) hypoten-
sive events per patient, representing 12 ± 20% (5 [1, 21]) 
of each patient’s monitoring time. Each hypotensive event 
lasted 7.8 ± 7.2 min (4.6 [2.6, 7.1]).

The external validation database (n = 204 patients) con-
tained 1,923 positive segments (total duration, 5,684 min) 
and 3,731 negative segments (total duration, 27,552 min). 
These included 9 ± 11 (6 [2, 14]) hypotensive events per 
patient, representing 7 ± 9% (3 [1, 8]) of each patient’s mon-
itoring time. Each hypotensive event lasted 3.0 ± 3.6 min 
(2.2 [1.5, 3.4]).

Validation of the Algorithm
Internal Validation. Figure  3 shows the receiver-operat-
ing characteristic curves for the algorithm output and all 
ΔMAPs as classifiers of hypotensive events with the internal 
validation data set 5, 10, and 15 min before the occurrence 
of hypotension. Table 2 shows the performance at different 
single points of time, up to 15 min before the events.
External Validation. Figure 3 shows receiver-operating char-
acteristic curves of the algorithm and ΔMAP3min as classi-
fiers of hypotensive events with the external validation data 
set 5, 10, and 15 min before the occurrence of hypotension. 
Table 2 shows the performance at different single points of 
time, up to 15 min before the events. Figure  4 shows the 
results of the analysis of hypotension prediction compared 
to the actual occurrence of hypotensive events. The rate of 
occurrence of hypotension increases linearly with increase 
in the algorithm output for intermediate values of the indi-
cator. Figure 5 illustrates a typical example of a developing 
hypotensive event during surgery. In this example, MAP was 
stable in the 75 to 80 mmHg range, but 17 min before the 
hypotensive event the algorithm output increased sharply 
from about 50 to 95% and remained above 90% until the 
event occurred. During the hypotensive event, the algo-
rithm output remained at 100%. Simply monitoring MAP 
in this case would not have indicated an impending event. 
(See additional results in the Supplemental Digital Content, 
http://links.lww.com/ALN/B732.)
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Table 1.  Databases and Cohort Patients’ Demographics

 Type OR + ICU OR ICU

MIMIC II and Edwards databases Number of patients, n 1,684 670 1014
Sex, male 1097 439 658
Age, yr 62.5 ± 14.7 61.5 ± 14.4 63.2 ± 14.9
BSA, m2 1.8 ± 0.3 1.7 ± 0.3 1.9 ± 0.3

Training cohort (n = 1,334)     
 � Model training Number of patients, n 293 111 182
 Sex, male 183 68 115
 Age, yr 61.4 ± 16 56.5 ± 16.3 64.5 ± 15.1
 BSA, m2 1.9 ± 0.3 1.8 ± 0.3 1.9 ± 0.3
 � Cross-validation Number of patients, n 1,041 507 534
 Sex, male 694 342 352
 Age, yr 63 ± 14.4 62.9 ± 14 63.2 ± 14.8
 BSA, m2 1.8 ± 0.3 1.7 ± 0.2 1.9 ± 0.3
Model testing and internal validation cohort Number of patients, n 350 52 298

Sex, male 220 29 191
Age, yr 61.9 ± 14.7 58.3 ± 11.3 62.6 ± 15.1
BSA, m2 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.3

External validation cohort (UCI data) Number of patients, n 204 204  
Sex, male 100 100  
Age, yr 57 ± 14 57 ± 14  
BSA, m2 1.9 ± 0.3 1.9 ± 0.3  

Data are presented as mean ± SD.
BSA, body surface area; ICU, intensive care unit; MIMIC II, Multiparameter Intelligent Monitoring in Intensive Care II; OR, operating room; UCI, University 
of California Irvine.

Fig. 3. Receiver-operating characteristic curves displaying the ability of the algorithm and ΔMAP to predict hypotension before 
its occurrence in the internal and external validation cohorts. Receiver-operating characteristic curves displaying the ability of 
the algorithm and ΔMAP to predict hypotension 5, 10, and 15 min (left, center, and right, respectively) before its occurrence in 
the internal validation cohort (upper) and in the external validation cohort (bottom). HPI, Hypotension Prediction Index; ΔMAP20s, 
ΔMAP1min, ΔMAP3min, and ΔMAP5min, the absolute changes in mean arterial pressure more than 20 s, 1 min, 3 min, and 5 min, 
respectively.
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Discussion
These results demonstrate that it is possible to train a 
machine-learning model, with large data sets of high-fidelity 
arterial pressure waveforms, to predict arterial hypotension 
events in the physiologic data sets of surgical patients up to 
15 min before they occur. No reliable methods currently exist 
to predict the likelihood that a patient will become hemody-
namically unstable, although several methods are available to 
monitor hemodynamic parameters, identify cardiovascular 
volatility, and alert clinicians when it occurs.16 There is evi-
dence that subtle dynamic linkages or interconnections exist 
among disparate physiologic variables at the earliest stages of 
instability that are clinically imperceptible.16,17 These unique 
signatures of dynamic interconnections become more 
defined as pathologic states develop, and their changes over 
time presage the development of a worsening physiologic 
state.16,17,20,31,32

Several recently published studies have demonstrated 
that certain patient-related factors may be harbingers of 
hemodynamic instability. Convertino et al. developed 
a machine-learning model that estimated central blood 
volume loss with 96.5% accuracy in a hemorrhagic shock 
model using lower-body negative pressure.33 Noninva-
sive hemodynamic features used in the model included 
standard variables collected from patients during sur-
gery, including blood pressure, end-tidal carbon dioxide, 
respiratory rate, and pulse character. The same group also 
applied novel machine-learning methods to plethysmo-
graphic waveforms to identify patients who were devel-
oping cardiac instability.34 More specific to the topic of 
hypotension in the critical care setting, Ghosh et al. have 
used sequential contrast patterns, mining the methodol-
ogy of blood pressure monitoring to anticipate the onset 
of hypotension in the intensive care unit.35,36 While of 

Table 2.  Area under the Receiver-operating Characteristic Curve, Sensitivity, and Specificity of the Algorithm and ΔMAP in Internal 
and External Validation Cohorts

Parameter
Time to 
Event AUC Sensitivity, % Specificity, % PPV, % NPV, % Threshold

Internal validation cohort     
 � HPI 5 min 0.97 (0.971–0.977) 91.8 (89.7–94.0) 92.2 (90.3–94.0) 88.8 (87.9–89.7) 94.4 (93.8–94.9) 41

10 min 0.95 (0.950–0.960) 89.3 (87.2–91.4) 89.5 (87.3–91.7) 76.7 (75.3–78.1) 95.6 (95.1–96.1) 38
15 min 0.95 (0.940–0.952) 87.5 (85.1–89.9) 87.3 (84.8–89.8) 67.2 (65.6–68.9) 95.9 (95.4–96.4) 36

 � ΔMAP20s
5 min 0.51 (0.500–0.522) 51.0 (49.3–52.7) 51 (49.7–52.2) — — 0.05 mmHg
10 min 0.50 (0.490–0.516) 50.5 (48.3–52.7) 50.5 (49.3–51.7) — — 0.03 mmHg
15 min 0.51 (0.494–0.523) 49.4 (46.8–52.1) 49.4 (48.2–50.6) — — −0.01 mmHg

 � ΔMAP1min
5 min 0.53 (0.519–0.543) 52.1 (50.5–53.8) 52.1 (50.9–53.4) — — 0.15 mmHg
10 min 0.51 (0.492–0.520) 50.5 (48.2–52.8) 50.5 (49.3–51.7) — — 0.08 mmHg
15 min 0.51 (0.495–0.525) 50.5 (48.1–52.9) 50.5 (49.3–51.7) — — 0.08 mmHg

 � ΔMAP3min
5 min 0.55 (0.541–0.567) 54.5 (52.7–56.3) 54.5 (53.0–55.9) — — 0.29 mmHg
10 min 0.52 (0.503–0.532) 51.5 (49.1–53.9) 51.5 (50.1–52.8) — — 0.14 mmHg
15 min 0.51 (0.498–0.531) 50.9 (48.0–53.8) 50.9 (49.6–52.2) — — 0.11 mmHg

 � ΔMAP5min
5 min 0.57 (0.554–0.581) 54.9 (52.6–57.1) 54.9 (53.5–56.3) — — 0.31 mmHg
10 min 0.54 (0.526–0.556) 53.1 (50.3–55.9) 53.1 (51.7–54.5) — — 0.19 mmHg
15 min 0.53 (0.517–0.550) 52.4 (49.5–55.3) 52.4 (51.0–53.8) — — 0.14 mmHg

External validation cohort     
 � HPI 5 min 0.95 (0.933–0.961) 86.8 (83.6–89.9) 88.5 (84.9–92.0) 93.2 (91.0–95.3) 78.6 (74.3–82.9) 39

10 min 0.92 (0.896–0.943) 84.2 (79.6–88.8) 84.3 (80.2–88.4) 83.6 (79.4–87.8) 84.8 (80.8–88.8) 37
15 min 0.91 (0.885–0.944) 83.6 (78.2–89.0) 83.3 (78.9–87.8) 74.0 (67.9–80.1) 90.0 (86.5–93.4) 36

 � ΔMAP20s
5 min 0.59 (0.554–0.632) 56.8 (52.8–60.8) 56.7 (51.2–62.3) — — 0.21 mmHg
10 min 0.51 (0.466–0.559) 49.7 (44.3–55.0) 50.3 (45.2–55.5) — — 0.01 mmHg
15 min 0.51 (0.462–0.566) 50.8 (44.3–57.4) 51.0 (45.7–56.2) — — 0.03 mmHg

 � ΔMAP1min
5 min 0.62 (0.586–0.663) 61.0 (56.7–65.3) 60.9 (55.6–66.2) — — 0.44 mmHg
10 min 0.57 (0.525–0.619) 57.4 (51.7–63.1) 57.4 (52.3–62.5) — — 0.25 mmHg
15 min 0.56 (0.505–0.614) 56.3 (49.1–63.5) 56.4 (51.3–61.5) — — 0.22 mmHg

 � ΔMAP3min
5 min 0.61 (0.571–0.655) 58.4 (53.1–63.7) 58.3 (52.8–63.9) — — 0.75 mmHg
10 min 0.59 (0.542–0.640) 57.1 (50.7–63.5) 57.1 (51.4–62.7) — — 0.61 mmHg
15 min  0.57 (0.510–0.626) 55.3 (46.8–63.8) 55.4 (49.8–61.1) — — 0.44 mmHg

 � ΔMAP5min
5 min  0.59 (0.550–0.640) 57.2 (51.3–63.2) 57.4 (52.5–62.2) — — 0.65 mmHg
10 min 0.55 (0.499–0.607) 53.7 (45.9–61.5) 53.8 (49.0–58.6) — — 0.36 mmHg
15 min 0.56 (0.501–0.624) 53.9 (44.6–63.2) 53.8 (49.0–58.6) — — 0.36 mmHg

Data are presented as mean (95% CI).
AUC, area under the curve; HPI, Hypotension Prediction Index; NPV, negative predictive value; ΔMAP20s, 1min, 3min, and 5min, percent changes in mean arterial 
pressure more than 20 s, 1 min, 3 min, and 5 min, respectively; PPV, predictive positive value.
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interest, this approach does not yet allow real-time predic-
tion of hypotension.

Our work centers on the development of a predictive 
algorithm based on a machine-learning model for potential 
real-time prediction of hypotension. The algorithm output 
indicates the likelihood that a patient’s condition is trending 
toward a hypotensive event. When the algorithm output is 
low, the likelihood of a hypotensive event is also low, and the 
time-to-event interval tends to be long. Conversely, when 
the algorithm output is high, the likelihood of a hypoten-
sive event is high, and the time-to-event interval tends to 
be shorter.

The algorithm is based on detection of physiologic signa-
tures in high-resolution arterial pressure waveforms caused 
by weakening of the cardiovascular compensatory mecha-
nisms that typically occur before hypotension and that affect 

cardiac preload, afterload, and contractility. The early stage 
of instability appears to be characterized by subtle, complex 
changes in the associations among different physiologic 
variables.16,17 Dynamic changes in the variability, complex-
ity, and physiologic associations of features in the arterial 
pressure waveform occur before the obvious clinical occur-
rence of hypotensive events.17 The fundamental emphasis of 
the algorithm is to detect the earliest appearance of these 
dynamic changes in the arterial pressure waveform and to 
use them to predict an upcoming hypotensive event. Specifi-
cally, the algorithm detects dynamic changes corresponding 
to physiologic interactions among left ventricular contractil-
ity, preload, and afterload. The main challenge in detecting 
these complex changes is that they are highly multivariate. 
They are not only indiscernible to the human eye, but also 
are not detectable by simple signal processing algorithms. In 
order to detect the multivariate variability and interactions 
preceding hypotensive events, the algorithm uses complex 
machine-learning techniques.

Machine-learning methods are powerful mathematical 
tools that allow accurate quantification of dynamic multi-
variate interconnections. It is important to emphasize that 
in the algorithm, machine-learning techniques quantify the 
complex processes of cardiac compensatory mechanisms 
mathematically; they do not capture statistical relationships 
as do most machine-learning–based algorithms used in the 
past.15 The assessment of the physiologic associations is criti-
cal to the algorithm, as it represents the effect of the dynamic 
links among thousands of automatically derived hemody-
namic features, all from the arterial waveform. The assess-
ment of the physiologic associations included computation 
of linear and nonlinear combinations of all 3,022 variability/
complexity features in the arterial waveform computed ini-
tially. These combinatorial features then provided key infor-
mation on the nonlinear effects and dynamic physiologic 

Fig. 4. Analysis of hypotension prediction compared to actual occurrence of hypotensive events for the internal (left) and exter-
nal (right) cohorts. The frequency of occurrence of hypotensive events is relatively low when the Hypotension Prediction Index 
(HPI) is low, and high when HPI is high. The rate of occurrence of hypotension increases linearly with increase in HPI for inter-
mediate values of the indicator.

Fig. 5. One illustrative patient record showing the association be-
tween the algorithm output (Hypotension Prediction Index [HPI]) 
and the evolution of mean arterial pressure (MAP) over time.
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interactions among all 3,022 of the individual linear fea-
tures. We see a 1:1 linear association between the algorithm 
output and event rate as arterial blood pressure declines to a 
MAP level of 65 to 70 mmHg (fig. 4). Then the algorithm 
output sharply rises when approaching a hypotensive event, 
apparently due to the increase in the interconnection signa-
tures that the model detects in the arterial pressure waveform 
when hypotension is impending. Our algorithm used this 
large, comprehensive analysis of interaction effects to assess 
compensatory mechanisms and capture the cross-correla-
tional changes among thousands of automatically derived 
hemodynamic features, all from the arterial waveform, that 
herald the onset of hypotension.

Besides the potential clinical value of this development, 
we can envision new fields of investigation for basic physi-
ology research by augmenting the analysis of physiologic 
waveforms with computer science techniques and reverse 
engineering. While this is a potentially significant step for-
ward, many unanswered questions remain regarding the use 
of real-time predictive algorithms in the surgical setting as 
opposed to an intensive care unit or medical care setting. 
These questions are not specific to the development of a 
hypotension prediction algorithm and may apply to any 
predictive algorithm in the rapidly evolving scenario of an 
invasive procedure.

Study Limitations
We identified seven major limitations in our study, which 
will need to be explored further in prospective real-time 
clinical research:

1.	 Our system was trained and developed from the records 
of operating room and intensive care unit patients, 
while the external validation was performed in a surgi-
cal patients’ physiologic data set. These facts are impor-
tant to keep in mind when interpreting our results, 
and further validation in the intensive care unit setting 
may be needed. Intensive care unit patients undergoing 
supportive and therapeutic care constitute a different 
experimental model from patients undergoing an acute 
surgical intervention.

2.	 While the algorithm developed in this study is able to 
predict hypotension, it remains unclear how clinicians 
would act upon the alarm. The dynamic relationships 
among early warning systems, clinicians’ responses, and 
changes in physicians’ behaviors are not completely 
understood, and our study does not address how anes-
thesiologists and intensivists would respond to an alarm 
triggered by our algorithm. It is unclear whether they 
would respond or not, and if they respond it is unclear 
what they would do. After descriptive and predictive 
analytics, the next two steps would be prescriptive ana-
lytics and cognitive analytics. In association with a hypo-
tension prediction algorithm, a decision-support tool 
could suggest interventions or treatment alternatives 

that could prevent or reduce the severity of hypotension. 
These considerations are beyond the scope of this study.

3.	 The benefits of initiating treatment before the onset 
of hypotension are not yet clear. It seems likely that 
a predictive algorithm could decrease the duration of 
hypotension during surgery and in the intensive care 
unit. However, even though the relationship between 
hypotension and complications is statistically signifi-
cant, direct causality has not been established. It is not 
yet known to what degree decreasing the incidence 
and duration of hypotension would improve outcome.

4.	 As described in this manuscript, our algorithm depends 
on invasive arterial line waveforms. A small minority of 
patients currently receives arterial line catheters during 
surgery. Developing a similar algorithm from noninva-
sive arterial pressure waveform recordings is needed to 
expand to applicability of this approach.

5.	 We did not include in our study any hypotensive events 
caused by clinical interventions (e.g., laparoscopic insuf-
flation, liver manipulation, or vascular clamping or 
unclamping). The algorithm we present is based on pre-
dicting hypotension that occurs outside of such events. 
This limitation, together with the absence of clinical 
context in our algorithm development, emphasizes the 
in silico nature of the current work as opposed to in vivo 
testing. Of note, the question of whether the algorithm 
can predict hypotension in the period immediately after 
the induction of anesthesia remains unanswered, as it 
was not formally tested in this study.

6.	 We used proprietary Edwards Lifesciences algorithms 
(FloTrac, CO-Trek) that may not be available to others 
who wish to replicate this study.

7.	 We present a study that has potential for real-time pre-
diction of hypotension, but we have not analyzed data 
streams in real time to predict hypotension. We also 
used an arbitrary definition of hypotension (hypoten-
sive events defined as MAP < 65 mmHg and nonhy-
potensive events defined as MAP > 75 mmHg), which 
creates an artificial testing environment—albeit one 
that is necessary at this level of development. These pre-
cise although arbitrary definitions likely improved the 
objective assessment of the algorithm’s successes and 
shortcomings.

Conclusions
Our results demonstrate that a machine-learning algorithm 
can be trained, with large data sets of high-fidelity arterial 
pressure waveforms, to predict arterial hypotension events in 
a surgical patients’ physiologic data set.
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