Practice Advisory for the Perioperative Management of Patients with Cardiac Implantable Electronic Devices: Pacemakers and Implantable Cardioverter–Defibrillators 2020

An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Implantable Electronic Devices*

Practice advisories are systematically developed reports that are intended to assist decision-making in areas of patient care. Advisories provide a synthesis of scientific literature and analysis of expert opinion, clinical feasibility data, open forum commentary, and consensus surveys. Practice advisories developed by the American Society of Anesthesiologists (ASA) are not intended as standards, guidelines, or absolute requirements, and their use cannot guarantee any specific outcome. They may be adopted, modified, or rejected according to clinical needs and constraints, and they are not intended to replace local institutional policies.

Practice advisories summarize the state of the literature and report opinions obtained from expert consultants and ASA members. They are not supported by scientific literature to the same degree as standards or guidelines because of the lack of sufficient numbers of adequately controlled studies. Practice advisories are subject to periodic revision as warranted by the evolution of medical knowledge, technology, and practice.

This document updates the Practice Advisory for the Perioperative Management of Patients with Cardiac Implantable Electronic Devices: Pacemakers and Implantable Cardioverter–Defibrillators: An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Implantable Electronic Devices, adopted by the ASA in 2010 and published in 2011.†

Methodology

Definition of Cardiac Implantable Electronic Devices

For this advisory, a cardiac implantable electronic device refers to any permanently implantable pacemaker or any implantable cardioverter–defibrillator. The term cardiac implantable electronic device also refers to any cardiac resynchronization therapy device.‡

Purposes of the Advisory

The purposes of this advisory update are to: (1) facilitate safe and effective perioperative management of the patient with a cardiac implantable electronic device and (2) reduce the incidence of adverse outcomes. Perioperative management refers to the preoperative, intraoperative, postoperative, or recovery period in any setting where an anesthesia provider will be delivering anesthesia care. Adverse outcomes associated with cardiac implantable electronic device function include, but are not limited to, damage to the device, inability of the device to deliver pacing or shocks, lead-tissue interface damage, changes in pacing behavior, electrical reset to the backup pacing mode, and inappropriate implantable cardioverter–defibrillator therapies.†

Adverse clinical outcomes include, but are not limited to, hypotension, tachyarrhythmia and bradyarrhythmia,

This document updates the Practice Advisory for the Perioperative Management of Patients with Cardiac Implantable Electronic Devices: Pacemakers and Implantable Cardioverter–Defibrillators: An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Implantable Electronic Devices, adopted by the ASA in 2010 and published in 2011.†

Methodology

Definition of Cardiac Implantable Electronic Devices

For this advisory, a cardiac implantable electronic device refers to any permanently implantable pacemaker or any implantable cardioverter–defibrillator. The term cardiac implantable electronic device also refers to any cardiac resynchronization therapy device.‡

Purposes of the Advisory

The purposes of this advisory update are to: (1) facilitate safe and effective perioperative management of the patient with a cardiac implantable electronic device and (2) reduce the incidence of adverse outcomes. Perioperative management refers to the preoperative, intraoperative, postoperative, or recovery period in any setting where an anesthesia provider will be delivering anesthesia care. Adverse outcomes associated with cardiac implantable electronic device function include, but are not limited to, damage to the device, inability of the device to deliver pacing or shocks, lead-tissue interface damage, changes in pacing behavior, electrical reset to the backup pacing mode, and inappropriate implantable cardioverter–defibrillator therapies.†

Adverse clinical outcomes include, but are not limited to, hypotension, tachyarrhythmia and bradyarrhythmia,
myocardial tissue damage, and myocardial ischemia and infarction. Other related adverse outcomes may include extended hospital stay, delay and cancellation of surgery, readmission to manage device malfunction, and additional hospital resource utilization and cost.

Focus of the Advisory
This updated advisory focuses on the perioperative management of the patient who has a preexisting cardiac implantable electronic device for the treatment of bradyarrhythmia, tachyarrhythmia, or heart failure. This advisory applies to all cardiac implantable electronic device patients receiving general or regional anesthesia, sedation, or monitored anesthesia care. Both inpatient and outpatient procedures are addressed by this update.

This update does not address the perioperative management of the patient without a cardiac implantable electronic device, such as those (1) with only a temporary cardiac implantable electronic device; (2) with only a noncardiac implantable device (e.g., neurologic or spinal cord stimulator); (3) with only an implantable mechanical cardiac assist device (e.g., ventricular assist device); or (4) undergoing cardiac implantable electronic device implantation or revision. This update does not address procedures rarely involving anesthesia care (e.g., radiation therapy) or imaging modalities without known perioperative cardiac implantable electronic device concerns (e.g., diagnostic radiography or ultrasonography). In addition, this update does not address patient comfort or management of pain during a procedure.

Application of the Advisory
This updated advisory is intended for use by anesthesiologists and all other individuals who deliver or who are responsible for anesthesia care. This update may also serve as a resource for other physicians and healthcare professionals who manage patients with cardiac implantable electronic devices.

Task Force Members and Consultants
The original advisory was developed by an ASA-appointed task force of 12 members consisting of anesthesiologists and cardiologists in private and academic practices from various geographic areas of the United States and two methodologists from the ASA Committee on Standards and Practice Parameters. In 2017, the ASA Committee on Standards and Practice Parameters requested that the advisory be updated. This update is a revision developed by an ASA-appointed task force of five members, including three anesthesiologists and two methodologists. Conflict-of-interest documentation regarding current or potential financial and other interests pertinent to the practice guideline were disclosed by all task force members and managed.

Process and Evaluation of Evidence
This updated advisory was developed by means of a five-step process. First, consensus was reached on the criteria for evidence. Second, original published articles from peer-reviewed journals relevant to the perioperative management of cardiac implantable electronic devices were evaluated and added to literature reported in the previous update. Third, consultants who had expertise or interest in cardiac implantable electronic devices and who practiced or worked in various settings (e.g., private and academic practice) were asked to participate in opinion surveys addressing the appropriateness, completeness, and feasibility of implementation of the draft recommendations and to review and comment on a draft of the Advisory. Fourth, additional opinions were solicited from random samples of active ASA members. Fifth, all available information was used to build consensus to finalize the advisory. A summary of recommendations can be found in appendix 1.

Preparation of this updated advisory followed a rigorous methodologic process. Evidence was obtained from two principal sources: scientific evidence and opinion-based evidence. Detailed descriptions of the ASA process and methodology used in this Advisory may be found in other related publications. 2–4 Appendix 2 contains information on the evidence model, the literature search process, literature findings, and survey results.

Within the text of the advisory, literature classifications are reported for each intervention using the following classifications: category A, level 1: meta-analysis of randomized controlled trials; category A, level 2, multiple randomized controlled trials; category A, level 3: a single randomized controlled trial; category B, level 1: nonrandomized studies with group comparisons; category B, level 2: nonrandomized studies with associative findings; category B, level 3: nonrandomized studies with descriptive findings; and category B, level 4: case series or case reports. Outcomes are designated as either beneficial (B) or harmful (H) for the patient; statistically nonsignificant findings are designated as equivocal (E). Survey findings from task force-appointed expert consultants and a random sample of the ASA membership are fully reported in the text of these guidelines. Survey responses for each recommendation are reported using a five-point scale based on median values from “strongly agree” to “strongly disagree.”
Advisory Evidence and Recommendations

Preoperative Evaluation

A focused preoperative evaluation of the patient with a cardiac implantable electronic device consists of the following topics: (1) determining whether a patient has a cardiac implantable electronic device; (2) determining the cardiac implantable electronic device type, manufacturer, and primary indication for placement; (3) determining whether a patient is pacing-dependent; and (4) determining the cardiac implantable electronic device’s current settings and that it is functioning properly by interrogating the cardiac implantable electronic device or obtaining the most recent interrogation report.

Literature Findings. Although the literature is insufficient to evaluate the clinical benefit of performing a focused preoperative evaluation of patients with cardiac implantable electronic devices, case reports indicate that adverse outcomes (e.g., inappropriate shock, cardiac implantable electronic device switch to “end-of-life mode,” acute ventricular lead dysfunction, and corrupted device memory) may occur when a complete preoperative examination is not performed to determine whether the patient has a cardiac implantable electronic device (Category B4-H evidence). The literature is insufficient to evaluate whether preoperatively determining the cardiac implantable electronic device type, manufacturer, and primary indication for placement or determining whether a patient is pacing-dependent affects perioperative outcomes. A case series reported inappropriate antitachycardia pacing or shocks, premature battery depletion, and cardiac implantable electronic device damage when the cardiac implantable electronic device’s settings were not adequately assessed preoperatively (Category B4-H evidence). The literature is insufficient to evaluate whether any particular time interval to determine recency for review of a previous cardiac implantable electronic device interrogation is most beneficial to the patient.

Survey Findings. The expert consultants and ASA members strongly agree with the recommendation that a preoperative evaluation should include determining whether a patient has a cardiac implantable electronic device, determining the cardiac implantable electronic device type (i.e., pacemaker, implantable cardioverter–defibrillator, cardiac resynchronization therapy), determining the primary indication for cardiac implantable electronic device placement, and determining whether the patient is pacing-dependent. The consultants strongly agree and ASA members agree that a preoperative evaluation should include determining the cardiac implantable electronic device manufacturer.

The consultants strongly agree and ASA members agree that a preoperative evaluation should include determining the cardiac implantable electronic device’s current settings and confirming that the cardiac implantable electronic device is functioning properly (i.e., by interrogating the cardiac implantable electronic device or obtaining the most recent interrogation report). The consultants selected preferred time spans for determining proper implantable cardioverter–defibrillator functioning before a procedure, as follows: immediately = 6% of consultants, at least 3 months before = 48% of consultants, at least 6 months before = 36% of consultants, and at least 12 months before = 6% of consultants. For a pacemaker the following time spans were selected by consultants: immediately = 3% of consultants, at least 3 months before = 39% of consultants, at least 6 months before = 30% of consultants, and at least 12 months before = 27% of consultants. The ASA members selected the following preferred time spans for determining proper functioning of an implantable cardioverter–defibrillator before the procedure: immediately = 10% of members, at least 3 months before = 39% of members, at least 6 months before = 44% of members, and at least 12 months before = 7% of members. For a pacemaker the following time spans were selected by members: immediately = 9% of members, at least 3 months before = 38%, at least 6 months before = 36%, and at least 12 months before = 18% of consultants.

Advisory Recommendations for Preoperative Evaluation

- Determine whether a patient has a cardiac implantable electronic device
 - Conduct a focused history (e.g., interview the patient or other source, review medical record, chest x-ray, and electrocardiogram if available)
 - Perform a focused physical examination (e.g., check for scars, palpate for device)
- Determine the cardiac implantable electronic device type, manufacturer, and primary indication for placement
 - Obtain the manufacturer’s identification card from the patient or other source
 - Review the medical record
 - Obtain and review the most recent cardiac implantable electronic device interrogation report
 - Refer to supplemental resources (e.g., manufacturer’s databases, cardiac implantable electronic device clinic records)
 - Order a chest x-ray if no other data are available

[Not all implantable electronic devices are cardiac implantable electronic devices (i.e., deep brain stimulators, spinal cord stimulators, vagal nerve stimulators, gastric stimulators, phrenic nerve stimulators, etc.). Although most cardiac implantable electronic device generators are in a pectoral position, some are in the abdomen or in an alternate position in the thorax (i.e., subcutaneous implantable cardioverter–defibrillator). Some cardiac implantable electronic devices are now implanted entirely within the heart (i.e., leadless pacemaker).

Many cardiac implantable electronic devices now have remote interrogation and monitoring capabilities. Thus, the most recent cardiac implantable electronic device interrogation report might be from an in-office interrogation or from a remote transmission (provided the remote transmission contains all needed information).

Most cardiac implantable electronic devices have an x-ray code inscribed on the generator that can be used to identify the cardiac implantable electronic device manufacturer.
• Determine whether the patient is pacing-dependent††
 ††A patient with an absent intrinsic heart rhythm is completely pacing-dependent. A patient with an inadequate intrinsic heart rhythm may be considered relatively or functionally pacing-dependent.
 †††In many patients, determining proper cardiac implantable electronic device function can be accomplished by accessing the patient’s most recent cardiac implantable electronic device interrogation report. Note that the majority of consultants and ASA members agree that a cardiac implantable electronic device should be interrogated within 3 to 6 months before a procedure.
 §§A cardiac implantable electronic device specialist might need to be consulted to help determine key information about the cardiac implantable electronic device, whether the patient is pacing-dependent, the cardiac implantable electronic device’s current settings, and that it is functioning properly.

• From the focused history and medical record, assess for one or more of the following indicators:
 - Bradycardia that caused syncope or other symptoms resulting in cardiac implantable electronic device implantation
 - Successful atrioventricular nodal ablation resulting in cardiac implantable electronic device implantation
 - A cardiac implantable electronic device interrogation showing no evidence of spontaneous ventricular activity when the cardiac implantable electronic device’s pacing function is temporarily programmed to a nontracking mode (i.e., ventricular-only pacing and sensing) at the lowest programmable rate

• Determine the cardiac implantable electronic device’s current settings, that it is functioning properly (i.e., by interrogating the cardiac implantable electronic device or obtaining the most recent interrogation report), and that it is optimally programmed for the planned procedure

 † Reinterrogate the cardiac implantable electronic device if there is any question of proper function

Preoperative Preparation

Preoperative preparation for patient safety and proper maintenance of the cardiac implantable electronic device during a planned procedure includes the following topics: (1) sources of electromagnetic interference; (2) preoperative reprogramming of the cardiac implantable electronic device’s pacing function to an asynchronous pacing mode or disabling any special algorithms, including rate adaptive pacing functions; (3) suspending the antitachyarrhythmia functions for an implantable cardioverter–defibrillator; and (4) availability of temporary pacing and defibrillation equipment.

Literature Findings. The literature was evaluated for the following potential sources of electromagnetic interference: monopolar electrosurgery, bipolar electrosurgery, radiofrequency ablation, lithotripsy, external cardioversion or defibrillation, magnetic resonance imaging, radiation therapy, radiofrequency scanners, cardiac monitors, and electroconvulsive therapy.

Observational studies report that electromagnetic interference may occur during monopolar electrosurgery,†† radiofrequency ablation,16–21 magnetic resonance imaging,22–35 and radiation therapy.36–42 (Category B3-H evidence).

Case reports also indicate the occurrence of electromagnetic interference during monopolar electrosurgery,33–50 bipolar electrosurgery,51 radiofrequency ablation,52–54 magnetic resonance imaging,6–9,55,56 and radiation therapy.57–59 (Category B4-H evidence).

Case reports indicate that inappropriately high pacing rates may occur due to electromagnetic interference from cardiac monitoring equipment in cardiac implantable electronic devices with active minute ventilation sensors (Category B4-H evidence).60–62 An observational study of implantable cardioverter–defibrillators in the pectoral position reports a significantly higher occurrence of electromagnetic interference when electrosurgery above the umbilicus is performed compared with electrosurgery below the umbilicus (Category B1-H evidence).15 The literature is insufficient to evaluate the benefit of the availability of temporary pacing and defibrillation equipment during a procedure.

Survey Findings. The consultants and ASA members strongly agree that a preoperative evaluation should include determining whether electromagnetic interference from monopolar electrosurgery or other sources is likely to occur and strongly agree with the recommendation to alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient if monopolar electrosurgery (‘‘bovie’’) use is planned superior to the umbilicus. The consultants disagree and ASA members are equivocal with the recommendation to suspend an implantable cardioverter–defibrillator’s antitachycardia function, when present, if monopolar electrosurgery (bovie) use is planned inferior to the umbilicus. The consultants and ASA members strongly agree with the recommendation to suspend an implantable cardioverter–defibrillator’s antitachycardia function, when present, if monopolar electrosurgery (bovie) use is planned superior to the umbilicus. The consultants agree and ASA members are equivocal with the recommendation to ensure that the patient is in a monitored environment before suspending the antitachycardia function of an implantable cardioverter–defibrillator. The consultants are equivocal and ASA members agree with the recommendation to avoid the routine use of a magnet over an implantable cardioverter–defibrillator. The consultants and ASA members strongly
agree that if needed, a specialist should be consulted to alter the pacing function of a cardiac implantable electronic device or to suspend the antitachycardia function of an implantable cardioverter–defibrillator. The consultants and ASA members strongly agree that the proceduralist should be advised to use bipolar electrocautery or an ultrasonic scalpel when feasible. The consultants and ASA members strongly agree with the recommendation that temporary pacing and defibrillation equipment should be immediately available before, during, and after all procedures with electromagnetic interference potential. Finally, the consultants and ASA members agree with the recommendation that a cardiac implantable electronic device’s active sensor for rate-responsive pacing should be suspended to prevent undesirable tachycardia.

Advisory Recommendations for Preoperative Preparation

- Determine whether intraoperative electromagnetic interference electromagnetic interference is likely to occur
- If electromagnetic interference is likely to occur (e.g., monopolar electrocautery [“bovie” use, or radiofrequency ablation is planned superior to the umbilicus), alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient and suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present
 - If needed, consult a specialist to alter the pacing function of a cardiac implantable electronic device or to suspend the antitachycardia function of an implantable cardioverter–defibrillator
 - Ensure that temporary pacing and defibrillation equipment are immediately available before, during, and after all procedures with electromagnetic interference potential
 - Suspend a cardiac implantable electronic device’s active sensor for rate-responsive pacing to prevent undesirable tachycardia

Intraoperative Monitoring

Intraoperative monitoring topics include (1) continuous electrocardiography monitoring; (2) continuous oxygen saturation measured by pulse oximetry (Spo2) monitoring; and (3) peripheral pulse monitoring (e.g., pulse palpitation, pulse oximeter plethysmogram, or arterial line).

- If electromagnetic interference is unlikely, it may be unnecessary to alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode. Altering the pacing function of a pacemaker to an asynchronous pacing mode may be accomplished by reprogramming or in many cases by applying a magnet. For most pacemakers, magnet application will initiate asynchronous pacing at a fixed pacing rate with a fixed atrioventricular delay. Some pacemakers have a programmable magnet response or no magnet response (i.e., some leadless pacemakers). Altering the pacing function of an implantable cardioverter–defibrillator to an asynchronous pacing mode must always be accomplished by reprogramming, because magnet application will never alter the pacing mode of an implantable cardioverter–defibrillator.

Advisory Recommendations for Intraoperative Monitoring

- Continuously monitor and display a patient’s electrocardiogram and Spo2 as required by ASA standards from the beginning of anesthesia until the patient is transferred out of the anesthetizing location, with additional electrocardiography monitoring in the postoperative period as indicated by the patient’s medical condition; (2) perform continuous peripheral pulse monitoring for all cardiac implantable electronic device patients receiving anesthesia care; and (3) discontinue the procedure until the source of interference can be eliminated or managed if unanticipated cardiac implantable electronic device interactions occur.

Note: The majority of consultants disagree and ASA members are equivocal regarding the recommendation to alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient if monopolar electrocautery (“bovie”) use is planned inferior to the umbilicus,
• Perform continuous peripheral pulse monitoring for all cardiac implantable electronic device patients receiving anesthesia care.

• If unanticipated cardiac implantable electronic device interactions occur, temporarily suspend the procedure until the source of interference can be identified and eliminated or managed.

Managing Potential Sources of Electromagnetic Interference

Procedures using electrosurgery, radiofrequency ablation, radiofrequency identification devices, lithotripsy, magnetic resonance imaging, radiation therapy, nerve conduction studies, cardioversion, or electroconvulsive therapy may damage cardiac implantable electronic devices or interfere with cardiac implantable electronic device function, potentially resulting in severe adverse outcomes. Sources of electromagnetic interference are often unique to specific procedures, and the management of each of these potential electromagnetic interference sources is reported separately below.

Electrosurgery

Management of potential sources of electromagnetic interference associated with electrosurgery includes the following topics: (1) positioning the electrosurgical unit’s dispersive electrode so that the current pathway does not pass through or near the cardiac implantable electronic device generator and leads; (2) avoiding proximity of the electrosurgical unit’s electrical current to the generator or leads; (3) using intermittent and irregular bursts of monopolar electrosurgery at the lowest feasible energy levels; (4) using bipolar electrosurgery; and (5) using ultrasonic (harmonic) scalpel.

Literature Findings. The literature is insufficient to evaluate whether positioning the current pathway away from the cardiac implantable electronic device generator and leads reduces the occurrence of electromagnetic interference. A case report indicates that electromagnetic interference occurred when the electrosurgical unit’s electrical current was placed in proximity to the generator or leads (Category B4-H evidence). An observational study reports that electromagnetic interference may occur in spite of positioning the dispersive electrode to divert the return path away from the generator and leads (Category B3-H evidence). Case reports also indicate that electromagnetic interference may still occur when proximity is avoided (Category B4-H evidence). No controlled studies were found that examine the benefit of using short intermittent bursts of electrosurgery at the lowest feasible energy levels. One case report describes pacemaker failure when short bursts of current were used with a bipolar electrosurgery system (Category B4-H evidence).

Case reports indicate that cardiac arrhythmias and asystole occurred when monopolar electrosurgery was initiated, and after changing to bipolar electrosurgery, the procedures proceeded uneventfully (Category B4-B evidence). A case report indicated that dysrhythmias followed by asystole occurred when monopolar electrosurgery was initiated, and after changing to a harmonic scalpel, the procedure was completed successfully (Category B4-B evidence). The consultants and ASA members strongly agree with the recommendations to (1) minimize the risk of electromagnetic interference by positioning the electrosurgical instrument and dispersive electrode (bovie pad) so the current pathway does not pass through or near the cardiac implantable electronic device generator or leads; (2) avoid proximity of the electrosurgery electrical field to the generator and leads, including the avoidance of waving the activated electrode over the generator; and (3) use short, intermittent, and irregular bursts of electrosurgery at the lowest feasible energy levels. The consultants agree and ASA members strongly agree with the recommendations to use bipolar electrosurgery or an ultrasonic (harmonic) scalpel, if possible.

Radiofrequency Ablation

Management of potential sources of electromagnetic interference associated with radiofrequency ablation primarily involves keeping the radiofrequency current path (electrode tip to current return pad) as far away from the generator and leads as possible.

Literature Findings. The literature is insufficient to examine the benefit of avoiding direct contact between the ablation catheter and the generator and leads or of keeping the radiofrequency current path (electrode tip to current return pad) as far away from the generator and leads as possible.

Survey Findings. The consultants and ASA members strongly agree with the recommendations to avoid direct contact between the ablation catheter and the generator and leads and to keep the radiofrequency’s current path (electrode tip to current return pad) as far away from the generator and leads as possible.

Lithotripsy

Management of potential sources of electromagnetic interference associated with lithotripsy consists of avoiding focus of the lithotripsy beam near the generator.

Literature Findings. The literature insufficient to evaluate the benefits of focusing the lithotripsy beam away from the generator.

Survey Findings. The consultants and ASA members strongly agree with the recommendation to avoid focusing the lithotripsy beam near the generator.

Magnetic Resonance Imaging

Management of potential sources of electromagnetic interference associated with magnetic resonance imaging include the topics of (1) moving the patient outside of...
the immediate magnetic resonance imaging area when an external defibrillator/monitor, cardiac implantable electronic device programmer, or any other magnetic resonance imaging–unsafe equipment is used; (2) interrogating the cardiac implantable electronic device before the magnetic resonance imaging scan; (3) suspending the antitachycardia function of an implantable cardioverter–defibrillator before the magnetic resonance imaging scan; (4) altering the pacing function of the cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient before the magnetic resonance imaging scan; (5) ensuring that an individual capable of programming the cardiac implantable electronic device remains in attendance for the duration of the magnetic resonance imaging scan; and (6) reinterrogating the cardiac implantable electronic device and restoring its permanent settings after the magnetic resonance imaging is completed.111

Literature Findings. Observational studies evaluating the effects of suspending the antitachycardia function of an implantable cardioverter–defibrillator report that electromagnetic interference may still occur (Category B3-E evidence).22–24 Observational studies of magnetic resonance imaging–conditional cardiac implantable electronic devices report that electromagnetic interference does not occur when a cardiac implantable electronic device is programmed to “magnetic resonance imaging mode” and the antitachycardia function is suspended (Category B3-E evidence).22–24

The literature is insufficient to examine the necessity of: (1) moving the patient outside of the magnetic resonance imaging area when an external defibrillator/monitor, cardiac implantable electronic device programming system, or any other magnetic resonance imaging–unsafe equipment is used; (2) interrogating a cardiac implantable electronic device before magnetic resonance imaging is performed; (3) having an individual capable of programming the cardiac implantable electronic device remain in attendance for the duration of magnetic resonance imaging; and (4) reinterrogating the cardiac implantable electronic device and restoring its permanent settings after magnetic resonance imaging is completed.

Survey Findings. The consultants and ASA members strongly agree with the recommendations to move the patient outside of the immediate magnetic resonance imaging area when the use of an external defibrillator/monitor, cardiac implantable electronic device programmer, or any other magnetic resonance imaging–unsafe equipment is required and to monitor the patient’s electrocardiogram and/or SpO₂ continuously throughout the magnetic resonance imaging. The consultants agree and ASA members are equivocal regarding the recommendation to have an individual capable of programming the cardiac implantable electronic device remain in attendance for the duration of the magnetic resonance imaging.

For magnetic resonance imaging–conditional cardiac implantable electronic devices, the consultants strongly agree and ASA members agree with the recommendations to interrogate a cardiac implantable electronic device, program the cardiac implantable electronic device to magnetic resonance imaging mode, suspend the antitachycardia function of an implantable cardioverter–defibrillator, and alter the pacing function of the cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient before the magnetic resonance imaging. The consultants and ASA members strongly agree with the recommendation to reinterrogate the cardiac implantable electronic device and restore its permanent settings after the magnetic resonance imaging scan.

For magnetic resonance imaging nonconditional cardiac implantable electronic devices, the consultants strongly agree and ASA members agree with the recommendations to interrogate a cardiac implantable electronic device before the magnetic resonance imaging scan, alter the pacing function of the cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient, and suspend the antitachycardia function of an implantable cardioverter–defibrillator if present. The consultants and ASA members strongly agree with the recommendation to reinterrogate the cardiac implantable electronic device and restore its permanent settings after the magnetic resonance imaging scan.

Radiofrequency Identification Devices

Radiofrequency identification devices are scanners used to detect retained surgical items. Management of potential sources of electromagnetic interference associated with radiofrequency identification devices addresses the topic of avoiding the use of these devices in close proximity to a cardiac implantable electronic device.

Literature Findings. The literature is insufficient to evaluate either the impact of radiofrequency identification devices as a source of electromagnetic interference or to evaluate whether electromagnetic interference depends on the distance between the radiofrequency source and cardiac implantable electronic device in the perioperative setting.

Survey Findings. For radiofrequency identification devices, the consultants strongly agree and ASA members agree with the recommendations to avoid using radiofrequency identification devices in close proximity to the cardiac implantable electronic device whenever possible.

Electroconvulsive Therapy

Management of potential sources of electromagnetic interference associated with electroconvulsive therapy includes the topics of altering the pacing function of a cardiac implantable
electronic device to an asynchronous pacing mode in the pacing-dependent patient, suspending an implantable cardioverter–defibrillator’s antitachycardia functions, and monitoring and treating ventricular arrhythmias that may occur secondary to the hemodynamic effects of electroconvulsive therapy.

Literature Findings. The literature is insufficient to evaluate the effects of specific management activities related to electroconvulsive therapy.

Survey Findings. The consultants and ASA members agree with the recommendations to alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient and to suspend an implantable cardioverter–defibrillator’s antitachycardia functions, if present. The consultants and ASA members strongly agree with the recommendation to monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of electroconvulsive therapy.

Advisory Recommendations for Managing Potential Sources of Electromagnetic Interference

Electrosurgery

• If monopolar electrosurgery is planned superior to the umbilicus, ensure that the pacing function of a cardiac implantable electronic device is altered to an asynchronous pacing mode in the pacing-dependent patient and suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present
 o Before suspending the antitachycardia function of an implantable cardioverter defibrillator, ensure that the patient is in a monitored environment
 o Minimize the risk of electromagnetic interference from monopolar electrosurgery
 o Position the electrosurgical instrument and dispersive electrode (bovie pad) so the current pathway does not pass through or near the cardiac implantable electronic device generator or leads
 o Avoid waving the activated electrode over the generator
 o Use short, intermittent, and irregular bursts of electrosurgery at the lowest feasible energy levels
 o Use bipolar electrosurgery or an ultrasonic (harmonic) scalpel, if possible
 o For some cases, the electrosurgical dispersive electrode will need to be placed at a site different from the thigh. For example, in head and neck cases, the dispersive electrode may be placed on the posterior superior aspect of the shoulder contralateral to the generator position.

Radiofrequency Ablation

• If radiofrequency ablation is planned superior to the umbilicus, ensure that the pacing function of a cardiac implantable electronic device is altered to an asynchronous pacing mode in the pacing-dependent patient and suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present
 o Before suspending the antitachycardia function, ensure that the patient is in a monitored environment
 o Avoid direct contact between the ablation catheter and the generator and leads
 o Keep the radiofrequency’s current path (electrode tip to current return pad) as far away from the generator and leads as possible

Magnetic Resonance Imaging

• Ensure that a standardized workflow and/or institutional protocol is in place and followed
• Move the patient outside of the immediate magnetic resonance imaging area when the use of an external defibrillator/monitor, cardiac implantable electronic device programmer, or any other magnetic resonance imaging-unsafe equipment is required
• Before the magnetic resonance imaging scan, perform the following:
 o Interrogate the cardiac implantable electronic device
 o Suspend the antitachycardia function of an implantable cardioverter–defibrillator, if present
 • For magnetic resonance imaging-conditional cardiac implantable electronic devices, adhere to all product labeling including activating magnetic resonance imaging mode to suspend the antitachycardia function of a magnetic resonance imaging-conditional implantable cardioverter–defibrillator
 • In the pacing-dependent patient, alter the pacing function of the cardiac implantable electronic device to an asynchronous pacing mode

Some cardiac implantable electronic devices are labeled by the Food and Drug Administration as magnetic resonance imaging-conditional. These systems have been approved for magnetic resonance imaging under specific conditions of use. Cardiac implantable electronic devices that do not meet these criteria are non–magnetic resonance imaging-conditional. In many centers, magnetic resonance imaging remains contraindicated in the presence of a magnetic resonance imaging nonconditional cardiac implantable electronic device; however, some centers have implemented specific protocols allowing patients with a nonconditional cardiac implantable electronic device to undergo magnetic resonance imaging.
Anesthesiology 2020; 132:225–52 233

Practice Advisory

agree and ASA members strongly agree with the implantable cardioverter–defibrillator. The consultants delivery of appropriate antitachycardia therapy from the implantable cardioverter–defibrillator's antitachycardia terminated, and the magnet should be removed to reenable therapies; then the patient should be observed for the effects of specific management activities related to emergency defibrillation or cardioversion. In this case, a concern is to minimize the current flowing through the pulse generator and leads.

Literature Findings. The literature is insufficient to evaluate the risks and benefits of using radiofrequency identification devices in close proximity to the cardiac implantable electronic device. The consultants and ASA members strongly agree with the recommendation to use a clinically appropriate energy output regardless of the presence of the cardiac implantable electronic device. The consultants strongly agree and ASA members agree with the recommendation to use anterior–posterior rather than anterior–lateral pad positioning whenever possible. The consultants and ASA members strongly agree with the recommendations to use a clinically appropriate energy output regardless of the presence of the cardiac implantable electronic device and to interrogate the cardiac implantable electronic device immediately after external cardioversion or defibrillation is performed.

Advisory Recommendations for Emergency Cardioversion or Defibrillation

Before attempting to emergently externally cardiovert or defibrillate a patient with an implantable cardioverter–defibrillator and magnet-disabled therapies, terminate all sources of electromagnetic interference and remove the magnet to reenable the implantable cardioverter–defibrillator's antitachycardia therapies.

• Observe the patient for appropriate antitachycardia therapy from the implantable cardioverter–defibrillator
• Determine the need for reenabling an implantable cardioverter–defibrillator's antitachycardia therapy if it was disabled by programming

If the above activities fail to restore the implantable cardioverter–defibrillator's antitachycardia therapy, or if the antitachycardia therapy cannot be restored expeditiously, proceed with emergency external cardioversion or defibrillation when needed.

• Follow advanced cardiac life support guidelines for delivered energy level and pad placement
• Position the cardioversion and defibrillation pads so they are not directly over the cardiac implantable electronic device generator to minimize the current flowing through the generator and leads
• Use a clinically appropriate energy output regardless of the presence of a cardiac implantable electronic device
• Interrogate the cardiac implantable electronic device immediately after external cardioversion or defibrillation is performed

Emergency External Cardioversion or Defibrillation

During the perioperative period, the cardiac implantable electronic device patient might require emergency external defibrillation or cardioversion. In this case, a concern is to minimize the current flowing through the pulse generator and leads.

Survey Findings. The consultants and ASA members agree with the recommendation that before emergently defibrillating or cardioverting a patient with an implantable cardioverter–defibrillator and magnet-disabled therapies, all sources of electromagnetic interference should be terminated, and the magnet should be removed to reenable the implantable cardioverter–defibrillator's antitachycardia therapies; then the patient should be observed for the delivery of appropriate antitachycardia therapy from the implantable cardioverter–defibrillator. The consultants agree and ASA members strongly agree with the recommendation to determine whether the antitachycardia therapy of an implantable cardioverter–defibrillator should be reenabled when it has been disabled by programming. The consultants and ASA members strongly agree that if the antitachycardia therapy function, emergency external defibrillation or cardioversion should be performed when needed using advanced cardiac life support guidelines for delivered energy level and pad placement. The consultants and ASA members strongly agree with the recommendation to minimize the current flowing through the generator and leads by positioning the defibrillation or cardioversion pads so they are not directly over the cardiac implantable electronic device. The consultants strongly agree and ASA members agree with the recommendation to use anterior–posterior rather than anterior–lateral pad positioning whenever possible. The consultants and ASA members strongly agree with the recommendations to use a clinically appropriate energy output regardless of the presence of the cardiac implantable electronic device and to interrogate the cardiac implantable electronic device immediately after external cardioversion or defibrillation is performed.

Electroconvulsive Therapy

• Alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient
• Suspend an implantable cardioverter–defibrillator's antitachycardia function, if present
• Monitor for and be prepared to manage postconvulsive sinus tachycardia
• Monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of electroconvulsive therapy

Radiofrequency Identification Devices

• Avoid using radiofrequency identification devices in close proximity to the cardiac implantable electronic device whenever possible
• Monitor for signs of electromagnetic interference and be prepared to stop using the radiofrequency identification device if interference occurs

Cardiac Implantable Electronic Device Management
Postoperative Management

Postoperative management of cardiac implantable electronic device patients primarily consists of interrogating and restoring cardiac implantable electronic device function.

Literature Findings. An observational study reports that postoperative interrogation revealed cardiac implantable electronic device malfunctions that occurred during a procedure (Category B3-B evidence). Case reports also indicate that postoperative interrogation may have revealed intraoperative changes to cardiac implantable electronic device settings; subsequently the devices were reprogrammed to their original settings, except in one case where the device was damaged to the point it had to be replaced (Category B4-B evidence). The literature is insufficient to evaluate the benefits of: (1) continuing to monitor and display a patient’s electrocardiogram; (2) monitoring cardiac rate and rhythm throughout the immediate postoperative period; (3) ensuring that back-up pacing and cardioversion–defibrillation equipment are immediately available; and (4) restoring the cardiac implantable electronic device to its permanent setting before the patient is discharged from a monitored environment when the cardiac implantable electronic device has been reprogrammed pre- or intraoperatively.

Survey Findings. The consultants and ASA members strongly agree with the following recommendations: (1) continuously monitor cardiac rate and rhythm throughout the immediate postoperative period; (2) for a cardiac implantable electronic device that was reprogrammed pre- or intraoperatively, ensure that back-up pacing and cardioversion–defibrillation equipment is immediately available until the permanent settings are restored; (3) for a cardiac implantable electronic device that was reprogrammed pre- or intraoperatively, restore the cardiac implantable electronic device to its permanent settings before the patient is discharged from a monitored environment; (4) if interrogation determines that the cardiac implantable electronic device settings are inappropriate, then reprogram the cardiac implantable electronic device to newly appropriate settings; (5) perform a postoperative cardiac implantable electronic device interrogation if emergency surgery occurred without appropriate preoperative cardiac implantable electronic device evaluation; (6) perform a postoperative cardiac implantable electronic device interrogation if there is suspicion that antitachycardia therapy might have been disabled rather than temporarily suspended with magnet placement; (7) ensure that back-up pacing and cardioversion–defibrillation equipment are immediately available; and (4) restoring the cardiac implantable electronic device to its permanent setting before the patient is discharged from a monitored environment when the cardiac implantable electronic device has been reprogrammed pre- or intraoperatively.

Advisory Recommendations for Postoperative Management

- Continue to monitor and display a patient’s cardiac rate and rhythm throughout the immediate postoperative period as required by ASA standards and as indicated by the patient’s medical condition
- For a cardiac implantable electronic device that was reprogrammed pre- or intraoperatively:
 - Ensure that back-up pacing and cardioversion–defibrillation equipment are immediately available until the cardiac implantable electronic device’s permanent settings are restored
 - Ensure that the patient’s cardiac rate and rhythm are continuously monitored and displayed until the cardiac implantable electronic device’s permanent settings are restored
 - Ensure that the patient remains in a monitored environment until the cardiac implantable electronic device’s permanent settings are restored (e.g., until the antitachycardia function of an implantable cardioverter–defibrillator is reenabled)
 - Perform a postoperative cardiac implantable electronic device interrogation whenever:
 - Emergency surgery occurs without appropriate preoperative cardiac implantable electronic device evaluation
 - There is suspicion that antitachycardia therapy might have been disabled rather than temporarily suspended with magnet placement
 - The delivery of antitachycardia therapy was observed or suspected
 - There is concern for cardiac implantable electronic device malfunction (i.e., significant electromagnetic interference occurred in close proximity to the cardiac implantable electronic device, an invasive procedure was performed in close proximity to a cardiac implantable electronic device generator or lead, or large fluid shifts occurred)
- If interrogation determines that the cardiac implantable electronic device settings are inappropriate, reprogram to newly appropriate settings

<table>
<thead>
<tr>
<th>Postoperative cardiac implantable electronic device interrogation may not be needed in low-risk situations (e.g., appropriate preoperative cardiac implantable electronic device interrogation, no electromagnetic interference–generating devices used during the procedure, no perioperative reprogramming occurred, and no problems identified during the procedure).</th>
</tr>
</thead>
<tbody>
<tr>
<td>In some instances, new settings may be needed.</td>
</tr>
<tr>
<td>Although the antitachycardia function of some older implantable cardioverter–defibrillators can be permanently disabled by magnet application, these implantable cardioverter–defibrillators are unlikely to still be encountered.</td>
</tr>
<tr>
<td>If the cardiac implantable electronic device is not interrogated during the immediate postoperative period, an interrogation after the patient is discharged may be warranted. Note that the expert consultants strongly agree and ASA members agree that interrogation should occur within 30 days after a procedure.</td>
</tr>
</tbody>
</table>
Appendix 1: Summary of Advisory Recommendations

Preoperative Evaluation

- Determine whether a patient has a cardiac implantable electronic device (cardiac implantable electronic device)
 - Conduct a focused history (e.g., interview the patient or other source, review medical record, chest x-ray, and electrocardiogram if available)
 - Perform a focused physical examination (e.g., check for scars, palpate for device)
- Determine the cardiac implantable electronic device type, manufacturer, and primary indication for placement
 - Obtain the manufacturer’s identification card from the patient or other source
 - Review the medical record
 - Obtain and review the most recent cardiac implantable electronic device interrogation report
 - Refer to supplemental resources (e.g., manufacturer’s databases, cardiac implantable electronic device clinic records)
 - Order a chest x-ray if no other data are available
- Determine whether the patient is pacing-dependent
 - From the focused history and medical record, assess for one or more of the following indicators:
 - Bradycardia that caused syncope or other symptoms resulting in cardiac implantable electronic device implantation
 - Successful atrioventricular nodal ablation resulting in cardiac implantable electronic device implantation
 - A cardiac implantable electronic device interrogation showing no evidence of spontaneous ventricular activity when the cardiac implantable electronic device’s pacing function is temporarily programmed to a nontracking mode (i.e., ventricular-only pacing and sensing) at the lowest programmable rate

Refer to table 3 for an example of a stepwise approach to the perioperative management of the patient with a cardiac implantable electronic device.

Not all implantable electronic devices are cardiac implantable electronic devices (i.e., deep brain stimulators, spinal cord stimulators, vagal nerve stimulators, gastric stimulators, phrenic nerve stimulators, etc.). Although most cardiac implantable electronic device generators are in a pectoral position, some are in the abdomen or in an alternate position in the thorax (i.e., subcutaneous implantable cardioverter–defibrillator). Some cardiac implantable electronic devices are now implanted entirely within the heart (i.e., leadless pacemaker).

Many cardiac implantable electronic devices now have remote interrogation and monitoring capabilities. Thus, the most recent cardiac implantable electronic device interrogation report might be from an in-office interrogation or from a remote transmission (provided the remote transmission contains all needed information).

Most cardiac implantable electronic devices have an x-ray code inscribed on the generator that can be used to identify the cardiac implantable electronic device manufacturer.

A patient with an absent intrinsic heart rhythm is completely pacing-dependent. A patient with an inadequate intrinsic heart rhythm may be considered relatively or functionally pacing-dependent.

Determine the cardiac implantable electronic device’s current settings, that it is functioning properly (i.e., by interrogating the cardiac implantable electronic device or obtaining the most recent interrogation report), and that it is optimally programed for the planned procedure

Reinterrogate the cardiac implantable electronic device if there is any question of proper function

Preoperative Preparation

- Determine whether intraoperative electromagnetic interference is likely to occur.
 - If electromagnetic interference is likely to occur (e.g., monopolar electrosurgery [“bovie”] use, or radiofrequency ablation is planned superior to the umbilicus), alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient and suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present
 - Before suspending the antitachycardia function, ensure that the patient is in a monitored environment

In many patients, determining proper cardiac implantable electronic device function can be accomplished by accessing the patient’s most recent cardiac implantable electronic device interrogation report. Note that the majority of consultants and ASA members agree that a cardiac implantable electronic device should be interrogated within 3 to 6 months before a procedure.

A cardiac implantable electronic device specialist might need to be consulted to help determine key information about the cardiac implantable electronic device, whether the patient is pacing-dependent, the cardiac implantable electronic device’s current settings, and that it is functioning properly.

If electromagnetic interference is unlikely, it may be unnecessary to alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode. Altering the pacing function of a pacemaker to an asynchronous pacing mode may be accomplished by reprogramming or in many cases by applying a magnet. For most pacemakers, magnet application will initiate asynchronous pacing at a fixed pacing rate with a fixed atrioventricular delay. Some pacemakers have a programmable magnet response or no magnet response (i.e., some leadless pacemakers). Altering the pacing function of an implantable cardioverter–defibrillator to an asynchronous pacing mode must always be accomplished by reprogramming, because magnet application will never alter the pacing mode of an implantable cardioverter–defibrillator.

If electromagnetic interference is unlikely, it may be unnecessary to suspend the antitachycardia function of an implantable cardioverter–defibrillator. Suspending the antitachycardia function of an implantable cardioverter–defibrillator may be accomplished by reprogramming or in many cases by applying a magnet. A magnet correctly applied to an implantable cardioverter–defibrillator often results in suspension of antitachycardia therapy. For most implantable cardioverter–defibrillators, there is no reliable means to confirm the magnet response. Some implantable cardioverter–defibrillators may have no magnet response. In obese patients or those with a deep cardiac implantable electronic device implant (i.e., subcutaneous implantable cardioverter–defibrillator), magnet application might fail to elicit the magnet response. The antitachycardia function of some older implantable cardioverter–defibrillators can be permanently disabled by magnet application.

Note that the majority of consultants disagree and ASA members are equivocal regarding the recommendation to alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient if monopolar electrosurgery (“bovie”) use is planned inferior to the umbilicus,
PRACTICE PARAMETERS

- Avoid the indiscriminate use of a magnet over an implantable cardioverter–defibrillator
- If needed, consult a specialist to alter the pacing function of a cardiac implantable electronic device or to suspend the antitachycardia function of an implantable cardioverter–defibrillator
- Ensure that temporary pacing and defibrillation equipment are immediately available before, during, and after all procedures with electromagnetic interference potential
- Suspend a cardiac implantable electronic device’s active sensor for rate-responsive pacing to prevent undesirable tachycardia

Intraoperative Monitoring

- Continuously monitor and display a patient’s electrocardiogram and Spo2 as required by American Society of Anesthesiologists (ASA) standards66–67 from the beginning of anesthesia until the patient is transferred out of the anesthetizing location
- Perform continuous peripheral pulse monitoring for all cardiac implantable electronic device patients receiving anesthesia care
- If unanticipated cardiac implantable electronic device interactions occur, temporarily suspend the procedure until the source of interference can be identified and eliminated or managed

Managing Potential Sources of Electromagnetic Interference

Electrosurgery

- If monopolar electrosurgery is planned superior to the umbilicus, ensure that the pacing function of a cardiac implantable electronic device is altered to an asynchronous pacing mode in the pacing-dependent patient and suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present
 - Before suspending the antitachycardia function, ensure that the patient is in a monitored environment
 - Minimize the risk of electromagnetic interference from monopolar electrosurgery

Radiofrequency Ablation

- If radiofrequency ablation is planned superior to the umbilicus, ensure that the pacing function of a cardiac implantable electronic device is altered to an asynchronous pacing mode in the pacing-dependent patient and suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present
 - Before suspending the antitachycardia function, ensure that the patient is in a monitored environment
 - Avoid direct contact between the ablation catheter and the generator and leads
 - Keep the radiofrequency’s current path (electrode tip to current return pad) as far away from the generator and leads as possible

Lithotripsy

- Do not focus the lithotripsy beam near the generator

Magnetic Resonance Imaging

- Ensure that a standardized workflow and/or institutional protocol is in place and followed
- Move the patient outside of the immediate magnetic resonance imaging area when the use of an external defibrillator/monitor, cardiac implantable electronic device programmer, or any other magnetic resonance imaging–unsafe equipment is required

For some cases, the electrosurgical dispersive electrode will need to be placed at a site different from the thigh. For example, in head and neck cases, the dispersive electrode may be placed on the posterior superior aspect of the shoulder contralateral to the generator position.

An inhibitory effect could occur even when the active electrode of the electrosurgery instrument is not touching the patient.

For some cases, the electrosurgical dispersive electrode will need to be placed at a site different from the thigh. For example, in head and neck cases, the dispersive electrode may be placed on the posterior superior aspect of the shoulder contralateral to the generator position.

An inhibitory effect could occur even when the active electrode of the electrosurgery instrument is not touching the patient.

Cardiac Implantable Electronic Device Management

- Before the magnetic resonance imaging scan, perform the following:
 - Interrogate the cardiac implantable electronic device
 - Suspend the antitachycardia function of an implantable cardioverter–defibrillator, if present

- For magnetic resonance imaging-conditional cardiac implantable electronic devices, adhere to all product labeling including activating “magnetic resonance imaging mode” to suspend the antitachycardia function of a magnetic resonance imaging-conditional implantable cardioverter–defibrillator.

- In the pacing-dependent patient, alter the pacing function of the cardiac implantable electronic device to an asynchronous pacing mode

- Ensure that an individual capable of performing advanced cardiac life support remains in attendance for the duration of the magnetic resonance imaging scan

- Ensure that an individual capable of programming the cardiac implantable electronic device is readily available for consultation or remains in attendance for the duration of the magnetic resonance imaging scan whenever dictated by institutional policy

- After the magnetic resonance imaging scan is completed, reinterrogate the cardiac implantable electronic device and restore its permanent settings

Radiofrequency Identification Devices

- Avoid using radiofrequency identification devices in close proximity to the cardiac implantable electronic device, whenever possible

- Monitor for signs of electromagnetic interference and be prepared to stop using the radiofrequency identification device if interference occurs

Electroconvulsive Therapy

- Alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient

- Suspend an implantable cardioverter–defibrillator’s antitachycardia function, if present

- Monitor for and be prepared to manage postconvulsive sinus tachycardia

- Monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of electroconvulsive therapy

Emergency Cardioversion or Defibrillation

- Before attempting to emergently externally cardiovert or defibrillate a patient with an implantable cardioverter–defibrillator and magnet-disabled therapies, terminate all sources of electromagnetic interference and remove the magnet to reenable the implantable cardioverter–defibrillator’s antitachycardia therapies

 - Observe the patient for appropriate antitachycardia therapy from the implantable cardioverter–defibrillator

 - Determine the need for reenabling an implantable cardioverter–defibrillator’s antitachycardia therapy if it was disabled by programming

 - If the above activities fail to restore the implantable cardioverter–defibrillator’s antitachycardia therapy, or if the antitachycardia therapy cannot be restored expeditiously, proceed with emergency external cardioversion or defibrillation when needed.

 - Follow advanced cardiac life support guidelines for delivered energy level and pad placement

 - Position the cardioversion and defibrillation pads so they are not directly over the cardiac implantable electronic device generator to minimize the current flowing through the generator and leads

 - Use a clinically appropriate energy output regardless of the presence of a cardiac implantable electronic device

 - Interrogate the cardiac implantable electronic device immediately after external cardioversion or defibrillation is performed

Postoperative Management

- Continue to monitor and display a patient’s cardiac rate and rhythm throughout the immediate postoperative period as required by ASA standards and as indicated by the patient's medical condition

- For a cardiac implantable electronic device that was reprogrammed pre- or intraoperatively:

 - Ensure that back-up pacing and cardioversion–defibrillation equipment are immediately available until the cardiac implantable electronic device’s permanent settings are restored

Some cardiac implantable electronic devices are labeled by the Food and Drug Administration as magnetic resonance imaging-conditional. These systems have been approved for magnetic resonance imaging under specific conditions of use. Cardiac implantable electronic devices that do not meet these criteria are non–magnetic resonance imaging-conditional. In many centers, magnetic resonance imaging remains contraindicated in the presence of non–magnetic resonance imaging-conditional cardiac implantable electronic device; however, some centers have implemented specific protocols allowing patients with a nonconditional cardiac implantable electronic device to undergo magnetic resonance imaging.
• Ensure the patient’s cardiac rate and rhythm are continuously monitored and displayed until the cardiac implantable electronic device’s permanent settings are restored.

• Ensure the patient remains in a monitored environment until the cardiac implantable electronic device’s permanent settings are restored (e.g., until the anti-tachycardia function of an implantable cardioverter–defibrillator is reenabled).

• Perform a postoperative cardiac implantable electronic device interrogation whenever:
 ◦ Emergency surgery occurred without appropriate preoperative cardiac implantable electronic device evaluation.
 ◦ There is suspicion that antitachycardia therapy might have been disabled rather than temporarily suspended with magnet placement.
 ◦ The delivery of antitachycardia therapy was observed or suspected.
 ◦ There is concern for cardiac implantable electronic device malfunction (i.e., significant electromagnetic interference occurred in close proximity to the cardiac implantable electronic device, an invasive procedure was performed in close proximity to a cardiac implantable electronic device generator or lead, or large fluid shifts occurred).

• If interrogation determines that the cardiac implantable electronic device settings are inappropriate, reprogram to newly appropriate settings.

Appendix 2: Methods and Analyses

For this updated practice advisory, a systematic search and review of peer-reviewed published literature was conducted, with scientific findings summarized and reported below and in the document. Assessment of conceptual issues and the practicality and feasibility of the advisory recommendations were also evaluated, with opinion data collected from surveys and other sources. Both the systematic literature review and the opinion data are based on evidence linkages or statements regarding potential relationships between perioperative interventions and electromagnetic interference (electromagnetic interference) outcomes associated with cardiac implantable electronic devices (cardiac implantable electronic devices). The evidence linkage interventions are listed below. The evidence model below guided the search, providing inclusion and exclusion information regarding patients, procedures, practice settings, providers, clinical interventions, and outcomes. After review of all evidentiary information, the task force placed each recommendation into one of three categories: (1) provide the intervention or treatment; (2) the intervention or treatment may be provided to the patient based on the practitioner’s clinical judgment; or (3) do not provide the intervention or treatment. The American Society of Anesthesiologists (ASA) Committee on Standards and Practice Parameters reviews all practice parameters at the ASA annual meeting and determines update and revision timelines. The policy of the ASA Committee on Standards and Practice Parameters is to update practice guidelines every 5 yr.

Evidence Model

Patients

• Inclusion criteria:
 ◦ Patients with permanently implanted cardiac implantable electronic device for treatment of a bradycardia, tachyarrhythmia, or heart failure
 ▪ Implantable cardiac pacemakers
 ▪ Implantable cardioverter–defibrillators
 ▪ Cardiac resynchronization devices

• Exclusion criteria:
 ◦ Patients undergoing cardiac implantable electronic device implantation or revision
 ◦ Patients without a permanently implantable pacemaker or implantable cardioverter–defibrillator
 ◦ Patients with a temporary cardiac implantable electronic device

Procedures

• Inclusion criteria:
 ◦ Inpatient procedures
 ◦ Outpatient procedures

• Exclusion criteria:
 ◦ Procedures without known perioperative cardiac implantable electronic device-related concerns
 ▪ Plain radiography
 ▪ Fluoroscopy
 ▪ Mammography
 ▪ Ultrasonography

Practice Settings

• Inclusion criteria:
 ◦ Any perioperative setting in which an anesthesia provider will be delivering anesthesia care.

In some instances, new settings may be needed.

Although the antitachycardia function of some older implantable cardioverter–defibrillators can be permanently disabled by magnet application, these implantable cardioverter–defibrillators are unlikely to still be encountered.

If the cardiac implantable electronic device is not interrogated during the immediate postoperative period, an interrogation after the patient is discharged may be warranted. Note that the expert consultants strongly agree and ASA members agree that interrogation should occur within 30 days after a procedure.
Preoperative settings
- Establish whether a patient has a cardiac implantable device
- Conduct a focused history
- Obtain manufacturer’s identification card from patient or other source
- Order chest x-ray if no other data are available
- Refer to supplemental resources (e.g., manufacturer’s databases)
- Determine cardiac implantable electronic device dependency
- Determine cardiac implantable electronic device function
 - Cardiac implantable electronic device interrogation
 - Determine whether a cardiac implantable electronic device will capture when it paces
 - Contact the manufacturer

Intraoperative settings
- Monitor operation of the cardiovascular device
 - Electrocardiography monitoring (per ASA standard)
 - Monitor pulse wave form (e.g., pulse oximeter plethysmogram, intraarterial pressure)
- Management of potential cardiac implantable electronic device dysfunction due to electromagnetic interference
 - Electrosurgery
 - Position the dispersive electrode so that the current pathway does not pass through or near the cardiac electronic device generator and leads
 - Avoid direct contact with the generator or leads
 - Use short, intermittent, and irregular bursts at the lowest feasible energy levels
 - Use bipolar electrosurgery system or ultrasonic scalpel
 - Use an ultrasonic (harmonic) scalpel (an ultrasonic scalpel can be safely used without affecting a pacemaker or implantable cardioverter-defibrillator)
 - Radiofrequency ablation
 - Keep the current path as far away from the generator and leads as possible
 - Avoid proximity of the ablation catheter to the leads (intercardiac ablative procedures)
 - Lithotripsy
 - Avoid focusing the lithotripsy beam near the pulse generator
- Magnetic resonance imaging
 - Move the patient outside of the immediate magnetic resonance imaging scan area when the use of an external monitor or cardioverter
defibrillator, cardiac implantable electronic device programmer, or any other magnetic resonance imaging-unsafe equipment is required
 ° Monitor the patient’s electrocardiogram and/or SpO₂ continuously throughout the magnetic resonance imaging scan
 ° An individual capable of programming the cardiac implantable electronic device remaining in attendance for the duration of the magnetic resonance imaging scan

Magnetic resonance imaging-conditional cardiac implantable electronic devices
 ° Before the magnetic resonance imaging, interrogate the cardiac implantable electronic device and program to “magnetic resonance imaging mode” to suspend the antitachycardia function or an implantable cardioverter–defibrillator
 ° Alter the pacing function of the cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient
 ° After the magnetic resonance imaging scan is completed, reinterrogate the cardiac implantable electronic device and restore its permanent settings

Magnetic resonance imaging nonconditional cardiac implantable electronic devices
 ° Interrogate the cardiac implantable electronic device before and after the magnetic resonance imaging scan
 ° Reprogram the cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient
 ° Suspend the antitachycardia function of an implantable cardioverter–defibrillator, if present
 ° After the magnetic resonance imaging scan is completed, reinterrogate the cardiac implantable electronic device and restore its permanent settings

Radiofrequency identification devices
 ° Avoid using this equipment in close proximity to the cardiac implantable electronic device whenever possible
 ° Monitor for signs of interference with the cardiac implantable electronic device and be prepared to stop using the radiofrequency identification device if interference occurs

Electroconvulsive therapy
 ° Alter the pacing function of a cardiac implantable electronic device to an asynchronous pacing mode in the pacing-dependent patient
 ° Suspend an implantable cardioverter–defibrillator’s antitachycardia therapy, if present
 ° Monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of electroconvulsive therapy

Emergency cardioversion or defibrillation
 ▪ Patients with an implantable cardioverter–defibrillator and magnet-disabled therapies:
 ° Remove the magnet to reenable antitachycardia therapy
 ° Terminate all sources of electromagnetic interference after magnet is removed
 ° Observe the patient for appropriate cardiac implantable electronic device antitachycardia therapy
 ▪ Patients with an implantable cardioverter–defibrillator and antitachycardia therapy that have been disabled by programming
 ° Reenable antitachycardia therapy via programming
 ° Minimize the current flowing through the generator and leads
 ° Position cardioversion and defibrillation pads as far as possible from the pulse generator
 ° Use anterior–posterior position
 ° Use a clinically appropriate energy output
 ▪ Postoperative management
 ° Confirm or restore cardiac implantable electronic device function
 ° Interrogate the implantable cardiac electronic device
 ° Reprogram the implantable cardiac electronic device to appropriate settings
 ° Restore therapy antiarrhythmic therapies
 ° Patients with disabled implantable cardioverter–defibrillator antitachycardia functions
 ° Continuously monitor cardiac function
 ° Keep external cardioversion and defibrillation equipment immediately available until antitachycardia function has been restored

Outcomes
 ° Expected benefits:
 ° Successful procedure
 ° Reduced frequency/severity of adverse outcomes:
Cardiac Implantable Electronic Device Management

- Adverse outcomes associated with a cardiac implantable electronic device
 - Cardiac implantable electronic device damage
 - Inability to deliver pacing or shocks
 - Lead-tissue interface damage
 - Changes in pacing behavior
 - Electrical reset to the backup pacing mode
 - Inappropriate implantable cardioverter–defibrillator antitachycardia therapy
- Adverse clinical outcomes
 - Hypotension
 - Tachyarrhythmia
 - Bradyarrhythmia
 - Myocardial tissue damage

Evidence Collection

- Literature inclusion criteria:
 - Randomized controlled trials
 - Prospective nonrandomized comparative studies (e.g., quasi-experimental, cohort)
 - Retrospective comparative studies (e.g., case-control)
 - Observational studies (e.g., correlational or descriptive statistics)
 - Case reports, case series
- Literature exclusion criteria (except to obtain new citations):
 - Editorials
 - Literature reviews
 - Meta-analyses conducted by others
 - Abstracts
 - Unpublished studies
 - Studies in non–peer-review journals
 - Newspaper articles
- Survey evidence:
 - Expert consultant survey
 - ASA membership survey
 - Other participating organization surveys
 - Reliability survey
 - Feasibility survey

State of the Literature

For the systematic review, potentially relevant clinical studies were identified via electronic and manual searches. Healthcare database searches included PubMed, EMBASE, Web of Science, Google Books, and the Cochrane Central Register of Controlled Trials. The searches covered a 9.5-yr period from January 1, 2010, through July 1, 2019. Accepted studies from the previous advisory were also rereviewed, covering the period of January 1, 1990, through July 31, 2010. Only studies containing original findings from peer-reviewed journals were acceptable. Editorials, letters, and other articles without data were excluded. A literature search strategy and PRISMA flow diagram are available as Supplemental Digital Content 2 (http://links.lww.com/ALN/B980).

In total, 1,143 new citations were identified, with 810 articles assessed for eligibility. After review, 746 were excluded, with 24 new studies meeting the above stated criteria. These studies were combined with 40 pre-2010 articles used in the previous advisory and 8 provided by task force members, resulting in a total of 72 articles accepted as evidence for these guidelines. In this document, 63 peer-reviewed articles, 2 ASA standards, and 1 ASA practice advisory are referenced, with a complete bibliography of articles used to develop these guidelines, organized by section, available as Supplemental Digital Content 3 (http://links.lww.com/ALN/B981).

Each pertinent outcome reported in a study was classified by evidence category and level and designated as beneficial, harmful, or equivocal. Findings were then summarized for each evidence linkage and reported in the text of the updated advisory, with evidence tables available as Supplemental Digital Content 4 (http://links.lww.com/ALN/B982).

Evidence categories refer specifically to the strength and quality of the research design of the studies. Category A evidence represents results obtained from randomized controlled trials, and category B evidence represents observational results obtained from nonrandomized study designs or randomized controlled trials without pertinent comparison groups. When available, category A evidence is given precedence over category B evidence for any particular outcome. These evidence categories are further divided into evidence levels. Evidence levels refer specifically to the strength and quality of the summarized study findings (i.e., statistical findings, type of data, and the number of studies reporting/replicating the findings). In this document, only the highest level of evidence is included in the summary report for each intervention—outcome pair, including a directional designation of benefit, harm, or equivocality.

Category A. Randomized controlled trials report comparative findings between clinical interventions for specified outcomes. Statistically significant ($P < 0.01$) outcomes are designated as either beneficial (B) or harmful (H) for the patient; statistically nonsignificant findings are designated as equivocal (E).

Level 1. The literature contains a sufficient number of randomized controlled trials to conduct meta-analysis, and meta-analytic findings from these aggregated studies are reported as evidence.

Level 2. The literature contains multiple randomized controlled trials, but the number of randomized controlled trials is not sufficient to conduct a viable meta-analysis for the purpose of these guidelines. Findings from these

††††††††††Preferred reporting items of systematic reviews and meta-analyses.
randomized controlled trials are reported separately as evidence.

Level 3. The literature contains a single randomized controlled trial, and findings from this study are reported as evidence.

Category B. Observational studies or randomized controlled trials without pertinent comparison groups may permit inference of beneficial or harmful relationships among clinical interventions and clinical outcomes. Inferred findings are given a directional designation of beneficial (B), harmful (H), or equivocal (E). For studies that report statistical findings, the threshold for significance is $P < 0.01$.

Level 1. The literature contains nonrandomized comparisons (e.g., quasiexperimental, cohort [prospective or retrospective], or case-control research designs) with comparative statistics between clinical interventions for a specified clinical outcome.

Level 2. The literature contains noncomparative observational studies with associative statistics (e.g., correlation, sensitivity, and specificity).

Level 3. The literature contains noncomparative observational studies with descriptive statistics (e.g., frequencies, percentages).

Level 4. The literature contains case reports.

Insufficient Literature. The lack of sufficient scientific evidence in the literature may occur when the evidence is either unavailable (i.e., no pertinent studies found) or inadequate. Inadequate literature cannot be used to assess relationships among clinical interventions and outcomes because a clear interpretation of findings is not obtained due to methodologic concerns (e.g., confounding of study design or implementation) or the study does not meet the criteria for content as defined in the “focus” of the guidelines.

Although interobserver agreement among task force members and two methodologists was not assessed for this update, the original guidelines reported agreement levels using a K statistic for two-rater agreement pairs as follows: (1) type of study design, $\kappa = 0.72$ to 0.90; (2) type of analysis, $\kappa = 0.80$ to 0.90; (3) evidence linkage assignment, $\kappa = 0.84$ to 1.00; and (4) literature inclusion for database, $\kappa = 0.70$ to 1.00. Three-rater agreement values were as follows: (1) study design, $Sav = 0.81$, $Var (Sav) = 0.010$; (2) type of analysis, $Sav = 0.86$, $Var (Sav) = 0.009$; (3) linkage assignment, $Sav = 0.82$, $Var (Sav) = 0.005$; and (4) literature database inclusion $Sav=0.78$, $Var (Sav) = 0.031$. These values represent moderate to high levels of agreement.

Consensus-based Evidence

Validation of the concepts addressed by this advisory and subsequent recommendations proposed was obtained by consensus from multiple sources, including: (1) survey opinions from consultants who were selected based on their knowledge or expertise in perioperative management of cardiac implantable electronic devices; (2) survey opinions from randomly selected samples of active members of the ASA; (3) testimony on the original advisory from attendees of two publicly held open forums at a national anesthesia meeting and at a major cardiology meeting; and (4) internet commentary. All opinion-based evidence relevant to each topic was considered in the development of these guidelines. However, only findings obtained from formal surveys are reported in the document. Opinion surveys were developed by the task force to address each clinical intervention identified in the document. Identical surveys were distributed to expert consultants and a random sample of members of the participating organizations.

Survey responses were recorded using a five-point scale and summarized based on median values.

- Strongly agree: Median score of 5 (at least 50% of the responses are 5)
- Agree: Median score of 4 (at least 50% of the responses are 4 or 4 and 5)
- Equivocal: Median score of 3 (at least 50% of the responses are 3, or no other response category or combination of similar categories contain at least 50% of the responses)
- Disagree: Median score of 2 (at least 50% of responses are 2 or 1 and 2)
- Strongly disagree: Median score of 1 (at least 50% of responses are 1)

The survey rate of return was 34% (N = 32/94) for consultants, and 5% (N = 245/5,000) for the ASA membership. The results of the surveys are reported in tables 2 and 3 and are summarized in the text of the guidelines.

An additional survey was sent to the consultants accompanying a draft of the advisory asking them to indicate which, if any, of the evidence linkages would change their clinical practices if the advisory were instituted. The rate of return was 13% (N = 12 of 94). The percentage of responding consultants expecting no change associated with each linkage were as follows: preoperative evaluation (determining whether a patient has a cardiac implantable electronic device and that it is functioning properly), 83.3%; patient preparation (determining whether electromagnetic interference is likely to occur), 83.3%; consulting a specialist when needed to alter the pacing function of a cardiac implantable electronic device, 75.0%; having temporary pacing and defibrillation equipment immediately available before, during, and after procedures with electromagnetic

Consultants were drawn from the following specialties where perioperative management of cardiac implantable electronic devices are a concern: anesthesiology (85% of respondents) and cardiac electrophysiology (15% of respondents).

When an equal number of categorically distinct responses are obtained, the median value is determined by calculating the arithmetic mean of the two middle values. Ties are calculated by a predetermined formula.
interference potential, 91.7%; continuous monitoring of electrocardiography, Spo2, and peripheral pulse, 91.7%; electrosurgery, 100%; radiofrequency ablation, 100%; lithotripsy, 91.7%; magnetic resonance imaging, 91.7%; radiation therapy, 100%; radiofrequency identification devices, 100%; electroconvulsive therapy, 100%; emergency defibrillation or cardioversion, 91.7%; postoperative management (continuing to monitor and display electrocardiogram, cardiac rate, and rhythm), 100%; and postoperative cardiac implantable electronic device interrogation, 91.7%. In total, 67% of the respondents indicated that the advisory would have no effect on the amount of time spent on

To view a bar chart with the above findings, refer to Supplemental Digital Content 5 (http://links.lww.com/ALN/B983).

Table 1. NASPE/BPEG Generic Pacemaker Code: Revised (2002)

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position II</th>
<th>Position III</th>
<th>Position IV</th>
<th>Position V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chambers paced</td>
<td>Chambers sensed</td>
<td>Response to sensing</td>
<td>Rate modulation</td>
<td>Multisite pacing</td>
</tr>
<tr>
<td>O = None</td>
</tr>
<tr>
<td>A = Atrium</td>
<td>A = Atrium</td>
<td>T = Triggered</td>
<td>R = Rate modulation</td>
<td>A = Atrium</td>
</tr>
<tr>
<td>V = Ventricle</td>
<td>V = Ventricle</td>
<td>I = Inhibited</td>
<td>V = Ventricle</td>
<td>V = Ventricle</td>
</tr>
<tr>
<td>D = Dual (A + V)</td>
</tr>
</tbody>
</table>

The generic pacemaker code was developed as a joint project by the British Pacing and Electrophysiology Group (BPEG) and the North American Society of Pacing and Electrophysiology (NASPE). The five positions refer to the order of the programmed settings on the cardiac implantable electronic device (cardiac implantable electronic device). Examples of the code follow: (1) AAI = atrial-only pacing and sensing. In this mode, any failure of the atrium to produce an intrinsic event within the appropriate time interval (determined by the lower rate limit) results in the emission of an atrial pacing pulse. (2) ADO = atrial-only asynchronous pacing (i.e., no sensing). In this mode, an atrial pacing pulse is emitted regardless of the intrinsic cardiac rhythm. (3) DDD = dual chamber (atrial and ventricular) pacing and sensing. This mode provides dual chamber pacing and sensing, and atrial tracking. Thus, every atrial event, within programed limits, is followed by a ventricular event. In the absence of an intrinsic atrial event, the atrium will be paced, and after any sensed or paced atrial event, an intrinsic ventricular event must occur before the expiration of the atrioventricular timer or the ventricle will be paced. (4) DDI = dual chamber (atrial and ventricular) pacing and sensing without tracking of sensed atrial events. In this mode, only paced atrial events are tracked into the ventricle, and ventricular pacing occurs when the ventricle fails to produce an intrinsic event within the appropriate time interval. (5) DOO = dual chamber (atrial and ventricular) asynchronous atrioventricular sequential pacing (i.e., no sensing). In this mode, atrial and ventricular pacing pulses are emitted regardless of the intrinsic cardiac rhythm. (6) VOO = ventricular-only asynchronous pacing (i.e., no sensing). In this mode, a ventricular pacing pulse is emitted regardless of the intrinsic cardiac rhythm. (7) VVI = ventricular-only pacing and sensing. In this mode, any failure of the ventricle to produce an intrinsic event within the appropriate time interval (determined by the lower rate limit) results in the emission of a ventricular pacing pulse. There is no atrial sensing and thus no atrioventricular synchrony in the absence of intrinsic atrial activity.

Table 2. NASPE/BPEG Generic Defibrillator Code

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position II</th>
<th>Position III</th>
<th>Position IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock chambers</td>
<td>Antitachycardia pacing chambers</td>
<td>Tachycardia detection</td>
<td>Antibrady cardiac pacing chambers</td>
</tr>
<tr>
<td>O = None</td>
<td>O = None</td>
<td>O = Electrocardiogram</td>
<td>O = None</td>
</tr>
<tr>
<td>A = Atrium</td>
<td>A = Atrium</td>
<td>H = Hemodynamic</td>
<td>A = Atrium</td>
</tr>
<tr>
<td>V = Ventricle</td>
<td>V = Ventricle</td>
<td>V = Ventricle</td>
<td>V = Ventricle</td>
</tr>
<tr>
<td>D = Dual (A + V)</td>
</tr>
</tbody>
</table>

The generic defibrillator code was developed as a joint project by the British Pacing and Electrophysiology Group (BPEG) and the North American Society of Pacing and Electrophysiology (NASPE). The five positions refer to the order of the programed settings on the cardiac implantable electronic device. For robust identification, position IV is expanded into its complete NASPE/BPEG Generic Pacemaker code. For example, a biventricular implantable cardioverter-defibrillator with ventricular shock and antitachycardia pacing functionality would be identified as WE-DDDRV, assuming it was programed to pace and sense in the DDD mode with rate response.

A typical case with the implementation of this advisory, 25% indicated that there would be an increase, and 8.3% indicated that there would be a decrease.

Acknowledgment

The authors are indebted to the late Dr. Marc A. Rozner for his service as the original chair of this Task Force and his invaluable contributions to the earlier versions of this advisory.

Research Support

Support was provided solely by the American Society of Anesthesiologists (Schaumburg, Illinois).

Competing Interests

The authors declare no competing interests.
Table 3. Example of a Stepwise Approach to the Perioperative Management of the Patient with a Cardiac Implantable Electronic Device

<table>
<thead>
<tr>
<th>Perioperative Period</th>
<th>Patient/CIED Condition</th>
<th>Intervention</th>
</tr>
</thead>
</table>
| **Preoperative evaluation** | Patient has CIED | Focused history
Focused physical exam
Determine CIED type (PM, ICD, CRT)
Manufacturer’s CIED identification card
Chest x-ray (no data available)
Supplemental resources* |
| **Determine whether patient is CIED-dependent for pacing function** | | Verbal history
Atrioventricular node ablation
No spontaneous ventricular activity† |
| **Determine CIED function** | | Comprehensive CIED evaluation‡ |
| **Preoperative preparation** | Any CIED | |
Preoperative preparation Any CIED
Suspend the CIED’s active sensor for rate-responsive pacing to prevent undesirable tachycardia, if present
Use bipolar electrocautery or ultrasonic scalpel whenever possible
Temporary pacing and cardioversion–defibrillation available
Additional interventions are not needed
EMI unlikely (during procedure)
EMI likely; pacemaker
Pacing-dependent patient: reprogram to asynchronous mode
Suspend antitachycardia therapy
Pacing-dependent patient: reprogram to asynchronous mode
EMI likely: ICD
Suspend antitachycardia therapy
Pacing-dependent patient: reprogram to asynchronous mode
Intraoperative physiologic changes likely (e.g., bradycardia, ischemia)
Plan for possible adverse CIED–patient interaction
Intraoperative management Monitoring per ASA standards
Electrocardiogram
Peripheral pulse (i.e., SpO₂)
Electrosurgery
Direct current return path away from generator and leads
Avoid proximity of electrocautery unit to generator/leads
Short bursts at lowest possible energy
Use bipolar electrocautery or ultrasonic scalpel whenever possible
Avoid contact RF catheter with generator/leads
RF current path far away from generator/leads
Discuss these concerns with operator
RF catheter ablation
Avoid contact RF catheter with generator/leads
RF current path far away from generator/leads
Discuss these concerns with operator
Lithotripsy
Do not focus lithotripsy beam near generator
MRI
Move the patient outside of the MRI scan area when the use of an external monitor, cardioverter–defibrillator, CIED
CIED programmer or any other MRI-unsafe equipment is required
Before the MRI, perform the following:
Interrogate the CIED
Suspend the antitachycardia function of an ICD, if present
For MRI-conditional ICDs, program to “MRI Mode” to suspend the antitachycardia function
In the pacing-dependent patient, alter the pacing function of the CIED to an asynchronous pacing mode
Ensure that an individual capable of programming the CIED remains in attendance for the duration of the MRI
After the MRI is completed, interrogate the CIED and restore its permanent settings
ECT
After the pacing function to an asynchronous pacing mode in the pacing-dependent patient
Suspend an ICD’s antitachycardia functions, if present
Monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of ECT
Emergency defibrillation–cardioversion ICD: magnet-disabled
Terminate all electromagnetic interference sources
ICD: programming disabled
Programming to reenable therapies or proceed directly with external cardioversion/defibrillation
Minimize current flow through PG/leads
PP as far as possible from PG
PP perpendicular to major axis
PG/leads
Regardless of CIED type
To extent possible, PP in anterior–posterior location
Use clinically appropriate cardioversion/defibrillation energy
(Continued)
Table 3. (Continued)

<table>
<thead>
<tr>
<th>Perioperative Period</th>
<th>Patient/CIED Condition</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative</td>
<td>management</td>
<td>Continue to monitor and display a patient’s electrocardiogram as required by ASA standards as indicated by the patient’s medical condition. Continuously monitor cardiac rate and rhythm throughout the immediate postoperative period. For a CIED that was reprogrammed pre- or intraoperatively: Ensure that back-up pacing and cardioversion–defibrillation equipment are immediately available until its permanent settings are restored§. For a CIED that was reprogrammed pre- or intraoperatively, restore the CIED to its permanent settings before the patient is discharged from a monitored environment. Perform a postoperative CIED interrogation whenever emergency surgery occurred without appropriate preoperative CIED evaluation. There is suspicion that antitachycardia therapy might have been disabled rather than temporarily suspended with magnet placement. Significant electromagnetic interference occurred in close proximity to the CIED. The delivery of antitachycardia therapy was observed. There is concern for CIED malfunction. If interrogation determines that the CIED settings are inappropriate, reprogram to newly appropriate settings.</td>
</tr>
</tbody>
</table>

Table 4. Expert Consultant Survey Results

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative evaluation</td>
<td>32</td>
<td>100*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1. Determine whether a patient has a CIED</td>
<td>32</td>
<td>97*</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Determine the CIED type (i.e., PM, ICD, CRT)</td>
<td>32</td>
<td>66*</td>
<td>28</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3. Determine the CIED manufacturer</td>
<td>32</td>
<td>69*</td>
<td>28</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. Determine the primary indication for CIED placement</td>
<td>32</td>
<td>91*</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. Determine whether the patient is pacing-dependent</td>
<td>32</td>
<td>63*</td>
<td>31</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Preoperative preparation</td>
<td>32</td>
<td>72*</td>
<td>22</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. Determine the CIED’s current settings</td>
<td>32</td>
<td>81*</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7. Confirm that the CIED is functioning properly (i.e., by interrogating the CIED or obtaining the most recent interrogation report).</td>
<td>32</td>
<td>63*</td>
<td>22</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>8. Determine whether intraoperative EMI from monopolar electrosurgery or other sources is likely to occur</td>
<td>32</td>
<td>34</td>
<td>6</td>
<td>25</td>
<td>34*</td>
<td>28</td>
</tr>
<tr>
<td>9. If monopolar electrosurgery (“bovie”) use is planned superior to the umbilicus, alter the pacing function of a CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>32</td>
<td>78*</td>
<td>19</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. If monopolar electrosurgery (“bovie”) use is planned inferior to the umbilicus, alter the pacing function of a CIED to an asynchronous pacing in the pacing-dependent patient</td>
<td>32</td>
<td>23</td>
<td>29*</td>
<td>13</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>11. If monopolar electrosurgery (“bovie”) use is planned superior to the umbilicus, suspend an ICD’s antitachycardia function, if present</td>
<td>31</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12. If monopolar electrosurgery (“bovie”) use is planned inferior to the umbilicus, suspend an ICD’s antitachycardia function, if present</td>
<td>32</td>
<td>75*</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13. Before suspending the antitachycardia function of an ICD, ensure that the patient is in a monitored environment</td>
<td>32</td>
<td>16</td>
<td>31</td>
<td>9*</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>14. Avoid the routine use of a magnet over an ICD</td>
<td>32</td>
<td>81*</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>15. If needed, consult a specialist to alter the pacing function of a CIED or suspend the antitachycardia function of an ICD</td>
<td>32</td>
<td>25</td>
<td>41*</td>
<td>31</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>16. Advise the proceduralist to use bipolar electrosurgery or an ultrasonic scalpel when feasible</td>
<td>32</td>
<td>25</td>
<td>41*</td>
<td>31</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

*Manufacturer’s databases, pacemaker clinic records, consultation with a CIED specialist. †With CIED pacing function temporarily programmed to a nontracking mode (i.e., ventricular-only pacing and sensing) at the lowest programmable rate. ‡Assessed by interrogating the cardiac implantable electronic device or obtaining the most recent interrogation report. §Postoperative cardiac implantable electronic device interrogation may not be needed in low-risk situations (e.g., appropriate preoperative cardiac implantable electronic interrogation, no electromagnetic interference–generating devices used during the procedure, no perioperative reprogramming took place, and no problems identified during the procedure). ||In some instances new settings may be needed.

ASA, American Society of Anesthesiologists; CIED, cardiac implantable electronic device; CRT, cardiac resynchronization therapy; ECT, electroconvulsive therapy; EMI, electromagnetic interference; ICD, implantable cardioverter–defibrillator; MRI, magnetic resonance imaging; PG, pulse generator; PP, defibrillation or cardioversion pads; RF, radiofrequency; RT, radiation therapy; Sp02, oxygen saturation measured by pulse oximetry.
Table 4. (Continued)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Ensure that temporary pacing and defibrillation equipment are immediately available before, during, and after all procedures with EMI potential</td>
<td>32</td>
<td>72*</td>
<td>25</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18. Suspend the CIED’s active sensor for rate-responsive pacing to prevent undesirable tachycardia</td>
<td>32</td>
<td>28</td>
<td>44*</td>
<td>22</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Continuously monitor and display a patient’s electrocardiogram as required by ASA standards, from the beginning of anesthesia until the patient is transferred out of the anesthetizing location, with additional electrocardiography monitoring in the postoperative period as indicated by the patient’s medical condition</td>
<td>32</td>
<td>91*</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20. Perform continuous peripheral pulse monitoring for all CIED patients receiving anesthesia care</td>
<td>32</td>
<td>69*</td>
<td>13</td>
<td>9</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>21. If unanticipated CIED interactions occur, discontinue the procedure until the source of interference can be eliminated or managed</td>
<td>32</td>
<td>56*</td>
<td>34</td>
<td>6</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: electrosurgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Minimize the risk of EMI by positioning the electrosurgical instrument and dispersive electrode (“bovie pad”) so the current pathway does not pass through or near the CIED system</td>
<td>32</td>
<td>75*</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23. Avoid proximity of the electrosurgical electrical field to the generator and leads, including the avoidance of waving the activated electrode over the generator</td>
<td>31</td>
<td>81*</td>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24. Use short, intermittent, and irregular bursts of electrosurgery at the lowest feasible energy levels</td>
<td>32</td>
<td>63*</td>
<td>25</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25. Use bipolar electrosurgery or an ultrasonic (harmonic) scalpel, if possible</td>
<td>32</td>
<td>41</td>
<td>44*</td>
<td>13</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: radiofrequency ablation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Avoid direct contact between the ablation catheter and the generator and leads</td>
<td>31</td>
<td>65*</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27. Keep the RF’s current path (electrode tip to current return pad) as far away from the generator and leads as possible</td>
<td>31</td>
<td>65*</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: lithotripsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Avoid focusing the lithotripsy beam near the generator</td>
<td>30</td>
<td>63*</td>
<td>27</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Move the patient outside of the immediate MRI area when the use of an external defibrillator/monitor, CIED programming system, or any other MRI-unsafe equipment is required</td>
<td>31</td>
<td>84*</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30. Monitor the patient’s electrocardiogram and/or Spo2 continuously throughout the MRI</td>
<td>31</td>
<td>84*</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31. An individual capable of programming the CIED should remain in attendance for the duration of the MRI</td>
<td>30</td>
<td>20</td>
<td>30*</td>
<td>33</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: MRI-conditional CIEDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Before the MRI, interrogate the CIED and program to “MRI mode” to suspend the antitachycardia function of an ICD</td>
<td>29</td>
<td>69*</td>
<td>24</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33. After the pacing function of the CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>29</td>
<td>59*</td>
<td>28</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>34. After the MRI, interrogate the CIED and restore its permanent settings Intraoperative management of EMI sources: non-MRI-conditional CIEDs</td>
<td>29</td>
<td>83*</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35. Interrogate the CIED before and after the MRI</td>
<td>29</td>
<td>62*</td>
<td>31</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36. After the pacing function of the CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>29</td>
<td>66*</td>
<td>21</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37. Suspend the antitachycardia function of an ICD if present</td>
<td>29</td>
<td>66*</td>
<td>24</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38. After the MRI, reinterrogate the CIED and restore its permanent settings Intraoperative management of EMI sources: radiation therapy</td>
<td>28</td>
<td>82*</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>39. Avoid exposing the CIED to radiation whenever possible by positioning the CIED outside the radiation field, shielding the CIED from direct radiation, and relocating the generator to the patient’s contralateral side</td>
<td>29</td>
<td>55*</td>
<td>17</td>
<td>24</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>40. Determine whether the manufacturer recommends verification of CIED function before and at the completion of radiation</td>
<td>29</td>
<td>59*</td>
<td>31</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: RFID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. Avoid using this equipment in close proximity to the CIED whenever possible</td>
<td>29</td>
<td>52*</td>
<td>31</td>
<td>14</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>42. Monitor for signs of interference with the CIED and be prepared to stop using the RFID if interference occurs Intraoperative management of EMI sources: ECT</td>
<td>28</td>
<td>71*</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>43. After the pacing function of a CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>27</td>
<td>33</td>
<td>33*</td>
<td>22</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>44. Suspend an ICD’s antitachyarrhythmia functions, if present</td>
<td>27</td>
<td>48</td>
<td>41*</td>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>45. Monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of ECT</td>
<td>28</td>
<td>89*</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(Continued)
Table 4. (Continued)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoperative management: emergency external defibrillation or cardioversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46. Before performing emergency defibrillation or cardioversion of the patient with an ICD and magnet-disabled therapies, terminate all sources of EMI and remove the magnet to reenable the ICD's antitachycardia therapies; then observe the patient for the delivery of appropriate antitachycardia therapy from the ICD</td>
<td>28</td>
<td>54*</td>
<td>32</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>47. For the patient with an ICD and antitachycardia therapy that have been disabled by programming, determine whether the antitachycardia therapy should be reenabled</td>
<td>28</td>
<td>43</td>
<td>32*</td>
<td>7</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>48. If the above activities fail to restore ICD function perform, emergency external defibrillation or cardioversion when needed</td>
<td>28</td>
<td>89*</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49. Follow ACLS and emergency protocols to provide rapid cardioversion or defibrillation when needed</td>
<td>28</td>
<td>86*</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50. Follow ACLS guidelines for delivered energy level and pad placement</td>
<td>28</td>
<td>75*</td>
<td>21</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>51. Attempt to minimize the current flowing through the pulse generator and leads by positioning the defibrillation or cardioversion pads so they are not directly over the CIED</td>
<td>28</td>
<td>75*</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>52. Use anterior–posterior rather than anterior–lateral pad positioning whenever possible</td>
<td>27</td>
<td>52*</td>
<td>22</td>
<td>22</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>53. Use a clinically appropriate energy output regardless of the presence of the CIED</td>
<td>28</td>
<td>79*</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>54. Interrogate the CIED immediately after external cardioversion or defibrillation is performed</td>
<td>27</td>
<td>67*</td>
<td>22</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postoperative management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55. Continuously monitor cardiac rate and rhythm throughout the immediate postoperative period</td>
<td>28</td>
<td>86*</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>56. For a CIED that was reprogrammed pre- or intraoperatively, ensure that back-up pacing and cardioversion–defibrillation equipment are immediately available until its permanent settings are restored</td>
<td>28</td>
<td>86*</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57. For a CIED that was reprogrammed pre- or intraoperatively, restore the CIED to its permanent settings before the patient is discharged from a monitored environment</td>
<td>28</td>
<td>86*</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58. If interrogation determines that the CIED settings are inappropriate, then reprogram the CIED to newly appropriate settings</td>
<td>28</td>
<td>57*</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>59. Perform a postoperative CIED interrogation if emergency surgery occurred without appropriate preoperative CIED evaluation</td>
<td>28</td>
<td>75*</td>
<td>11</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60. Perform a postoperative CIED interrogation if there is suspicion that antitachycardia therapy might have been disabled rather than temporarily suspended with magnet placement</td>
<td>28</td>
<td>68*</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>61. Perform a postoperative CIED interrogation if significant electromagnetic interference occurred in close proximity to the CIED</td>
<td>28</td>
<td>71*</td>
<td>21</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>62. Perform a postoperative CIED interrogation if the delivery of antitachycardia therapy was observed or if there is concern for CIED malfunction</td>
<td>28</td>
<td>82*</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>63. If the CIED is not interrogated during the immediate postoperative period, have it interrogated within 30 days after the procedure</td>
<td>28</td>
<td>50*</td>
<td>29</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

N = number of consultants who responded to each item.

*Median.

ACLS, advanced cardiac life support; ASA, American Society of Anesthesiologists; CIED, cardiac implantable electronic device; CRT, cardiac resynchronization therapy; ECT, electroconvulsive therapy; EMI, electromagnetic interference; ICD, implantable cardioverter–defibrillator; MRI, magnetic resonance imaging; N, number of members who responded to each item; rF, radiofrequency; rFID, radiofrequency identification device; rT, radiation therapy; ScO2, oxygen saturation measured by pulse oximetry.

Table 5. ASA Member Survey Results

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Determine whether a patient has a CIED</td>
<td>245</td>
<td>96*</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. Determine the CIED type (i.e., PM, ICD, CRT)</td>
<td>243</td>
<td>86*</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3. Determine the CIED manufacturer</td>
<td>244</td>
<td>44</td>
<td>35*</td>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4. Determine the primary indication for CIED placement</td>
<td>245</td>
<td>79*</td>
<td>18</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. Determine whether the patient is pacing-dependent</td>
<td>243</td>
<td>85*</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Preoperative preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Determine the CIED’s current settings</td>
<td>243</td>
<td>47</td>
<td>38*</td>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

(Continued)
Table 5. (Continued)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Confirm that the CIED is functioning properly (i.e., by interrogating the CIED or obtaining the most recent interrogation report)</td>
<td>243</td>
<td>49</td>
<td>28*</td>
<td>19</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8. Determine whether intraoperative EMI from monopolar electrosurgery or other sources is likely to occur</td>
<td>211</td>
<td>80*</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9. If monopolar electrosurgery (“bovie”) use is planned superior to the umbilicus, alter the pacing function of a CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>211</td>
<td>51*</td>
<td>28</td>
<td>12</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>10. If monopolar electrosurgery (“bovie”) use is planned inferior to the umbilicus, alter the pacing function of a CIED to an asynchronous pacing in the pacing-dependent patient</td>
<td>210</td>
<td>10</td>
<td>17</td>
<td>24*</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>11. If monopolar electrosurgery (“bovie”) use is planned superior to the umbilicus, suspend an ICD’s antitachycardia function, if present</td>
<td>208</td>
<td>55*</td>
<td>36</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>12. If monopolar electrosurgery (“bovie”) use is planned inferior to the umbilicus, suspend an ICD’s antitachycardia function, if present</td>
<td>209</td>
<td>19</td>
<td>22</td>
<td>24*</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>13. Before suspending the antitachycardia function of an ICD, ensure that the patient is in a monitored environment</td>
<td>210</td>
<td>76*</td>
<td>22</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14. Avoid the routine use of a magnet over an ICD</td>
<td>209</td>
<td>23</td>
<td>32*</td>
<td>24</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>15. If needed, consult a specialist to alter the pacing function of a CIED or suspend the antitachycardia function of an ICD</td>
<td>209</td>
<td>54*</td>
<td>38</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16. Advise the proceduralist to use bipolar electrosurgery or an ultrasonic scalpel when feasible</td>
<td>210</td>
<td>55*</td>
<td>37</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17. Ensure that temporary pacing and defibrillation equipment are immediately available before, during, and after all procedures with EMI potential</td>
<td>209</td>
<td>71*</td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18. Suspend the CIED’s active sensor for rate-responsive pacing to prevent undesirable tachycardia</td>
<td>211</td>
<td>22</td>
<td>35*</td>
<td>37</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

Intraoperative monitoring

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Continuously monitor and display a patient’s electrocardiogram as required by ASA standards, from the beginning of anesthesia until the patient is transferred out of the anesthetizing location, with additional electrocardiographymonitoring in the postoperative period as indicated by the patient’s medical condition</td>
<td>200</td>
<td>89*</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>20. Perform continuous peripheral pulse monitoring for all CIED patients receiving anesthesia care</td>
<td>201</td>
<td>71*</td>
<td>17</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>21. If unanticipated CIED interactions occur, discontinue the procedure until the source of interference can be eliminated or managed</td>
<td>201</td>
<td>53*</td>
<td>36</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Intraoperative management of EMI sources: electrosurgery

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Minimize the risk of EMI by positioning the electrosurgical instrument and dispersive electrode (“bovie pad”) so the current pathway does not pass through or near the CIED system</td>
<td>193</td>
<td>88*</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>23. Avoid proximity of the electrosurgical electrical field to the generator and leads, including the avoidance of waving the activated electrode over the generator</td>
<td>193</td>
<td>64*</td>
<td>27</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24. Use short, intermittent, and irregular bursts of electrosurgery at the lowest feasible energy levels</td>
<td>194</td>
<td>66*</td>
<td>28</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25. Use bipolar electrosurgery or an ultrasonic (harmonic) scalpel, if possible Intraoperative management of EMI sources: radiofrequency ablation</td>
<td>194</td>
<td>71*</td>
<td>25</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26. Avoid direct contact between the ablation catheter and the generator and leads</td>
<td>190</td>
<td>73*</td>
<td>22</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27. Keep the RF’s current path (electrode tip to current return pad) as far away from the generator and leads as possible Intraoperative management of EMI sources: lithotripsy</td>
<td>190</td>
<td>73*</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28. Avoid focusing the lithotripsy beam near the generator</td>
<td>187</td>
<td>63*</td>
<td>29</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29. Move the patient outside of the immediate MRI area when the use of an external defibrillator/monitor, CIED programming system, or any other MRI-unsafe equipment is required</td>
<td>185</td>
<td>75*</td>
<td>22</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30. Monitor the patient’s and/or SpO₂ continuously throughout the MRI</td>
<td>185</td>
<td>81*</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31. An individual capable of programming the CIED should remain in attendance for the duration of the MRI Intraoperative management of EMI sources: MRI-conditional CIEDs</td>
<td>185</td>
<td>18</td>
<td>17</td>
<td>45*</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>32. Before the MRI, interrogate the CIED and program to “MRI mode” to suspend the antitachycardia function of an ICD</td>
<td>179</td>
<td>48</td>
<td>31*</td>
<td>17</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>33. After the pacing function of the CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>177</td>
<td>32</td>
<td>37*</td>
<td>21</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>34. After the MRI, reinterrogate the CIED and restore its permanent settings Intraoperative management of EMI sources: non-MRI-conditional CIEDs</td>
<td>179</td>
<td>60*</td>
<td>30</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35. Interrogate the CIED before and after the MRI</td>
<td>172</td>
<td>44</td>
<td>31*</td>
<td>22</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 5. (Continued)

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>N</th>
<th>Strongly Agree, %</th>
<th>Agree, %</th>
<th>Equivocal, %</th>
<th>Disagree, %</th>
<th>Strongly Disagree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>36. Alter the pacing function of the CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>172</td>
<td>38</td>
<td>35*</td>
<td>20</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>37. Suspend the antitachycardia function of an ICD if present</td>
<td>172</td>
<td>41</td>
<td>36*</td>
<td>17</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>38. Alter the MRI, interrogate the CIED and restore its permanent settings</td>
<td>173</td>
<td>59*</td>
<td>28</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: radiation therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. Avoid exposing the CIED to radiation whenever possible by positioning the CIED outside the radiation field, shielding the CIED from direct radiation, and relocating the generator to the patient's contralateral side</td>
<td>165</td>
<td>31</td>
<td>35*</td>
<td>31</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>40. Determine whether the manufacturer recommends verification of CIED function before and at the completion of radiation</td>
<td>165</td>
<td>42</td>
<td>41*</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Intraoperative management of EMI sources: RFID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. Avoid using this equipment in close proximity to the CIED whenever possible</td>
<td>163</td>
<td>40</td>
<td>39*</td>
<td>17</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>42. Monitor for signs of interference with the CIED and be prepared to stop using the RFID if interference occurs</td>
<td>163</td>
<td>52*</td>
<td>39</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management: emergency external defibrillation or cardioversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43. Alter the pacing function of a CIED to an asynchronous pacing mode in the pacing-dependent patient</td>
<td>159</td>
<td>33</td>
<td>36*</td>
<td>20</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>44. Suspend an ICD's antitachyarrhythmia functions, if present</td>
<td>157</td>
<td>41</td>
<td>27*</td>
<td>22</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>45. Monitor for and treat ventricular arrhythmias that may occur secondary to the hemodynamic effects of ECT</td>
<td>159</td>
<td>70*</td>
<td>23</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Intraoperative management: emergency external defibrillation or cardioversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46. Before performing emergency defibrillation or cardioversion of the patient with an ICD and magnet-disabled therapies, terminate all sources of EMI and remove the magnet to reenable the ICD's antitachycardia therapies; then observe the patient for the delivery of appropriate antitachycardia therapy from the ICD</td>
<td>147</td>
<td>57*</td>
<td>30</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>47. For the patient with an ICD and antitachycardia therapy that have been disabled by programming, determine whether the antitachycardia therapy should be reenabled</td>
<td>146</td>
<td>51*</td>
<td>37</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>48. If the above activities fail to restore ICD function, perform emergency external defibrillation or cardioversion when needed</td>
<td>146</td>
<td>85*</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>49. Follow ACLS and emergency protocols to provide rapid cardioversion or defibrillation when needed</td>
<td>146</td>
<td>88*</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50. Follow ACLS guidelines for delivered energy level and pad placement</td>
<td>146</td>
<td>77*</td>
<td>13</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>51. Attempt to minimize the current flowing through the pulse generator and leads by positioning the defibrillation or cardioversion pads so they are not directly over the CIED</td>
<td>147</td>
<td>71*</td>
<td>24</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>52. Use anterior–posterior rather than anterior–lateral pad positioning whenever possible</td>
<td>145</td>
<td>48</td>
<td>30*</td>
<td>20</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>53. Use a clinically appropriate energy output regardless of the presence of the CIED</td>
<td>147</td>
<td>60*</td>
<td>33</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>54. Interrogate the CIED immediately after external cardioversion or defibrillation is performed</td>
<td>27</td>
<td>67*</td>
<td>22</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postoperative management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55. Continuously monitor cardiac rate and rhythm throughout the immediate postoperative period</td>
<td>145</td>
<td>83*</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>56. For a CIED that was reprogrammed pre- or intraoperatively, ensure that back-up pacing and cardioversion–defibrillation equipment are immediately available until its permanent settings are restored</td>
<td>145</td>
<td>82*</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>57. For a CIED that was reprogrammed pre- or intraoperatively, restore the CIED to its permanent settings before the patient is discharged from a monitored environment</td>
<td>145</td>
<td>83*</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>58. If interrogation determines that the CIED settings are inappropriate, then reprogram the CIED to newly appropriate settings</td>
<td>145</td>
<td>72*</td>
<td>23</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>59. Perform a postoperative CIED interrogation if emergency surgery occurred without appropriate preoperative CIED evaluation</td>
<td>145</td>
<td>56*</td>
<td>28</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>60. Perform a postoperative CIED interrogation if there is suspicion that antitachycardia therapy might have been disabled rather than temporarily suspended with magnet placement</td>
<td>145</td>
<td>77*</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>61. Perform a postoperative CIED interrogation if significant EMI occurred in close proximity to the CIED</td>
<td>145</td>
<td>51*</td>
<td>34</td>
<td>14</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>62. Perform a postoperative CIED interrogation if the delivery of antitachycardia therapy was observed or if there is concern for CIED malfunction</td>
<td>145</td>
<td>82*</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>63. If the CIED is not interrogated during the immediate postoperative period, have it interrogated within 30 days after the procedure</td>
<td>145</td>
<td>42</td>
<td>33*</td>
<td>17</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

N = number of members who responded to each item.

*Median.
Correspondence
Address correspondence to the American Society of Anesthesiologists: 1061 American Lane, Schaumburg, Illinois 60173. jeff@reach.uchicago.edu. These updated Practice Advisories, and all ASA Practice Parameters, may be obtained at no cost through the Journal Web site, www.anesthesiology.org.

References
to thoracic spine and cardiac 1.5-T magnetic resonance imaging scanning conditions. Heart Rhythm 2015; 12:2155–61

34. Vahlhaus C, Sommer T, Lewalter T, Schimpf R, Schumacher B, Jung W, Lüderitz B: Interference with cardiac pacemakers by magnetic resonance imaging: Are there irreversible changes at 0.5 Tesla? Pacing Clin Electrophysiol 2001; 24:489–95

54. Tong NY, Ru HJ, Ling HY, Cheung YC, Meng LW, Chung PC: Extracardiac radiofrequency ablation interferes with pacemaker function but does not damage the device. Anesthesiology 2004; 100:1041
67. American Society of Anesthesiologists: Standards for Postanesthesia Care, Last Amended October 15, 2014 (original approval October 27, 2004)