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Flows with predominate flow direction are governed by the de Saint Venant 
flow equations. The kinematic wave approach retains the mass balance but 
considers pseudo-uniform flow conditions instead of the full momentum ba- 
lance. This approximation is particularly well-suited for overland runoff pro- 
cesses. The zero-inertia approach may be regarded as an intermediate formula- 
tion which retains the effect of surface slope but neglects dynamical flow prop- 
erties. This investigation considers in detail the differences between the three 
of the aforementioned approaches under pseudo-steady flow conditions. The 
result indicates application limits of the two simplified wave theories when 
compared to the de Saint Venant flow equations and may be regarded as a 
useful decisive criterion. 

Introduction 

The hydrological modelling of overland and stream runoff in a watershed is either 
based on the hydrodynamic flow equations, or the main runoff features are model- 
led by a simplified, semi-empirical approach. Although the first approach will 
steadily replace the second because of its methodology, a full description of the 
flow processes is far from being simple. As an example, the turbulence characteris- 
tics of these flows are usually accounted for empirically such as by the Manning 
fbrmula. Furthermore, effects of surface tension for overland flow and effects of 
streamline curvature for streamflow are ignored. 

These facts have led hydrologists to consider less sophisticated approaches. Evi- 
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k>10 without loss of substantial accuracy. However, the criterion k>10 is not 
readily applicable since h, and Fo are a priori unknown. The purpose of the present 
investigation is to overcome this lack and provide direct application criteria for the 
kinematic wave approximation. In order to have a feasible approach, quasi-steady 
flow conditions as occur in the vicinity for temporal maximum excess precipitation 
are investigated. This is in agreement with k as defined previously, in which no 
time-dependent quantity appears. 

Governing Equations 

Consider steady, one-dimensional flow on a plane of constant bottom slope, So, on 
which flow depth, h, is much smaller than the width. The discharge per unit width, 
q, then is given by 

in which V is average velocity. The momentum balance in longitudinal direction 
may be expressed as (Hager 1983) 

in which x is the longitudinal coordinate, g the gravitational acceleration, Sf the 
frictional slope, u cos4 the streamwise velocity component of the lateral inflow or 
outflow intensity dqldx, see Fig. 1. This may equally be expressed as 

in which F = v/V@ is the Froude number. Eq. (3) corresponds to a particular 
case of the general flow equation as derived in (Liggett 1975), which accounts for 
the non-uniform velocity distribution and the non-uniform velocity distribution and 
the non-prismatic channel cross-section. The present approach is based on a uni- 
form velocity and a hydrostatic pressure distribution. These are reasonable 
assumptions for shallow water flow phenomena as appear in overland flow 
(Woolhiser 1975). 

Intensities of the lateral inflow, pi, and the lateral outflow, p, are assumed 
independent of the longitudinal coordinate, such that p=pi-p, is independent of x .  

Since dqldx=q'=p, the local discharge distribution is 

Fig. 1. Definition of flow pattern. 
I----x 
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in which x=O corresponds to the upstream end of the reach, see Fig. 1. For small 
and moderate bottom slope, the streamwise lateral velocity component is much 
smaller than the channel velocity, lu cosQlVl<<l. Eq. (3) then simplifies to 

in which the local discharge distribution is given by Eq. (4). For turbulent flow 
conditions, the frictional slope is approximated with the Manning-Strickler formula 

K=lln being the roughness coefficient and the hydraulic radius is equal to the flow 
depth h. Imposing one boundary condition then yields the free surface profile h(x), 
which will be studied in more detail in the subsequent sections. 

Approximations 

The governing momentum Eq. (5) accounts for shallow water flow conditions, for 
which the ratio of a typical flow depth to a typical length scale vanishes. Whenever 
this condition is not fulfilled effects of the transverse velocity and pressure distribu- 
tions must be accounted for, see e.g. (Hager and Hutter 1984). Let 

h, and Vo being typical flow depth and velocity, respectively. Eq. (5) then trans- 
forms into 

in which 

x may be identified as the ratio between a typical velocity and the uniform flow 
velocity and accounts for frictional effects, while g is the ratio between the precipi- 
tation velocity and the typical velocity times the bottom slope. Finally, F, ist the 
typical Froude number. 

It is a well-known fact that overland flow is usually subcritical, and typical 
Froude numbers are O<F0<0.2 for extreme excess precipitation as appears during 
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thunderstorms. Asymptotically, F,+O, for which Eq. (8) simplifies to dhldf=l- 
(X~2/h%) ,  corresponding to 

which is referred to as zero-inertia flow equation (Katopodes 1982). An even more 
drastic simplification of the above relation equates only the right hand side of Eq. 
(lo), the result being the so-called kinematic wave approximation 

It is important to recognize that all of the three above approaches, namely Eqs. (9, 
(10) and ( l l ) ,  apply to particular flow configurations, and may yield nearly identi- 
cal solutions under certain circumstances. However, the degree of liberty of Eqs. 
(5) and (10) is higher than for Eq. ( l l ) ,  since one boundary condition can be 
imposed. Because flow conditions for overland flow are globally subcritical, the 
boundary condition in question must be imposed at the downstream end of the 
considered reach. The resulting upstream flow depth then generally turns out to be 
different from h=O, while h(q=O)=O according to Eq. (11). Purpose of ensuing 
considerations will be a more detailed investigation of this peculiarity and determi- 
nation of application criteria for the kinematic wave theory with respect to the 
overland flow phenomena. 

Non-Dimensional Formulation 

Using Eqs. (4)-(6) the governing relation of the free surface profile is 

Distinction between sub- and supercritical flow conditions must be made. For 
~ ~ = ~ ~ x ~ / ( g h ~ ) < l ,  the direction of computation is reversed to the flow direction, 
while the two respective directions are identical for F>1. Consequently the bound- 
ary condition must be imposed at the downstream end for F<1, and at the up- 
stream end for F>1. However, no boundary condition is available at the two 
respective locations for a sufficiently long reach having constant, positive bottom 
slope from physical arguments. By inspecting the mathematical properties of Eq. 
(12) it is noted that the conditions 
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define the singular point x=x, of Eq. (12). Further, it can be shown (Hager 1981 
and 1983) that this point may be used as computational origin. Eliminating x, 
between the two relations yields 

for h,, and the loaction x, of the critical point is given by Eq. (14). The coordinates 
(x,,h,) are influenced by the friction coefficient K, the bottom slope So and the 
precipitation intensity p. These quantites will be used as scalings. However, this 
cannot be achieved with the expressions as given in Eq. (13). To this end, it is 
important to note that the last term is much smaller than So. A typical bottom slope 
is So=O.l, while p has the order p=10mm/h=2.8x10-6 m/s, and a typical flow 
depth (under this high excess precipitation) is h=0.01 m. The term in question then 
becomes 2pll.@= 1 . 8 ~  lo-'<< So. This property has also been described by Raud- 
kivi (1979) among others, and it is common to neglect the longitudinal momentum 
component excerted by the lateral inflow. By letting 

Eqs. (13) and (14) transform into 

and the governing equation of the surface profile is 

in which 6 is an integer and 

A typical order of K is 10' (m"3/s), such that q=0(10-~) if the above typical 
numbers for p and So are used. The dynamical flow Eq. (12) is reproduced by 
letting q>0 and 6=1, while the zero-inertia Eq. (10) is given by q>0 and 6=0. 
Finally the kinematic wave approximation corresponds to q=6=0. The free surface 
slope at the singular point (X,,y,)=(l,l) of Eq. (18), is computed using Hopital's 
rule; the result is 

It can be demonstrated that the positive root sign corresponds to the transition F 
>1 to F <1 which is not considered here (hydraulic jump), while the negative root 
sign indicates flows with increasing Froude number. Eq. (20) with the negative root 
sign allows initiation of the numerical integration of Eq. (18) with 6=1 and q>0. 
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/' I Non-dimensional free surface pro- 
- file y(X) for (-) q=1, (---) q=0.5, 

x (...) q=0 (kinematic wave approxi- 
mation); (e) singular point. 

For small q, O<q<0.5 say, Eq. (20) simplifies to 

Deviations between Eqs. (20) and (21) are then below 1%. For q=0, the slope of 
the free surface profile at the singular points is y;=3/5, while y;(X=l, 6=0)=0. 

Solutions of Eq. (18) obtained by numerical integration (Runge-Kutta method) 
are shown in Fig. 2 for typical values of q. Once the basic parameters p, K and So 
are prescribed, this diagram enables direct determination of the free surface pro- 
file. 

Discussion of Results 

The solution of Eq. (18) for q>0 and 6=1  indicates that the effect of q on y(X) 
becomes insignificant whenever q<qr ,  in which q t  is a limit number (Fig. 2). The 
solutions of Eq. (18) for q>0 and 6= 1 (dynamical relation) and the kinematic wave 
approximation q=6=0 then become nearly identical. 

The numerical solution of Eq. (18) for small q and 6=1 is not evident since its 
right hand side becomes a product of a large number (11~) times an extremely 
small number ( l - ~ ~ l ~ ' ~ ' ~ ) .  According to Morris and Woolhiser (1980) "the numeri- 
cal technique for solution of the full de Saint Venant equations by the characteristic 
method ... breaks down for low values of Fo as well as for large k". The kinematic 
wave and the zero-inertia approaches are then the only possibilities to solve for the 
flow pattern. The exact solution for q=0 (kinematic wave approximation) is ac- 
cording to Eq. (18) 

In contrast, the zero-inertia flow model (6=0) must be sought from 

Fig. 3 compares the three different formulations, namely the surface profiles 
according to the dynamical, the zero-inertia and the kinematic wave approxima- 
tions for (the extremely high value) q - 1. 
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Fig. 3. Comparison .of free surface profiles 
, . . . a "  

0.5 ,-' y(X) according to (-) dynamical, 
(---) zero-intertia, and (. . .) kinema- 
tic wave approximations for q = 1. 

'0 0.2 0.4 0.6 0.8 1 

Fig. 4. Deviations of non-dimensional upstream + O ' r E ]  

flow depth according to(---) zero-intertia 
and (. . .) kinematic wave approximations 
when compared to (-) dymamical flow ..... 

)..... equation (18). Arrows indicate where de- 
-0.05 

0 0.1 0.2 viations are 1 % . 

It is seen that the kinematic wave approach and the full dynamical relation fit 
well for relatively large distances X, 0.5SXS1; however, slopes of the dynamical 
and the zero-inertia approach are nearly identical for small X. Consequently, the 
latter two fit better if the considered reach has finite length, X<0.5, and if the 
imposed boundary condition is identical for the two. It is interesting to note that 
y(6=0)>y ( 6 f  O), while y(q=O)<y(6,q). The two approximations to the dynamical 
flow Eq. (18) are thus the upper and the lower bounds. The three formulations 
become identical for q=0 and may be considered as practical identical q<q A. 
Consequently the kinematic wave approximation is an asymptotical solution of Eq. 
(18). 

The flow depth at the upstream end of the plane, y,=y(X=O), can be considered 
as a degree of applicability of the dynamical and the zero-inertia wave approaches 
when compared to the respective flow depth y,=y(q=O)=O (kinematic wave ap- 
proach). Based upon numerical integration of Eq. (18) with 6=1 and 6=0 Fig. 4 
shows a plot of y,(q). 

It is observed that the kinematic wave approximation deviates less than 1% from 
the upstream flow depth according to Eq. (18) for q<q a =0.07, while q =0.15 for 
6=0 (zero-inertia approach). Inserting the first result (kinematic wave approach) 
into Eq. (19) then yields 

Therefore, the application criteria of the kinematic wave approximation are 

i) maximum Froude number, F,, be smaller than unity or, according to (Hager 
1985) ~ ~ = ( K a ) ~ ' ~ / ~ < l ,  corresponding to K-<3, 

ii) shallowness of flow, hJ(S,L) be very small, corresponding to Eq. (24) above. 
In comparison the kinematic wave number (Woolhiser and Liggett 1967) 

Downloaded from http://iwaponline.com/hr/article-pdf/16/4/203/2530/203.pdf
by guest
on 25 November 2020



Application Limits for the Kinematic Wave Approximation 

is an implicit criterion for the applicability of the kinematic wave approach. It 
implies knowledge of the typical velocity, V,, and the typical flow depth, h,. The 
present approach allows specification of k using the two aforementioned criteria, 
i.e. 

Solving the right hand side for p=p,,, then yields 

in which ~(rn"~s- ' ) .  Consequently the kinematic wave approximation is a valid 
approach provided the roughness coefficient K is low, the bottom slope and the 
maximum excess precipitation are relatively small. As an exmple, assume K= 10 
m113/s (n=0.10), So=O.l for which pm,,<0.026 mls in order that the kinematic and 
the dynamic wave approximations fit. Typical tropical excess precipitation has the 
order p=100 mm/h= 2.8x10-~ m/s which is much smaller than the above com- 
puted value. Consequently, the kinematic wave approximation is a valid approach 
for arbitrary overland flows. 

However, the above criteria may become invalid for flows in small streams 
(collectors of overland flows in a watershed). Suppose, as an example, an excess 
precipitation p=100 mmlh on a sloping plane of length x=1,000 m and So=O.l. 

For pseudo-steady flow conditions, the lateral inflow to the small stream charac- 
terised by K=15 m1I3/s, S0=0.02 and width b=10 m then is p=qlb=0.1~1,000/ 
(3 ,600~  10)=0.0028 mls. The criterion regarding the Froude number, K-=15 
m 2 = 2 . 1 2 < 3 ,  and 1 ~ = ~ ~ ~ ~ 1 ~ ~ = 0 . 0 1 4 < 0 . 0 7  regarding the shallowness of the 
flow are fulfilled but near the respective limit values. 

Conclusions 

The present study compares often applied formulations of longitudinal momentum 
equations, namely the dynamical, the zero-inertia and the kinematic wave approxi- 
mations for pseudo-steady flow conditions. It is found that 

1) de Saint Venant's formulation (accounting for uniform velocity and hydrostatic 
pressure distribution) describes shallow water flows (neglect of streamline cur- 
vature effects). 

2) The zero-inertia formulation may only be applied provided globally subcritical 
flow conditions prevail in addition. 

3) The kinematic wave approximation, finally, holds only for thoroughly subcriti- 
cal, very shallow flows. 
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4) Asymptotically, the  three of the  approaches become indentical. Application 
limits of the  kinematic wave approximation are  i) K<<3 and ii) p ~ 3 f l J  
gk0.07 o n  any subreach of a watershed. Condition i) deliminates dynamical 
effects (such as roll waves), while ii) excludes diffusive effects. 

5 )  In  practice overland flow is always governed by the kinematic wave approach, 
while flow in small streams has to  be examined more carefully regarding the  
above (explicit) applicability criteria. 
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