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ABSTRACT

Real world groundwater aquifers are heterogeneous and system variables are not uniformly

distributed across the aquifer. Therefore, in the modelling of the contaminant transport, we need to

consider the uncertainty associated with the system. Unny presented a method to describe the

system by stochastic differential equations and then to estimate the parameters by using the

maximum likelihood approach. In this paper, this method was explored by using artificial and

experimental data. First a set of data was used to explore the effect of system noise on estimated

parameters. The experimental data was used to compare the estimated parameters with the

calibrated results. Estimates obtained from artificial data show reasonable accuracy when the

system noise is present. The accuracy of the estimates has an inverse relationship to the noise.

Hydraulic conductivity estimates in a one-parameter situation give more accurate results than in a

two-parameter situation. The effect of the noise on estimates of the longitudinal dispersion

coefficient is less compared to the effect on hydraulic conductivity estimates. Comparison of the

results of the experimental dataset shows that estimates of the longitudinal dispersion coefficient

are similar to the aquifer calibrated results. However, hydraulic conductivity does not provide a

similar level of accuracy. The main advantage of the estimation method presented here is its direct

dependence on field observations in the presence of reasonably large noise levels.

Key words | groundwater, solute transport, hydrologic parameters, system noise, parameter

estimation

INTRODUCTION

The estimation of parameters of groundwater systems such

as hydraulic conductivity and hydrodynamic dispersion

coefficients, using inverse methods, has been an active

research area in hydrology and hydraulics studies over the

past few decades. Generally accepted methods for the

estimation of parameters, such as pumping tests and

permeameter tests (literature on these tests can be found

in Bear et al. (1968) and Bear (1979)), are either performed

on limited areas of the experimental site or are based on

laboratory tests on a few soil samples. These methods

are applied mainly based on several assumptions:

homogeneity of the groundwater system in a large region

around the point of testing, uniform inputs, and uniform

flow velocity. The high monetary requirements limit the

implementation of field tests over the entire experimental

area. Freeze (1972) showed that the experimental values

reflect the parameters only at the point measured and

cannot be considered as a representation of the whole

region considered. The heterogeneous formation of

porous structure, irregular boundaries, random inputs

(e.g. rainfall) and random boundary effects of aquifers

introduce random effects into the system. Further, even

though the laboratory tests are carried out very carefully,

they can be subject to as much randomness as that in the

field measured data (Unny 1989). Due to such randomness

in the system it is not accurate to base only on the direct

linear relationships and deterministic considerations

without considering the noise in the system. Hence, it is
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important to use a theoretically valid procedure for

the estimation of aquifer hydrologic parameters in the

presence of noise based on the field observed data.

Kitanidis & Vomvoris (1983) proposed a methodology

for estimating hydrologic parameters in the presence of

uncertainty. This method offers acceptable results in many

cases and is based on a geostatistical approach. The

methodology estimates the hydrologic parameters from

head and discharge measurements. The main advantage of

this method is that it avoids the problem of large dimen-

sionality. The large dimensionality problem arises with

almost all previously recognised parameter estimation

methods due to the necessity of state and parameter

vectors which contain hundreds of variables to describe

the groundwater system. Those large numbers of

parameters need to be estimated independently. However,

due to the stochastic nature of the system, the accuracy

of the estimated independent parameters is subject to

randomness. Hence, representation of the groundwater

system is adversely affected by the combination of such

inaccurate independently estimated parameters. The

method of Kitanidis & Vomvoris (1983) drastically reduces

the number of independent effective parameters to be

estimated and therefore increases the accuracy. However,

Dietrich & Newsam (1989) showed that the methods such

as described in Kitanidis & Vomvoris (1983) which use

finite difference representation may lead to the problem of

instability. Other prominent geostatistical approaches in

the estimation of subsurface parameters are the inverse

method for transient flow developed by Sun & Yeh (1992),

the fast Fourier transform method developed by Gutjahr

& Wilson (1989), the linearised semianalytical method

developed by Dagan (1985), the fractal simulation method

developed by Grindrod & Impey (1991), the pilot point

method developed by RamaRao et al. (1995), the maximum

likelihood method developed by Carrera & Neuman

(1986a, b) and the sequential self-calibration method

developed by Sahuquillo et al. (1992).

The several reviews and comparisons of inverse

methods were conducted over the past two decades to

investigate and identify the precision and robustness

of each method. Yew (1986) carried out a review of

parameter identification procedures in groundwater

hydrology. Another comparison of several inverse

methods was conducted by Kuiper (1986). In 1991 Keidser

& Rosbjerg (1991) investigated four inverse methods and

compared them for four test problems. McLaughlin &

Townley (1996) conducted a reassessment of groundwater

inverse problems. However, a team of 22 researchers got

together and conducted a major comparison of prominent

geostatistical inverse methods (Zimmerman et al. 1998).

These reviews show that, in practice, it may be difficult to

identify the most appropriate inverse method for a given

problem, as different type of heterogeneity may be promi-

nent for the system of interest. It is apparent that

researchers in this area are not clear how to select the

most suitable method for a given problem. The above-

mentioned reviews confirmed that some methods perform

better for a given type of heterogeneity, while they would

perform less well for another.

Unny (1989) presented a stochastic approach for the

estimation of parameters of a groundwater system. He

pointed out that the normal practice in environmental

studies of solving the problem by using linear partial

differential equations which describe the behaviour of

groundwater systems is not accurate because of the above

mentioned randomness induced into the aquifers. The

problem can be represented by a stochastic partial differ-

ential equation where stochasticity was introduced as a

noise term. Then the parameters are estimated from

the observed values of the dependent variable of the sto-

chastic partial differential equation by using the maximum

likelihood approach, which systematically searches over

different possible parameter values, finally selecting par-

ameter estimates that are most likely (have the ‘maximum

likelihood’) to be true, given the set of observations. The

advantage of this method is that the field measurements

can be directly used to compute the dependent variables

and their derivatives, and to then evaluate parameters.

In this paper we briefly describe the stochastic inverse

methodology of estimating parameters (Unny 1989) from

observed values. Then, we investigate this method by using

one-parameter and two-parameter governing equations

that describe the advective and dispersive transport of

solutes in a saturated porous medium in one dimension.

The following one-dimensional stochastic advective trans-

port Equation (1) was used to describe the system in the

one-parameter, K, estimation study:
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where

Then, we use the one-dimensional stochastic advection-

dispersion Equation (3) to represent the porous media to

estimate the two parameters involved, K and DL:

Then, we explore the significance of system noise on

estimated parameters by using Equations (1) and (3).

Further, we extend the investigation to an experimental

comparison of the parameter estimates by using a

simulation-based contaminant transport experiment.

PARAMETER ESTIMATION PROCEDURE

It is a common practice to describe the hydraulic and

hydrology problems in the form of linear time dependent

partial differential equations. It is always necessary to

make assumptions to describe the system in deterministic

form. That is, we assume that system variables are uni-

formly distributed throughout the system, or in other

words, assume that the aquifer is homogeneous. As an

example, when dissolved solids are transported by advec-

tion in a groundwater aquifer, such flow can be described

by a one-dimensional advective transport equation, when

flow is normal to a unit cross-sectional area, as follows:

This is the deterministic form of the equation and to

account for the randomness within the system, we add a

noise term to Equation (4) and describe the stochastic

one-dimensional advective transport equation as given in

Equation (1):

where x(x,t) is described by a zero-mean stochastic

process.

We multiply Equation (5) by dt throughout and

formally replace x(x,t)dt by db(t), where db(t) is a Hilbert

space1 valued Wiener incremental process. Now, we

can obtain the stochastic partial differential equation as

follows:

The explanation of the transformation of x(x,t)dt to db(t)

can be found in Jazwinski (1970).

When we substitute Equation (2) in Equation (6), we

obtain

In this paper we use this stochastic advective transport

Equation (7) as the governing equation to estimate the

unknown parameter K in one-parameter case, given a set

of measured concentration values.

For the two-parameter estimation, we use a one-

dimensional advective-dispersive equation. In a homo-

geneous medium with a uniform velocity field, flow

parallel to the x axis and subjected to both advection and

dispersion can be described by

As we explained in the one-parameter case, when random-

ness enters into the system, the stochastic advection-

dispersion equation is given by

1A Hilbert space is an inner space which is a complete metric space with respect to the metric
induced by its inner product, and a separable Hilbert space should contain a complete
orthonormal sequence (Young 1988).
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When Equation (9) is multiplied by dt throughout and

x(x,t)dt is formally replaced by db(t) and values for nx are

substituted from equation (2), then

We use equation (10) as the governing equation to esti-

mate the two unknown parameters DL and K.

The theoretical basis of the parameter estimation

method that we use in this paper has been given by Unny

(1989) and will not be repeated here (see also Lipster &

Shirayev (1977), Basawa et al. (1980) and Kutoyants

(1984)). Suppose we have the observations of solute con-

centration, Ci at M independent space coordinates along

the x axis, where 1≤i≤M, at different time intervals, t

(where 0≤t≤ T). That is we have M numbers of Ci obser-

vations for each time step. Hence, altogether, there are

((T + 1)M) numbers of Ci observations. We use these

observations to estimate the parameter O, which may be K

and/or DL, of all possible parameter values using the

maximum likelihood approach.

First, we can write the deterministic component of the

above governing equations (Equations (4) or (8)) in the

form of

dCi(t,O) = S(t,Ci,O)dt. (11)

As we explained above, we can add a noise, db(t), into

equation (11) to represent the system randomness and it

can be written as

dCi(t,O) = S(t,Ci,O)dt + db(t). (12)

Since we describe the noise of the system by a separate

term, db(t), we can assume that S(t, Ci, O)dt depends

linearly on the parameters O. When there is only one

parameter (say O1) in the governing equation (4), it can

represent the S(t, C, O)dt part in equation (12) as

S(t,Ci,O)dt = a0(Ci,t) + O1a1(Ci,t). (13)

Equation (13) is similar to equation (4). Hence

The parameter estimate is given by (Unny 1989)

When we substitute the above values for a0(Ci,t), a1(Ci, t)

and O1 we obtain the estimated parameter:

The value for nx can be found by using the following

summations:

Now, we can calculate the unknown parameter K by using

equation (2) for a given pressure gradient.

Then, in the two-parameter case (say, O1 and O2) it can

be written as

S(t,Ci,O) = a0(Ci,t) + O1a1(Ci,t) + O2a2 (Ci,t). (17)

Since equation (17) and equation (8) are similar

We can obtain the estimated parameter values for O1 and

O2 as solutions to these two simultaneous equations (see

Unny 1989):
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Hence, we substitute a0(Ci, t), a1(Ci,t), a2(Ci,t), O1 and O2

in equations (18) to obtain the following set of equations:

Therefore, DL and nx values can be obtained by solving

these two simultaneous equations and K can be calculated

by using equation (2).

The first and second order concentration gradients for

the above solutions are calculated by using the central

difference scheme (Morton & Mayers 1994). The first

concentration gradient is

The second order concentration gradients can be obtained

by applying the central difference scheme twice:

INVESTIGATION METHOD

We explore the stochastic inverse methodology (Unny

1989) by using two different types of data. The first dataset

was an artificial dataset that was generated by using a

computer model which represent a numerical solution of

Equation (4) and (8). This dataset was used to explore

the effects of different system noise levels on estimated

parameters. Our second dataset was obtained from

contaminant transport experiments conducted at a

large, confined, artificial aquifer at Lincoln University,

New Zealand. This dataset was used for experimental

comparisons of the parameter values.

Exploration of noise effect

This exploration was conducted to investigate the effect of

system noises of different magnitudes on estimated

parameters. The dataset, which simulates real world noisy

data, was created by adding noise to a dataset that was

generated by deterministic solution of the system. Follow-

ing is a description of the method used to generate the

dataset.

First, deterministic Equations (4) and (8) were used to

generate the noise-free concentration values of each space

coordinate for all the time steps by using the following

numerical procedure. The following example (Equation

(22)) shows the calculation of concentration at the ith

spatial coordinate at the next time step (j + 1)th in the

two-parameter case:

where

i = space coordinate,

j = time interval,

C[i][j] = solute concentration at ith space coordinate at jth

time step,

dt[j] = time difference between jth and (j + 1)th time steps,

and

dx[i] = space difference between ith and (i + 1)th spatial

coordinates.

Because of the instability problems in the finite differ-

ence methods (Dietrich & Newsam 1989) we tested the

solution for different �t and �x combinations to overcome

the instability problem. It was apparent that some

generated data were affected by the instability problem.

However, in most of the cases it was not obvious. Hence,

we estimated the parameters based on each dataset that

was assumed to be noise-free data. Then we chose the

most stable set of data that gave the closest values to the

parameter values used to generate the data. The parameter

values were estimated using the inverse method described

earlier.

Then we added different levels of randomness, which

are positive and negative uniformly distributed noise,
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to the concentration values to create a set of noisy data.

This was done by using two random number generators.

Since one of our objectives is to explore the inverse

methodology for different noise levels, we created the

noisy datasets for different levels of noise. The first noisy

dataset was generated with the randomness between ± 2%

of the deterministic concentration values. The following

process was executed to add a noise component. The first

random number generator generates a number between 0

and 1. The generated value is multiplied by 2% and the

deterministic concentration value to obtain a noise com-

ponent between 0 and 0.02 (2%) of the original concen-

tration value. Then another random operation selects

either the + or − sign which determines whether we add

or subtract the noise component to the deterministic con-

centration value. In other words, the new value can be less

than or greater than up to 2% of the original value. Then

we used the same procedure to create some more datasets

by changing the noise component. The randomness level

was gradually increased up to ± 50% of the deterministic

value. The following example may enhance the clarity of

the procedure:

Let deterministic concentration = C
First random number (say) = 0.2568 (between 0

and 1)
Noise component = C × 0.2568 × 2% (to

determine noise up to

2%)
Second random operation = − ve (select either

+ or − sign)
Noisy concentration value = C − C × 0.2568 × 2%.

We used the same numerical procedures explained

above to obtain the first and second derivates for each

spatial coordinate for noisy datasets. Then the above-

mentioned estimation procedure was used to estimate

parameter(s) by using the noisy datasets.

Experimental comparison

Our second data set was obtained from experimentally

based contaminant transport tests conducted at a large,

confined, artificial aquifer at Lincoln University, New

Zealand. This aquifer is 9.49 m long, 4.66 m wide and

2.6 m deep. As shown in Figure 1 constant head tanks

bound the aquifer at its upstream and downstream ends. A

porous wall provides the hydraulic connection between

the aquifer and head tanks. A weir controls the water

surface elevation in each head tank, and each weir can be

adjusted to provide different hydraulic gradients. How-

ever, the uniform hydraulic gradient of 0.017 m/9.49 m

( = 0.0018) was maintained during the entire experiment.

All other boundaries are zero flow boundaries. The aquifer

media is sand.

Multi-port monitoring wells are laid out on a

1 m × 1 m grid. Computer controlled peristaltic pumps

enable fully automated, simultaneous solute water

samples to be collected from sample points that are uni-

formly distributed throughout the aquifer (four sample

points for each grid point at 0.4 m, 1.0 m, 1.6 m and 2.2 m

depth from the top surface of the aquifer). The tracer used

was Rhodamine WT (RWT) dye with an initial concen-

tration of 200 parts per million and then allowed to

decrease exponentially. Tracer was injected at the middle

of the header tank by using an injection box (dimensions

of 50 cm length, 10 cm width and 20 cm depth). This

tracer was rapidly mixed into the upstream header tank

and thus infiltrated across the whole of the upstream face

of the aquifer. The dye was injected at 12:00 noon on 26

June and samples were collected at 2–4 hour intervals

(however, there are some exceptions on time intervals) for

432 h.

Flow
direction

Injection
box

Upstream
header tank

2.6 m

9.49 m
(9 wells along
this side,
Raw 1 to 9)

4.66 m (5 wells
along this side,

Well A to E)

Sampling wells distributed at 1 m
intervals in longitudinal and
transverse directions of the aquifer

Sampling points

0.6 m

0.6 m

0.6 m

0.4 m

Figure 1 | Schematic diagram of artificial aquifer at Lincoln University, New Zealand.
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As shown in Figure 1, the solute concentration data

was collected from 45 evenly spaced sample wells at four

different depths (altogether data at 180 ( = 9 × 5 × 4) space

coordinates). We obtained the average of five data wells

along the width of the aquifer at each depth and ended up

with 4 different datasets. Each dataset contains data for 9

space coordinates along the aquifer for all time intervals.

RESULTS

The parameter estimates obtained with the first dataset,

the computer generated data, show that there is a direct

relationship between the estimated parameter values and

the amount of noise introduced into the system (Figure 2).

The difference between the estimated hydraulic conduc-

tivity (K) and the actual K is almost proportional to the

percentage of introduced noise in both one-parameter and

two-parameter cases.

As shown in Figures 2 and 3 the estimated parameter

varies with the introduced noise in almost the shape of a

sine curve up to ± 5% noise and then follows a pattern of

an exponential curve with increasing noise. These two

figures very clearly show that estimated parameters are

converging with respect to the increase of the noise level:

the rate of change (difference) of the estimated parameter

is decreasing with the increase in noise. Hence, we would

find that a further increase in noise, more than 30%,

does not make a significant additional difference to

increasing the difference between the actual and estimated

parameters.

In the two-parameter estimation with the one-

dimensional stochastic advection-dispersion equation, the

estimated hydraulic conductivity, K, shows that (Figures 4

and 5) its effect on the different noise levels is behaving

very similar to the one-parameter case. However, the

associated error component is larger in the two-parameter

case; there was only a − 49% variation of estimated K for

± 50% of noise in the one-parameter case and a variation

One Parameter Estimate - Hydraulic Conductivity (K)

+/- Induced Randomness %
0 10 20 30 40 50

K
(m

2 / d
ay

)

20

25

30

35

40

45

50

Estimated
Actual

Figure 2 | Actual and estimated parameters at different noise levels.
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Figure 3 | Percentage variation of estimated parameter with respect to actual

parameters for different noise levels.
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Figure 4 | Actual and estimated parameters, K, for different noise levels in the

two-parameter case.
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Figure 5 | Percentage variation of the estimated parameter, K, with respect to the

actual parameters for different noise levels.
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of − 56% for the two-parameter case for a similar noise

level.

The other parameter estimated in the two-parameter

case was the hydrodynamic dispersion coefficient parallel

to the principal direction of flow (longitudinal), DL. The

estimated DL shows a similar affect as shown by the

estimated parameter K, for noise up to 10% of level: it

follows a sine curve variation up to approximately 2.5% of

noise and increases the error in the shape of the exponen-

tial form up to 10% of noise. However, as shown in Figure

6, an increase in noise beyond 10% does not make any

further significant difference in variation of the estimated

parameter. Further, as shown in Figure 7, the maximum

percentage variation of the estimated parameter value

with respect to the actual parameter does not exceed

− 15%. Therefore, compared to the estimated K, the effect

of noise on the estimated DL is very minimal.

We conducted the second part of our investigation

with the dataset obtained from Lincoln University’s artifi-

cial aquifer. Results obtained from the one-parameter and

two-parameter cases with the advection transport equa-

tion and one-dimensional advection-dispersion equation

are shown in Tables 1 and 2, respectively. The estimated

hydraulic conductivity, K, gives very similar results in both

cases for each depth of the artificial aquifer. The estimated

parameter K in the one-parameter case shows a pattern of

increasing values with depth. The two-parameter case has

a similar pattern except at the 1.6 m depth. Estimated DL

values decrease with the depth; however, the value at

2.2 m depth shows a significant increase.

The experimental values of hydraulic conductivity, K,

and hydrodynamic dispersion coefficient parallel to the

principal direction of flow (longitudinal), DL, were found

T w o P aram eter E stim ate - L ongitudinal H ydrodynam ic
D ispersion C oefficient (D L)

+/- Induced R andom ness %
0 10 20 30 40 50

D
L

(m
2 /d

ay
)

0 .000

0.005

0.010

0.015

0.020

0.025

0.030

E stim ated

A ctual

Figure 6 | Actual and estimated parameters, DL, for different noise levels in the

two-parameter case.

Two Parameter Estimate - Longitudinal Hydrodynamic
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Figure 7 | Percentage variation of the estimated parameter, DL, with respect to the

actual parameters for different noise levels.

Table 1 | Estimated and experimental parameter hydraulic conductivity, K (m/d), in the

one-parameter estimation case.

Depth
(m)

Hydraulic conductivity, K (m/d)

Estimated
parameter

Experimental
parameter

0.4 200.6 137

1.0 213.1 137

1.6 221.9 137

2.2 261.6 137

Table 2 | Estimated and experimental parameters hydraulic conductivity, K (m/d), and

longitudinal hydrodynamic dispersion, DL (m2/d), in the two-parameter estimation case.

Depth
(m)

Hydraulic conductivity,
K (m/d)

Longitudinal hydrodynamic
dispersion, DL (m2/d)

Estimated Experimental Estimated Experimental

0.4 203.2 137 0.167 0.1596

1.0 210.6 137 0.143 0.1596

1.6 208.9 137 0.134 0.1596

2.2 262.3 137 0.242 0.1596
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to be 137 m/d and 0.1596 m2/d, respectively, assuming

the aquifer is homogeneous.

DISCUSSION

Results of the first dataset show that stochastic inverse

methodology (Unny 1989) gives reasonably accurate par-

ameter estimates when system noise is present. However,

parameter estimation only for one parameter gives more

valid results than in the estimations of the two-parameter

situation. The significance of the noise level in the ground-

water system has a direct relationship to the accuracy of

the estimated parameters in the investigated methodology.

Hence, when the aquifer is heavily heterogeneous esti-

mated parameters do not reflect the actual values. How-

ever, we may have considered the worst case scenario as

we have added the noise for almost all the input concen-

tration values. In reality we would be able to take the

reading without any noise as well, where some parts of the

aquifer are not subjected to the variations.

Comparison of the parameters which were estimated

by using our second dataset, experimental data with cali-

brated parameters, shows mixed results. Estimated DL val-

ues are almost similar to the experimental results. Other

estimated parameters, the K values, show a considerable

difference. However, Figure 8 shows the concentration

values at a well which is very close to the middle of the

artificial aquifer. It is very clear that concentration values

are not same at all depths and that the aquifer behaviour is

not the same at each depth. The graphs of the other wells

show similar heterogeneous behaviour as well. Therefore,

we can state that the aquifer is not behaving homog-

eneously, meaning that the aquifer parameters, such as

hydraulic gradient and effective porosity, are not uni-

formly distributed throughout the system. The variables

used to calibrate the aquifer parameters are subjected to

randomness and the accuracy of the results could be af-

fected considerably. The reason this artificial aquifer does

not behave homogeneously may be due to the method of

construction. The aquifer was constructed using sand

blocks and they were laid layer by layer. We assume that,

even though the material used in the aquifer is uniform,

joints between the blocks can create different types of flow

patterns and flow lengths. Furthermore, the bottom layers

of the aquifer get compressed and can behave differently.

The reason the estimated K values show a consider-

able difference to the experimental values may be caused

by the assumptions made in this study. As shown in

equation (2) K is a function of nx. We estimate the nx by

using equation (16) for the one-parameter case and equa-

tion (19) in the two-parameter case. Then equation (2)

was used to calculate the value of K. In this calculation, for

simplicity we assumed hydraulic gradient, dh/dl, and

effective porosity, ne, as constant values, or in other words

their spatial distribution is homogeneous. However, in the

aquifer these may be non-linear. This reason may cause

considerable differences between the experimental and

estimated K values. However, the DL value in equation

(19) is not affected by such assumptions and estimates are

similar to experimental results.

Other possible phenomena that can be present in

solute transport such as adsorption and the occurrence of

short circuits are, for simplicity, assumed to be included in

the random component, x(x,t) in the governing equations

(5) and (9). However, we assumed that in the experiments

the tracer was mixed in the upstream header tank, so

adsorption in the aquifer could be neglected.

The first order concentration gradients and

second order concentration gradients can be

subject to numerical uncertainty if we do not use an

accurate method to calculate them. When dealing with a

large number of observation points in complex regional
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Figure 8 | The concentration values at Row 5—Well B.

211 C. Rajanayaka and D. Kulasiri | Parameter estimation method for contaminant transport in aquifers Journal of Hydroinformatics | 03.4 | 2001

Downloaded from http://iwaponline.com/jh/article-pdf/3/4/203/392326/203.pdf
by guest
on 24 March 2023



variation patterns of dependent variables it may be appro-

priate to use a suitable statistical procedure, such as the

least squares method, to best fit the curve for input ob-

servation values to calculate concentration gradients.

Timothy et al. (1965) pointed out that, in complex cases,

seventh or eighth degree surfaces may prove useful in

obtaining accurate results.

CONCLUDING REMARKS

This paper explored the parameter estimation using the

inverse method presented by Unny (1989). The method is

an application of the maximum likelihood parameter esti-

mation theory for stochastic differential equations, which

describes the groundwater system in the presence of

uncertainty. This procedure was applied for the stochastic

advection transport equation to estimate a single par-

ameter and for the stochastic one dimensional advective

dispersive equation to estimate two parameters. We used

two different types of datasets: a computer generated

artificial dataset and an experimental dataset. Both

explorations show encouraging results in finding estimates

for hydraulic conductivity, K, and longitudinal hydro-

dynamic dispersion coefficient, DL, by using this inverse

method. However, both estimates show that they are

affected by the noise component in a proportional re-

lationship. The result of the noise is more effective on K

than on DL. However, the accuracy of the estimates could

be improved by using higher degree polynomial surfaces to

obtain first and second order spatial gradients.

The main advantage of this method is the direct

dependence of the solution variable on field measure-

ments of solute concentration values (or any other value

according to each case) over a period of time at discrete

spatial locations. We can attempt to overcome the

randomness issues which arise from the generally

accepted methods such as pumping tests and permeameter

tests and the inability to apply those tests to large aquifers.
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LIST OF SYMBOLS
K hydraulic conductivity, m/d.
x space coordinate, m.

hydraulic gradient, m/m.

nx average linear velocity, m/d.
C solute concentration, mg/l.
ne effective porosity.
t time (any given), d.
T total time period that observations conducted, d.
DL hydrodynamic dispersion coefficient parallel to

the principal direction of flow (longitudinal),

m2/d.
x(x,t) zero mean random component accounting for

uncertainty of the system.
db(t) Hilbert space valued Wiener incremental pro-

cess.
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