Natures of Nuclear Forces Indicated
by the Photodisintegration
of the Deuteron, IV

S. H. Hsieh

Physical Institute,
Nagoya University, Nagoya

October 11, 1958

It is shown that there appear large
differences in the computation of
\(d(r, p)n \) process at
\(E_r \approx 90 \text{ Mev} \) by the different
natures of phase shifts which can account
for 170 Mev \(p-p \) scattering data.\(^1\)

In Table I four sets of phase shifts
which are fitted to 170 Mev \(p-p \) scat­
ering data (without including the
polarization data) are shown\(^1\), and the
calculated results on the photodisintegra­
tion of the deuteron at
\(E_r = 87 \text{ Mev} \) by
these phase shifts are given.\(^2\)

At our energy m.d.* is very small if
we assume \(\delta_0 = 19° \),\(^3\) also the contribu­
tion of m.q. and e.q. to \(\sigma_{ep}^* \) and \(\sigma_T \)
are quite small.\(^4\) Therefore we have
only calculated e.d. The method of the
computation of e.d. is same with that
used in the previous letter.\(^5\)

In Table I we have shown the case
in which only the first term of \(j_1(kr) \)
is adopted in the computation. Because
the higher order terms of \(j_1(kr) \) would
make \(\sigma_{ed} \) increase by about 20% at our
eynergy,\(^3\) we should multiply 1.2 to \(\sigma_{ep} \)
and \(\sigma_T \) of Table 1 in the comparison
with experiment.

The experiments give\(^6\)

* Symbols used here are same with those used
in the previous papers. (See reference 5.)
\[\sigma_{\text{np}} = (4.5 \sim 5.5) \times 10^{-29} \text{cm}^2, \]
\[\sigma_{\gamma} = (7 \sim 9) \times 10^{-29} \text{cm}^2 \]

at our energy.

We see that class A can well account for the data, but it is not for class B. Class B gives below one half of \(\sigma_{\text{np}} \) of class A.

Because it seems that the effect of the virtual pions is yet unimportant at our energy,\(^7\) only class A would remain to be favourable. Particularly, the set A is most favourable in the sense that it account for both polarization data and \(d(\gamma, \rho)n \) in the approximation assumed.\(^1\)

It is important to note that the phase shifts of class A is not much different from that to be expected from pion potential. More detailed analysis and illustration will be published in due time.

Table 1. Phase shifts of 170 Mev \(p-p \) scattering (in degree)\(^1\) and the corresponding cross sections (in unit of \(10^{-27} \text{cm}^2 \)), when we put \(j_1(k_\rho r) \rightarrow k_\rho r/3 \), are shown. The higher order terms of \(j_1(k_\rho r) \) increase the cross sections by about 20%.

<table>
<thead>
<tr>
<th></th>
<th>(\delta_0^0)</th>
<th>(\delta_1^0)</th>
<th>(\delta_1^1)</th>
<th>(\delta_1^2)</th>
<th>(\sigma_{\gamma})</th>
<th>(\sigma_{\text{np}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>19</td>
<td>22</td>
<td>-21</td>
<td>10</td>
<td>6.99</td>
<td>4.85</td>
</tr>
<tr>
<td>A2</td>
<td>19</td>
<td>51</td>
<td>-10</td>
<td>3</td>
<td>6.65</td>
<td>4.14</td>
</tr>
<tr>
<td>B1</td>
<td>19</td>
<td>-19</td>
<td>24</td>
<td>-7</td>
<td>4.99</td>
<td>1.75</td>
</tr>
<tr>
<td>B2</td>
<td>19</td>
<td>-46</td>
<td>15</td>
<td>3</td>
<td>4.91</td>
<td>1.82</td>
</tr>
</tbody>
</table>

2) The formulas of \(d(\gamma, \rho)n \) are given in N. Austern, Phys. Rev. 108 (1957), 637.
3) S. H. Hsieh, To be published.
5) S. H. Hsieh, To be published.