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The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors.
Calculations of this response for molecular crystals are currently either expensive, or rely on extreme sim-
plifications such as multipole expansions which lack microscopic detail. We present an alternate approach
using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of
a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. This method
can potentially be used to examine the effects of defects, disorder and surfaces on the dielectric properties of
molecular solids.

I. INTRODUCTION

Recent advances in organic electronics have spurred
interest in molecular solids and liquids for dielectric and
optical applications.1–3 The behaviors of these materials
are typically assessed through experiments, although the
performance of these materials can be altered by unchar-
acterized structural defects and impurities.4 A compu-
tational approach to better understand and predict the
dielectric and optical properties of these materials would
complement experimental work, facilitating further ad-
vances in the characterization and design of new materi-
als.
Current state-of-the-art solid state dielectric calcula-

tions are limited to systems smaller than a typical molec-
ular crystal of interest in organic electronics, or the cal-
culations rely on simplifications that discard microscopic
information (see for instance Ref. 5). Quantum chemistry
calculations also have molecule size limitations, and ad-
ditionally have basis-set convergence issues, particularly
for the dielectric response. They also do not have a sys-
tematic way to deal with the environment surrounding
the molecule. Additionally, current computational ap-
proaches do not leverage the repeated molecular struc-
ture of molecular crystals and liquids, requiring inde-
pendent calculations for molecules in crystal polymorphs,
and in different molecular configurations of a liquid.
The repeated structure of molecular crystals presents

an opportunity that has not yet been exploited, except
for in limited contexts. For instance, a tight-binding ap-
proach that uses atomic dielectric eigenfunctions as a ba-
sis has been shown to work well for an isolated beryl-
lium dimer.6 Here, we describe a method to calculate the
optical dielectric response of molecular crystals and liq-
uids that takes full advantage of the modularity of these
systems. In essence, we show that the microscopic di-
electric response of a molecular crystal can be assembled
from the microscopic dielectric response of its constituent
molecules. This method enables response calculations of
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large molecular crystals and liquid configurations, with
far less computational cost than equivalently-converged
direct calculations.

We limit our application to the microscopic electronic
response at fixed ionic positions, which is a key quantity
of interest in the calculation of electronic correlation en-
ergy within the random phase approximation (RPA).6–8

We compare dielectric band structures,9 the inverse di-
electric function eigenvalues as functions of the wave vec-
tor, computed within our approach against direct calcu-
lations for crystals to evaluate the accuracy of our ap-
proach. Further, as is standard in studies of dielectric
band structure approximations,9,10 we focus on the static
electronic response for simplicity and definiteness; incor-
porating frequency dependence in the electronic response
is straightforward.

We begin with a general introduction to the theory of
microscopic dielectric response in section II, and present
the key idea of separating that response into molecular
contributions in section IIA. Section II B presents the
theoretical framework for combining molecular responses
into that of the crystal, and section IIC describes how to
extract the macroscopic dielectric response from the mi-
croscopic one. Finally, section III applies this method to
calculate the macroscopic as well as microscopic dielec-
tric response of the extremely-polar ice and the non-polar
benzene crystals, and demonstrates its accuracy in com-
parison with direct response calculations for these widely
different solids.

II. THEORY

The full inverse microscopic dielectric matrix ϵ−1(r, r′),
the central quantity in describing the dielectric response
of a system, expresses the linear response ϕtot of the total
electrostatic potential to the application of an external
potential ϕext through

ϕtot(r) =

∫
d3r′ ϵ−1(r, r′)ϕext(r

′). (1)

In the following discussion, we find it convenient to em-
ploy a representation-independent, operator-based nota-
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tion, so that (1) appears as ϕtot = ϵ−1ϕext.
The operator most directly accessible to microscopic

calculations is the external susceptibility χext, which
gives the first-order induced change in the charge density
ρind through the linear-response relation ρind = χext ϕext.
Given this response function, one can then compute the
corresponding induced potential, ϕind = Kρind, where
the Coulomb operator K(r, r′) ≡ 1/|r − r′| in the stan-
dard atomic units in which we work. It is also useful to
define a total susceptibility χtot that describes the lin-
ear response of the charge density to the total response
potential, ρind = χtotϕtot.
Substitution of the above relations into the decompo-

sition of the total response potential, ϕtot = ϕind + ϕext,
yields the standard connections between the microscopic
dielectric response and susceptibility functions,

ϵ−1 = 1 +Kχext (2)

ϵ = 1−Kχtot. (3)

This also implies a Dyson relation for χext in terms of
χtot,

χext = χtot + χextKχtot. (4)

At this stage, no approximations have been made.
In principle, χext can be extracted directly from cor-
related electronic structure methods, such as coupled-
cluster (CC) or quantum Monte Carlo (QMC), by ob-
serving the response of the system under consideration
to the application of a (large) set of perturbing poten-
tials. However, this approach becomes prohibitive for all
but the smallest systems.
Electronic band-structure approaches, while much

more practical, unfortunately do not give direct access
to χext or χtot. They instead provide χni, the response of
an effective non-interacting system of orbitals to changes
in their external potential, which has the explicit form

χni(r, r
′) =

∑
i ̸=j

(fi − fj)
ψ∗
i (r)ψj(r)ψ

∗
j (r

′)ψi(r
′)

ϵj − ϵi
, (5)

where fi ∈ [0, 1] is the occupation and ϵi is the eigen-
value of the ith band. The Kohn-Sham theorem11 en-
sures that the density-response of such a non-interacting
system to changes in the self-consistent Kohn-Sham po-
tential, δVKS, gives the exact density response of the fully
interacting system, so that ρind = χniδVKS exactly.
The first-order response of the Kohn-Sham poten-

tial includes responses in the external, Hartree, and
exchange-correlation components

δVKS = ϕext +Kρind +Kxcρind (6)

= ϕtot +Kxcρind, (7)

where Kxc(r, r
′) ≡ δ2Exc/(δρ(r) δρ(r

′)) gives the re-
sponse of the exchange-correlation potential to changes
in the electron density. Combining these forms for δVKS

with ρind = χextϕext and ρind = χtotϕtot, yields the fol-
lowing exact Dyson relations for the microscopic suscep-
tibilities,

χext = χni + χni(K +Kxc)χext (8)

χtot = χni + χniKxcχtot. (9)

These can then be combined with (2,3) to yield the mi-
croscopic dielectric response.

Even with the relative economy of band-structure
based methods, the standard approach of going from (5)
through (8,9) and finally to (2,3) is limited to relatively
simple systems due to the need to compute a prohibitive
number of empty bands to converge the sum in (5). While
a number of interesting approaches for decreasing these
costs have been proposed,12–14 these approaches would
still require separate electronic band-structure calcula-
tions for each configuration of a liquid, or for each defect
studied in a molecular crystal. A more efficient method
for the dielectric response of solvated or molecular crys-
talline systems would thereby open a new range of prob-
lems for first principle studies.

A. Molecular separation ansatz

The first key observation of this work is that both
χni and χtot can be well-approximated as sums of inde-
pendent localized molecular contributions for closed-shell
molecular systems. This results in a radical simplification
of the calculations necessary to determine the dielectric
properties of a molecular crystal or liquid. This decom-
position also provides, for the first time, a practicable
method for including high-order electron-correlation ef-
fects into the dielectric response of large collections of
molecules.

The efficacy of the decomposition of χni into a sum

χni(r, r
′) =

∑
R

χ
[m]
ni (r −R, r′ −R) (10)

of individual molecular density-response functions
χ[m](r, r′) stems directly from the structure of (5) for
closed-shell molecular systems. For such systems, the
relative electronic isolation of the molecules ensures lit-
tle dispersion in the eigenvalues ϵi, allowing for unitary
transformation among the bands to maximally localized
orbitals, without affecting the value of either the i or j
sums in (5). Moreover, under these conditions, the max-
imally localized orbitals will closely resemble the molec-
ular orbitals so that, to a good approximation, the i and
j sums can be taken to range over the molecular orbitals
of the system. Finally, the relative lack of overlap be-
tween orbitals on different molecules ensures that both
factors ψ∗

i (r)ψj(r) and ψ∗
j (r

′)ψi(r
′) in the numerator of

(5) will be small. Therefore, only terms with i and j
on the same molecule contribute significantly to the final
result. Keeping only these terms and replacing the or-
bitals and eigenvalues with the corresponding molecular
quantities then leads directly to (10).
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The observation that χtot may likewise be decomposed,

χtot(r, r
′) =

∑
R

χ
[m]
tot (r −R, r′ −R) (11)

follows from Dyson iteration of (9). Because the major
contributions to Exc are reasonably well-approximated
by local- or semilocal- density functionals, we expect
that Kxc(r, r

′) only weakly connects points r and r′ re-
siding on different molecules. This, combined with the

above anticipated decomposition of χ
[m]
ni into localized

molecular contributions, ensures that iteration of (9) does
not generate strong inter-molecular connections in χtot.
Therefore, a molecular decomposition of χtot analogous
to (10) should also yield a good approximation. Ulti-
mately, the suitability of such molecular decompositions
of χni and χtot can only be evaluated through calcula-
tions of realistic systems, as we perform below.
The second key observation in this work is that the

collection of the eigenfunctions of the non-interacting re-

sponse function χ
[m]
ni from each individual molecule m

in the system provides a well-converging, albeit non-
orthogonal, basis for dielectric response calculations. Al-
though similar susceptibility eigenbasis approaches have
been pursued in the past,15–17 this work is the first to ex-
ploit the significant computational advantages of the de-
composition into individual molecule response functions.
Here, we represent the eigen-decomposition of the non-
interacting molecular susceptibility of each molecule m
as

χ
[m]
ni = V [m]X

[m]
ni V

[m]†, (12)

where X
[m]
ni is a diagonal matrix containing the eigen-

values and V [m] is a matrix containing the eigenfunc-
tions, arranged so that the nth column of V [m] contains
a convenient numerical representation of the nth eigen-
function, such as real-space samples or a plane-wave ex-
pansion. Finally, in this expression, the † operator im-
plements the integral overlap between eigenfunctions so
that V [m]†V [m] = I, the identity.
Dyson iteration of (8,9) then establishes that both the

external and total molecular susceptibilities take the form

(12), with matrix elements X
[m]
ext and X

[m]
tot , respectively,

obeying

X
[m]
ext = X

[m]
ni +X

[m]
ni (K̄ [m] + K̄ [m]

xc )X
[m]
ext (13)

X
[m]
tot = X

[m]
ni +X

[m]
ni (K̄ [m]

xc )X
[m]
tot . (14)

Here, K̄ [m] ≡ V [m]†KV [m] and K̄
[m]
xc ≡ V [m]†KxcV

[m]

are the matrix elements of the corresponding operators
in the V [m] basis. Below we will demonstrate that the
number of eigenvectors required is on the order of 10 – 20
per valence electron and generally much smaller than the
number of filled-empty pairs ij needed to converge the
sum (5), so that the preceding relations are readily han-
dled for realistic systems even on modest workstations.
To work within a density-functional theory framework,

the matrix elements X
[m]
ext or X

[m]
tot are readily obtained by

solving (13,14), yielding for example the easily computed

expression X
[m]
tot = (1−X

[m]
ni K̄

[m]
xc )−1X

[m]
ni . In the case of

a fully correlated method, one would compute X
[m]
ext =

V [m]†(χextV
[m]) by first applying each column of V [m] as

an external potential ϕext to the correlated molecular cal-

culation. With X
[m]
ext in hand, one may then employ (4)

to determine the total fully correlated molecular response

function through X
[m]
tot = (1 +X

[m]
ext K̄

[m])−1X
[m]
ext . In this

way, several hundred correlated electronic structure cal-
culations on a single molecule can be used to build up
the fully correlated dielectric response function for large
collections of molecules.

B. Crystal response

The treatment of periodic systems is best accomplished
through transformation to a Bloch-periodic basis,

V (k) =
∑
m

eik·RmV [m], (15)

where k is the Bloch character of the particular basis
formed, V [m] are the eigenfunctions for molecule m, Rm

is the location of molecule m, and we take the Rm to
form a periodic lattice.18 One then obtains the standard
result that, for functions of Bloch character k, the action
of a full crystal operator of the additive forms (10,11) is
equivalent to that of the operator

χ(k) ≡ V (k)X [m]V (k)†, (16)

where the inner product associated with † now represents
integration over the unit cell of the crystal lattice, rather
than the entire space.

Analogously to the molecular results, Dyson iteration
of (8,9) using the crystal form (16) leads to the conclusion
that the operators χext(k) and χtot(k) are also of the form
(16), but with k-dependent matrix elements obeying

Xext(k) = X
[m]
ni +X

[m]
ni

(
K̄(k) + K̄xc(k)

)
Xext(k)(17)

Xtot(k) = X
[m]
ni +X

[m]
ni K̄xc(k)Xtot(k), (18)

with K̄xc(k) ≡ V (k)†KxcV (k) and K̄(k) ≡ V (k)†KV (k).
And, analogously to (4), we find

Xext(k) = Xtot(k) +Xext(k)K̄(k)Xtot(k). (19)

When working with density-functional based methods,

the matrices X
[m]
ni come directly from the molecular cal-

culations and are thus k-independent and require no spe-
cial calculation. The matrix elements K̄xc(k) are best
computed directly in real space due to the (semi-)local
nature of common exchange-correlation functionals. Fi-
nally, the matrix elements K̄(k) = V (k)†KV (k) are best
computed in reciprocal space due to the extended nature
of the Bloch basis functions.

For correlated methods, one simply substitutes the

molecular matrix elements X
[m]
tot , obtained as described
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above, into the Bloch form for additive operators (16)
yielding χtot(k). Then, to obtain χext(k) one would em-
ploy the crystal Dyson equation (19), obtaining the ma-
trix elements

Xext(k) = Xtot(k)
(
1− K̄(k)Xtot(k)

)−1
. (20)

Finally, armed with the matrix elements and Bloch
representations (16) for χext(k) and χtot(k), one may
employ (2) and (3) respectively to build the full crys-
tal dielectric response operators, yielding in the former
case

ϵ−1(k) = 1 +KV (k)Xext(k)V (k)†. (21)

The eigenvectors of ϵ−1(k) must be linear combinations
of the columns of KV (k), and therefore we can compute
the dielectric band structure directly as the eigenvalues
of 1+ [V (k)†KV (k)]Xext ≡ 1+ K̄(k)Xext(k), a matrix of
manageable size that is explicitly computable from the
results above.

C. Macroscopic equations

Determination of the macroscopic equations and di-
electric tensor ϵ̄ requires connecting the scalar micro-
scopic response theory to the macroscopic vector equa-
tions. This connection, in particular the G → 0 limit,
is rather complicated for general solids and is derived in
detail in Ref. 10. Here, we derive a substantially simpler
expression for molecular solids which is made possible
by the localization of the induced polarization on con-
stituent molecules.
In Fourier space, the Poisson equations for the macro-

scopic total potential ϕ̄tot and macroscopic external po-
tential ϕ̄ext are k

†ϵ̄kϕ̄tot = 4πρext and |k|2ϕ̄ext = 4πρext,
respectively, where k is the wave vector associated with
the macroscopic perturbation. Equating the preceding

relations yields k̂†ϵ̄k̂ = ϕ̄ext/ϕ̄tot. Thus, the anomalous,
directional dependence of the k → 0 limit of the mi-
croscopic dielectric response reflects directly the tensor
nature of the macroscopic dielectric constant.
The macroscopic fields in the above paragraph repre-

sent smooth functions, averaged over the unit cells of the
crystal and thus exhibit only long-wavelength behavior.
A suitable choice for the (applied) external potential is
thus ϕ̄ext = ϕ0e

ik·r, or equivalently ϕext,G(k) = ϕ0δG,0

where δ is the Kronecker delta function. The microscopic
response of the material system to this applied potential,
ϕtot =

∑
G ϕtot,G(k)e

i(k+G)·r, will include short wave-
length G ̸= 0 components which average to zero over
the unit cell, so that ϕ̄tot = ϕtot,G = 0(k)e

ik·r, and the

right side of (22) becomes ϕ0/ϕtot,G = 0(k) =
(
ϵ−1
0,0(k)

)−1
,

where the last term is the inverse of the (G,G′) = (0, 0)
matrix element of the inverse microscopic dielectric re-
sponse operator.

We thus conclude that, in the macroscopic limit,

k̂†ϵ̄k̂ =

(
lim

|k|→0
ϵ−1
0,0(k)

)−1

. (22)

To evaluate (22), note that (21) gives

ϵ−1
0,0(k) = 1 +

1

Ω

4π

k2
V̂0(k)Xext(k)V̂

†
0 (k). (23)

With the Fourier transform convention defined above, the
asymptotic behavior of the components of the row vectors
V̂0(k) is

V̂0(k)
k→0−−−→ −ik†P +O(k2), (24)

where

Pα,n ≡
∫
d3r Vn(r)rα (25)

is a matrix of eigenfunction dipole moments. The limit
of (23) is thus

ϵ−1
0,0(k)

k→0−−−→ 1 +
4π

Ω
k̂†PXext(k)P

†k̂ +O(k). (26)

The external susceptibility matrix elements Xext(k)
themselves also exhibit anomalous k-direction behavior,
due to the presence in (20) of K̄(k), which exhibits ir-
regular k → 0 behavior due to the singular nature of
the G = 0 component of the diagonal operator K̂(k) =
4π/|k + G|2. Separating out the singular G = 0 term
gives

K̄(k)
k→0−−−→ K̄H +

4π

Ω
P †k̂k̂†P, (27)

where K̄H ≡ [V̂ (0)†K(k = 0)V̂ (0)]G̸=0 is the k = 0
Coulomb sum for electrostatic interactions among the
columns of V̂ but with the G = 0 omitted, what typi-
cal plane-wave implementations compute as the ‘Hartree’
interaction. Combining (20,27), then gives the small k
behavior of Xext(k) through a two-step renormalization
process

X̄ext
k→0−−−→ Xtot(k = 0)

(
1− K̄HXtot(k = 0)

)−1

Xext(k)
k→0−−−→ X̄ext

(
1− 4π

Ω
P †k̂k̂†PX̄ext

)−1

, (28)

as may be verified by direct substitution.
Finally, substituting (28) into (26) yields an expression

whose inverse gives
(
ϵ−1
0,0(k)

)−1
= 1 − 4π

Ω k̂
†PX̄extP

†k̂ +

O(k), as may be verified directly by multiplication to
yield the identity. Substituting this last result in (22)

and using the fact that k̂†k̂ = 1 shows that the k → 0
limit has precisely the correct tensor character, and gives
the final result for the macroscopic dielectric tensor,

ϵ̄ = 1− 4π

Ω
PX̄extP

†, (29)

with X̄ext defined explicitly as the k → 0 limit in (28).
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III. RESULTS

We apply the approximations of the previous section
to the dielectric response of cubic ice and solid benzene.
Ice and the benzene solid display two distinctly different
types of intermolecular interactions: while ice contains
strong hydrogen bonds, benzene only weakly interacts
through van der Waals forces. A comparison of the two
solids will provide insight into the limits and capabilities
of our method.
We first calculate the macroscopic dielectric constant

from the dielectric additive approximation to explore the
convergence of the method as a function of included
bands and eigenvectors. We investigate the accuracy
and the assumptions of the dielectric additive approxi-
mations. We then present dielectric band structures for
the separate additive approximations, and compare to
the molecular and crystalline dielectric band structures.

A. Computational Details

The density-functional theory calculations and the
subsequent dielectric calculations were performed in
the open source, plane wave density functional the-
ory software, JDFTx.19 All calculations utilize the
Perdew-Burke-Ernzerhof20 (PBE) generalized gradient
approximation (GGA) to the exchange-correlation func-
tional, norm-conserving pseudopotentials generated in
OPIUM21 with the same functional, and a kinetic en-
ergy cutoff of 30 Eh (Hartree) for the plane-wave ba-
sis. The molecular calculations use a truncated Coulomb
interaction to eliminate unwanted interactions between
images in the supercell calculations.22 Figure 1 schemat-
ically summarizes the method developed in section II to
calculate the crystal dielectric response from the molec-
ular response.
For the ice structure, we have chosen the simplest iso-

morph that obeys hydrogen bonding rules, the proton-
ordered cubic ice XIc which has been theoretically pro-
posed to be the true ground state of ice.23 Neglecting
a small tetragonal distortion, this structure consists of
a two-molecule unit cell with the oxygen atoms on a
diamond-cubic lattice with optimized cubic lattice con-
stant 11.76 a0 (Bohr). We perform the isolated single
water molecule calculation for the additive approxima-
tion in a 3× 3× 3 supercell.
For the benzene crystal, we use the experimentally-

determined lattice parameters and carbon positions for
the four-molecule orthorhombic unit cell,24 and fill in the
hydrogen positions by optimizing the density-functional
geometry. We perform the isolated benzene molecule cal-
culation in the crystal unit cell itself as it is sufficiently
large.
We find that 500 bands are sufficient to converge the

direct response calculation of both crystals, while 600
bands are sufficient for the isolated benzene molecule and
1000 bands are sufficient for the isolated water molecule

DFT band structure ⇒ ǫi, ψi(~r)

Calculate χ
[m]
ni from Eq. 5

Diagonalize χ
[m]
ni ⇒ X

[m]
ni , V

[m]

Find X
[m]
tot by solving Eq. 14

Eq. 15 ⇒ crystal basis V (k) from V [m]

Calculate matrix elements K̄(k),K̄xc(k)

Outer sum X
[m]
ni , X

[m]
tot ⇒ Xni(k), Xtot(k)

Find Xext by solving Eq. 19 or 20

Eq. 21 ⇒ ǫ−1(k), and diagonalize

M
o
lecu

le
C
ry
sta

l
resp

o
n
se

a
t
k

FIG. 1. Procedure to construct the crystal response from the
molecular response using either the χni or the χtot additivity
approximations.

(need more bands due to the larger supercell). We gen-
erate up to 50 eigenvectors per valence electron (which
amounts to 400 eigenvectors for the water molecule and
1500 eigenvectors for the benzene molecule) to test the
convergence of the dielectric response with eigenvectors;
much fewer eigenvectors are actually necessary as we
show below.

B. Bulk dielectric constants

The primary goal of the additive approximations de-
veloped here is to calculate the microscopic dielectric re-
sponse. However, to explore the convergence of our cal-
culations, we first calculate and compare the bulk dielec-
tric constants, which can be computed directly as well as
within approximate schemes such as our additive meth-
ods. Figure 2 shows the bulk dielectric constant com-
puted directly for the crystals, from the molecular polar-
izability using the Clausius-Mossotti equation, and from
the additive approximations for χtot (11) and χni (10).

The first panel of Figure 2 depicts the convergence of
the bulk dielectric function computed in the conduction-
valence basis with the number of conduction-valence or-
bital pairs per electron. The second panel depicts the
corresponding convergence for the χni eigenvector basis
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FIG. 2. Convergence of the average bulk dielectric constant
(29) using the additive approximations for χtot (11) and χni

(10), as well as the Clausius-Mossotti equation, with respect
to number of eigenvectors per electron (left panel) and number
of conduction-valence pairs per electron (right panel). Dotted
lines indicate the direct results for the crystals. Red lines
indicate results for water and green for benzene.

with number of eigenvectors per electron. The eigen-
vector basis is clearly far more efficient and adequately
converges the dielectric constant for water and benzene
with 10 – 20 eigenvectors per electron. In contrast, more
than 50 conduction-valence pairs per electron would be
required to obtain comparable accuracy. The superior-
ity of the eigenvector basis has been previously demon-
strated for the direct calculation of the dielectric response
of molecules or crystals,15–17 while Figure 2 shows that
this superior efficiency also extends to the reconstruction
of the crystal response from the molecular one using our
method.

Now we focus on the converged dielectric constants
in the second panel of Figure 2. The Clausius-Mossotti
equation and the two additive approximations agree very
well with the direct crystal calculation for the dielectric
constant of ice (red lines). The best agreement is ob-
tained with the χtot additivity approximation, and the
Clausius-Mossotti equation overestimates the dielectric
constant. In comparison, for the benzene crystal di-
electric constant (green lines), the approximate dielec-
tric constants agree less well with that of the direct cal-
culation. The Clausius-Mossotti equation approximates
the reaction field of surrounding molecules as a spherical
cavity which results in an overestimation for the planar
benzene molecule (which is less spherical than the wa-
ter molecule). The χni and χtot additivity approxima-
tions fully account for the geometry of the molecule and
agree better with the direct calculation, but they sys-
tematically underestimate the bulk dielectric constant.
Regardless, the χtot additivity approximation yields the
best agreement in both systems.

We expect that the additive approximations are less
accurate for the benzene crystal than for ice because the
additive approximation localizes charge to each molecule,
yet the benzene crystal has significant orbital overlap be-
tween neighbours. To further explore this possible limita-
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FIG. 3. Induced charge density in the (a) benzene and (b) ice
crystals for a plane-wave applied potential with wavelength
equal to (orthorhombic) unit cell length, calculated from the
exact χext of the crystal, as well as from the the additive ap-
proximation (11). Top panels visualize the induced charge
density (+ green, - blue) in the exact crystal calculation,
while the lower panels compare the planarly averaged induced
charge densities from the χtot-additive approximation with
those from the exact crystal calculations.

tion of our theory, Figure 3 compares the induced charge
densities of the crystals in response to a low wave-vector
plane-wave applied potential, as calculated directly and
from the additive approximations. The induced charge
densities agree well for the ice crystal, but exhibit dis-
crepancies in the interstitial region between molecules
for the benzene crystal because the additive approxima-
tion does not account for the effects of overlap between
molecules.

We further confirm the effect of intermolecular orbital
overlap by investigating the variation of the accuracy of
the additive approximations for the dielectric constant
with crystal strain. The intermolecular overlap decreases
exponentially with separation, so we expect its contribu-
tion to reduce dramatically at moderate strains. Indeed,
Fig. 4 shows that the accuracy of the additive approxima-
tions for ice remains excellent, while that for benzene im-
proves substantially, as expected. The Clausius-Mossotti
approximation for the benzene crystal still exhibits larger
errors because it is dominated by the non-spherical na-
ture of the molecule, unrelated to the overlap. We expect
that the additive approximations will be more accurate
for higher band-gap molecular semiconductors and insu-
lators (eg. ice) due to the induced charge localization.
Extensions of the approximation that better treat delo-
calization, perhaps accounting for intermolecular kinetic
energy matrix elements, could better describe lower-band
gap molecular semiconductors such as benzene.
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FIG. 4. Comparison of percentage errors in bulk dielectric
constant approximations for ice and the benzene crystal as a
function of strain. The error is calculated with respect to the
direct (strained) crystal calculations.

C. Dielectric band structure

The microscopic dielectric response, conveniently rep-
resented using the dielectric band structure, is important
for calculating RPA correlation energies. Unlike the bulk
dielectric constant, the calculation of the microscopic re-
sponse for large unit cells is memory intensive and com-
putationally expensive. In our approach, the compu-
tational limits apply to the molecular response rather
than the extended structure. Here, we benchmark the
approach in crystals with small to moderate unit cells
where we can perform the direct calculation to provide
a comparison, but the real power of our method is that
it extends trivially to disordered structures and snap-
shots of liquids where the direct calculation would be
prohibitively expensive.
To develop intuition about dielectric band structures,

we compare the directly calculated dielectric bands for an
ice crystal with the dielectric levels for an isolated water
molecule in the first two panels of Figure 5. The molecu-
lar and crystal levels are similar, except that the molecule
does not have the k-point dependent band structure of
the crystal. The molecular dielectric levels are split by
the exchange-correlation and Coulomb interactions be-
tween the molecules, leading to the crystalline dielec-
tric band structure in Figure 5. For instance, the low-
est molecular dielectric level splits into two bands in the
crystalline calculation which correspond to parallel and
antiparallel polarizations of the two water molecules in
the unit cell (in analogy with molecular orbital theory
for the electronic states).
Additionally, to investigate if the response of the

molecule is affected by the potential due to the neigh-
bors, Figure 5 displays the dielectric levels for a solvated
water molecule calculated using a solvation model that
accurately captures the solvation energy and dipole mo-
ment of a water molecule in liquid water.25 The solvated
water molecule’s dielectric band structure, which in turn
we expect to closely resemble that of one molecule in the
crystal potential, is very similar to that of the molecule
in vacuum. This indicates that while the environment of
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FIG. 5. Ice dielectric band structure of the crystal compared
to the additive approximations for χni (10) and χtot (11).
Molecular levels of water in vacuum (green lines) and implic-
itly solvated25 water (green +) are shown between the crystal
and additive approximation band structures for reference.

the crystal is different than that of the vacuum, it per-
turbs the molecule linearly so that the response functions
of each molecule do not change appreciably from isola-
tion to in the liquid or solid environment. Note that the
solvated dielectric bands that remain unchanged corre-
spond to the response of a single molecule in the liquid
environment to fields external to that molecule; the net
response to fields external to the liquid or solid does in-
deed differ from the isolated molecule (and corresponds
precisely to the crystal dielectric band structure for the
solid).

Next, we examine the two additive approximations χtot

(11) and χni (10), and determine which approach is more
accurate and hence suitable for future RPA calculations
of large / disordered systems. Both additive approxi-
mations produce dielectric band structures which closely
approximate that of the ice crystal, as shown in the cen-
ter and last panels of Figure 5, but χtot addition yields
better agreement while χni addition slightly underesti-
mates the band splitting, due to an underestimation of
the interactions between polarizations of the molecules
in the crystal. Both approximations slightly underesti-
mate the dispersion in the bands of the direct crystalline
calculation. This could potentially be corrected in fu-
ture work by additionally accounting for intermolecular
kinetic energy interactions, estimated using a Thomas-
Fermi local density approximation26,27 (optionally with
gradient corrections).

Figure 6 shows the corresponding results for the ben-
zene crystal. With four molecules per unit cell, the split-
tings are more complicated and difficult to identify intu-
itively. However, the remarkable agreement between the
additive approximations and the much more expensive
direct crystalline calculations remains evident. Just as in
the ice calculation, the χni additivity approximation (10)
slightly underestimates the band splitting, and both ap-
proximations slightly underestimate the dispersion com-
pared to the bands in the direct crystalline calculation.
Additionally, the overestimation of the first eigenvalue
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FIG. 6. Analogous to Figure 5 for the benzene crystal.

in the additive approximations is due to the assumption
that the charge is localized to the molecule, as discussed
previously in the context of the underestimated bulk di-
electric response.
The agreement of approximate dielectric band struc-

tures with the direct calculations is promising for appli-
cations such as RPA correlation energies of large configu-
rations of molecules. Ultimately, the adequacy of this ap-
proximation for such applications will be tested by link-
ing our framework for approximate dielectric functions
with an RPA code and explicitly comparing the calcu-
lated correlation energies.

IV. CONCLUSIONS

This work develops a theoretical approach to deter-
mine the full microscopic dielectric response of a molec-
ular crystal from the microscopic response of its con-
stituent molecules. We argue that it is possible to
approximately decompose the non-interacting (Kohn-
Sham) as well as total-field susceptibilities as a sum
of molecular contributions. In particular, we find that
eigenvectors of the molecular response function form an
excellent (yet non-orthogonal) basis for the response of
the crystal.
We then test the feasibility of this approach by com-

paring the dielectric band structures calculated from the
molecular decomposition with much more expensive di-
rect crystalline calculations. We find remarkable agree-
ment in the predicted response of ice, and very good
agreement for that of benzene. Our additive approach
does not capture the intermolecular charge delocalization
contribution to the benzene dielectric constant, leading
to its underestimation. However, our method is still gen-
erally applicable to molecular materials that do not dis-
play large amounts of orbital overlap. We expect that
our method will perform well for molecular systems that
are electronically insulating, but semiconducting materi-
als such as the benzene crystal will require an extension
to our approach to capture this additional contribution
to the dielectric response. Future work will address this

potential extension, possibly by including the effects of a
kinetic energy functional.

We also derive a formalism for computing the macro-
scopic dielectric tensor of a molecular crystal, which is
much cleaner than the general theory for arbitrary crys-
tals due to the localization of the induced dipole mo-
ments. On the other hand, this formalism retains full
microscopic detail and does not reduce the molecules to
point dipoles or multipoles as in the Clausius-Mossotti
relation or its generalizations.

For simplicity and clarity, this work focused on the di-
electric response predicted using density functional the-
ory. However it also outlines the calculation of crystal
responses using quantum chemical methods that describe
higher-order correlation effects. In essence, this would in-
volve generating a good basis using the density-functional
response eigenvectors of the molecule, performing a series
of perturbation calculations using the quantum chemical
method on a single molecule, and then putting together
the crystalline response using the additive approximation
formalism established in this work. It would be extremely
interesting to apply this method to study the dielectric
response of systems in which the molecular response are
strongly affected by correlation effects.

Finally, the additive approximation and the molecular
decomposition formalism presented here can be applied
more generally, rather than just to crystalline systems,
which we chose for ease of initial computational imple-
mentation and for the feasibility of the direct calculation
to benchmark our approximations. The real power of our
method lies in its potential application to non-periodic
systems, where direct calculations are impractical. In
particular, this would enable calculating the microscopic
dielectric properties of molecular nanostructures, fully
accounting for the effects of surfaces and defects. This
would also enable the rapid calculation of the dielectric
response of multiple snapshots of molecular fluids from a
single molecule response calculation, leading eventually
towards correlated ab initio molecular dynamics calcula-
tions.
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DFT band structure ⇒ ǫi, ψi(~r)

Calculate χ
[m]
ni from Eq. 5

Diagonalize χ
[m]
ni ⇒ X

[m]
ni , V

[m]

Find X
[m]
tot by solving Eq. 14

Eq. 15 ⇒ crystal basis V (k) from V [m]

Calculate matrix elements K̄(k),K̄xc(k)

Outer sum X
[m]
ni , X

[m]
tot ⇒ Xni(k), Xtot(k)

Find Xext by solving Eq. 19 or 20

Eq. 21 ⇒ ǫ−1(k), and diagonalize
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