Section III

CLEANUP OPERATIONS

Session 1-B—Cleanup Operations I

Chairman: L. A. Onstad
Clean Seas

Vice Chairman: Edward Tennyson
Minerals Management Service

Session 5-A—Cleanup Operations II

Chairman: Capt. Michael Garnett, RN (Ret.)
Hudson Maritime Services, Ltd.

Vice Chairman: David Kennedy
National Oceanic and Atmospheric Administration

Session 7-B—Cleanup Operations III

Chairman: Capt. M. S. Greenham
Canadian Coast Guard

Vice Chairman: Lt. Cdr. Wayne Hollingsworth
U.S. Coast Guard

Session 9-A—Cleanup Operations IV

Chairman: Anthony H. Knap
Bermuda Biological Station for Research

Vice Chairman: Michael Kinworthy
Unocal Corporation
THE 1987 NEWFOUNDLAND OIL SPILL EXPERIMENT,

E. J. Tennyson
Minerals Management Service
12201 Sunrise Valley Dr.
Reston, Virginia 22091

H. Whittaker
Environment Canada
Ottawa, Ontario K1A 0H3
Canada

ABSTRACT: A joint Canadian-United States exercise involving the intentional spill of approximately 18,000 gallons of specially treated crude oil was conducted off Newfoundland in September 1987 to evaluate the containment and recovery capabilities of three state-of-the-art booms and skimmers. As part of the exercise, data were collected on a specially instrumented oil spill boom in an attempt to verify a proposed performance test procedure for open-ocean oil spill booms. A viscoelastic chemical additive was used, after the equipment evaluation was completed, to enhance recovery operations. Additional observations were made on the persistence of spilled oil slicks in advanced sea states. The containment and recovery effort was successful, despite winds and sea states commonly thought to be beyond existing capabilities.

An intentional oil spill of 18,000 U.S. gallons was conducted on September 24, 1987, offshore St. John's, Newfoundland, to evaluate the containment and recovery capability of three booms and skimmers. The spill also provided an opportunity to verify a nonpolluting performance evaluation procedure for offshore oil containment booms. The spill was conducted approximately 25 nautical miles east of St. John's. Ocean dumping permit requirements included south-southwest currents and westerly winds to minimize chances of shoreline contact, water depths of at least 100 meters, a location at least 25 nautical miles from shore, and an area within two to three hours steaming from St. John's. The center of the area selected was 47°40' N and 52°3' W.

A crude similar to the typical high wax Grand Banks crude was unavailable. Brent crude from the North Sea was treated by adding 1 percent slack wax by volume to yield an oil of similar physical properties. The modified oil was to have a density of 839.8 kg/m³ and a viscosity of 20 mPa at 12° C.¹

Meteorological conditions were recorded on the Canadian Coast Guard (CCG) cutter Grenfell at 15 minute intervals. These include corrected wind velocities and air and water temperatures.

A wave rider was deployed at the test site, but failed to function during the exercise. Consequently, sea conditions were estimated, with reasonable agreement, by various trained observers.

The test plan called for the deployment of three booms. A 250 m length of the specially instrumented Oil and Hazardous Material Simulated Environmental Test Tank (OHMSETT) boom would be deployed in normal catenary. Approximately 18,000 gallons of treated Brent Crude would be spilled by the command and recovery ship Terra Nova Sea into the catenary. The oil would be held in the boom for approximately 1 hour while freeboard and draft data and visual observations of oil retention were recorded. During this period, 200 m of the CCG RO-boom would be deployed behind the OHMSETT boom. The tow speed would be increased to significant loss speed (0.5 to 1.0 knot). One end of the boom would then be released and the oil discharged into the RO-boom. Oil would be held in the RO-boom for approximately 1 hour while the oil retention capabilities were observed. The St. John's Coast Guard Vikoma Ocean Pack boom (400 m) would be deployed behind the RO-boom during the observation period. The last procedure involving lost tow speeds would be repeated with the RO-boom, and the oil would be released into the Vikoma.

Oil would be retained in the Vikoma for approximately 1 hour. The Terra Nova Sea would then commence skimmer evaluations. Two skimmers, the Framo ACW400 and an innovative Coast Guard Heavy Oil Skimmer (HOS), would be evaluated for 20 minutes each, and the remaining contained oil would be recovered by the skimmer with the better performance.²

The intent of the OHMSETT boom deployment was to verify the hypothesis that a boom's ability to contain oil is correlated with its seakeeping ability, its response to wave-induced surface motion. If this hypothesis could be verified and quantified, future performance evaluations of offshore containment booms could be restricted to measuring seakeeping capabilities in a range of sea states. No further spills of the 20,000-gallon size of light and heavy oils would be required, in a range of sea states, to evaluate each type of boom. Ocean dumping permits are difficult to obtain, and intentional oil spill exercises of this magnitude approach the million-dollar funding level. Intentional spills also constitute a risk of potential damage to the immediate environment. Clearly a cost-effective and nonpolluting evaluation procedure for offshore equipment is necessary in order to be able to predict its later performance in the field. Wind conditions desired were sea state 2 to 4, and winds from 10 to 20 knots.

Practice run

The ships and smaller vessels sailed at 6:00 a.m., September 21, 1987, and proceeded to a location 5.5 miles off Torbay point. The CCG Grenfell then deployed the OHMSETT boom and passed one end to the CCG Cutter 212, which took the boom in tow. The CCG Cutter 206 then attempted to pick up the trailing end of the boom, a job that took 45 minutes. As soon as the Cutter 206 had the end of the boom secured, the two cutters attempted to tow the boom, in a

¹ Mention of specific products in this paper does not constitute or imply endorsement or acceptance by the U.S. Minerals Management Service, the Conservation and Protection section of Environment Canada, or the authors.

² Better performance.
“U” configuration, into a position astern of the Terra Nova Sea. This action resulted in the OHMSETT boom immediately beginning to twist on itself, and 1 hour was lost in straightening the boom. Eventually the boom was positioned relative to the Terra Nova Sea and simulated discharge of the oil was carried out. Data collection, without oil, for almost 1 hour followed.

While the OHMSETT boom was being deployed and positioned, the RO-boom was deployed from the CCG Sir Humphrey Gilbert and passed to CCG Cutter 214, a procedure that took almost 2 hours. The RO-boom was rapidly positioned with respect to the OHMSETT boom, because both the Cutter 214 and a Boston Whaler were able to tow the boom at speeds of 5 knots. With the RO-boom in position, the CCG Cutter 212 and Cutter 206 began to maneuver, presumably to form a “J.” The Cutter 206 then snagged the OHMSETT cable in her screws and cut it, disabling herself. This mishap resulted in delay in the exercise while the cable was freed. Because Cutter 214 and the Boston Whaler were now approaching closely, Cutter 212 took the boom and Cutter 206 in tow and cleared the area so as not to impede the exercise.

While the RO-boom was being deployed, the Grenfell deployed the Vikoma boom. Once the simulated oil release was over, the Terra Nova Sea took the other end of the boom and the vessels formed a catenary. After holding position relative to the RO-boom for a period, the ships formed a “J” with the boom and practiced deploying the skimmers. All ships returned to harbor by 5:00 p.m.

Further preparation for the trial

Several meetings of the senior people involved in the exercise occurred from September 21 to 23, 1987. It was decided to remove CCG Cutter 206 from the exercise. The Boston Whaler was able to tow and hold the boom in sea state 1, but it was recognized that this would be difficult with oil, in the desired weather. The Newfoundland Fisheries Department had provided a vessel, the Bernier, and it was decided to use her and a second chartered offshore supply vessel (OSV) to tow the RO-boom.

There was concern that the weather might be too calm on September 24, the day that looked best for the actual trial. It was therefore decided to interchange the OHMSETT boom and the RO-boom, to take advantage of the higher winds and waves expected later in the day.

The long time required to deploy the RO-boom from the Sir Humphrey Gilbert led to the decision to deploy boom from the second OSV, the Triumph Sea. Repairs were carried out on the OHMSETT boom instrumented cabling, and the boom with instrumentation was functional by 5:00 p.m. on September 23.

Since the Terra Nova Sea had oil recovery tanks on board, it was decided to dispense with the dumb barge and to release the oil directly from that OSV.

Trial with oil

Because of the various objectives of this trial, more vessels were involved than would have been in an actual spill. This resulted in rather confused vessel maneuvering at times during the trial. The Triumph Sea and the Bernier sailed at 3:00 a.m. on September 24, 1987. All other vessels sailed at 4:00 a.m., and everyone was on station by 6:45 a.m. The Triumph Sea commenced deployment of the RO-boom en route, and by 7:30 a.m. the boom was ready to receive oil. Once the OHMSETT boom was deployed, at 8:15 a.m., the oil was pumped into the RO-boom with supervision from the helicopter and small boat. All oil was in the boom by 9:00 a.m.

The news media were given the opportunity to view the test from the air, and this was done from 9:00 to 10:00 a.m. During this period, the Cutter 212 and Cutter 214 attempted to pull the OHMSETT boom into proper position astern of the RO-boom and keep it there. Every attempt to move the boom in a catenary in the prevailing 15 knot winds resulted in the boom twisting. As a result, the OHMSETT boom fell progressively farther astern of the RO-boom.

At 10:30 a.m., the oil in the end of the pocket of the RO-boom was 30 cm thick, the wind was 15 knots, and some splash-over and significant drainage under the boom were occurring. The vessels therefore formed a “J” and released one end of the boom to allow the oil to flow into the OHMSETT boom. The OHMSETT boom was approximately 1 km astern, and the vessels were having trouble towing the boom in a catenary without the boom twisting. It was therefore decided to direct the cutters with the OHMSETT boom to tow the oil by helicopter, keeping the boom in a straight tow. After 20 minutes, the cutters were adjacent to the thick oil, and, after a further 20 minutes, approximately 80 percent of the thick oil was in the OHMSETT boom. The remaining 20 percent was contained in the Vikoma boom.

Data collection on the OHMSETT boom started as soon as the oil was captured and continued for 56 minutes. The CCG cutters then stopped across the path of the vessels towing the Vikoma boom and released one end of the boom. The oil spilled into the Vikoma boom catenary, and one CCG cutter trailed the OHMSETT boom at the throat of the catenary, allowing the waves to wash the oil into the Vikoma boom.

The CCG Grenfell and Terra Nova Sea towed the oil-filled Vikoma boom for approximately 1 hour. During this time, the wind had freshened to between 15 and 20 knots. The boom was moving at over 1.1 knots relative to the sea, and some oil was being lost (approximately 3 mm thick). The Grenfell then attempted to move ahead to form the “J” for the skimmers. Not being very maneuverable, she quickly reached 3.4 knots and the oil was lost.

With the oil now lost, the weather abated slightly. The RO-boom was still streaming astern of the Triumph Sea, so it was decided that she and the Bernier would form the boom into a catenary and attempt to recover the oil downwind. The helicopter had been lost to the exercise for approximately 1 hour at this time. As soon as it returned, it was refueled and deployed to assist. In the interim a small boat was used to guide the tow vessels into the heaviest portions of the slick. When the helicopter was over the thick oil, it was apparent that the vessels with the RO-boom were adjacent to some of the oil and unable to see it. They were therefore directed from the air and small boat, and managed to collect 80 to 90 percent of the thick oil, which was on the surface at the time.

Oil was successfully contained and recovery was attempted using the three skimmers on board the recovery-command vessel. The first skimmer, the Heavy Oil Skimmer (HOS), was deployed and no measurable recovery was observed. The oil used was modified by adding petroleum wax so that it would resemble a typical Grand Banks crude oil. This type of oil is uncharacteristic of most crude in that it possesses low adhesive properties. Therefore, oleophilic skimmers, which depend on the adhesive nature of the recovered oil, do not perform well with high paraffin-based oils. This was again demonstrated with the oleophilic HOS skimmer. The skimmer was recovered after several trained observers were satisfied that the HOS skimmer had had an efficient evaluation time in the contained slick. Problems with the ability of the support arms, used to suspend both the HOS and Framo skimmers, to adjust to the roll of the vessel and the short-period wave action resulted in both skimmers being frequently submerged, so that oil and water were washed into the sump of the skimmer.

The second skimmer, the Framo ACW-400, was deployed. The overall rate of oil recovery of the Framo was 60 gallons per minute, with unknown amounts of the recovery resulting from frequent partial submergence.

At this point, the On-Scene Commander decided that the skimmer evaluation was complete. Additional measures were needed to ensure recovery of the remaining contained oil, because the weather was deteriorating and night was falling. Accordingly, approximately 7 pounds of the viscoelastic agent Elastol were spread from an 8-ounce styrofoam coffee cup into the estimated 7,400 gallons of oil and water emulsion in the containment boom. Elastol was added because previous research funded by the Minerals Management Service and Environment Canada had shown that the elastic and adhesive properties of the oil could be increased by addition of the agent, thus making the oil more readily capturable with these types of skimmers. The Framo ACW-400 was retrieved from the slick as the Elastol was added, and because of the operational constraints on the recovery operation, owing to the weather and lateness of the day, the skimmer was not redeployed.

The weir-type skimmer Pharos Marine GT-185 was deployed into the treated slick and recovered near-capacity rates of 85 gallons per minute of oil and oil emulsion with no free water. This recovery rate
was higher than anticipated and might have been even higher if the oil had been untreated. Treatment significantly increased the viscosity of the oil. The skimmer was removed from the slick, cleaned, and stored on board.

The HOS skimmer was redeployed and failed to function because of a piece of steel in the return pump. The skimmer was recovered, the steel piece removed, and then the skimmer was redeployed.

The HOS skimmer yielded a recovery rate of 50 gallons per minute with a portion of the oleophilic fabric on one of its two drums damaged. Debris was collected at this time in the venturi system used to measure recovery fluid flow rates. The debris may have contributed to the subsequent failure of the HOS skimmer return hose. No flow rate measurements were taken before the failure. Visual observations of the amount of oil adhering to the oleophilic fabric of the HOS skimmer indicated that recovery rates were significantly increased by the addition of Elastol.

Operations were suspended because of the advancing sea states and increasing darkness.

An overflight of the area, by helicopter, was carried out during the skimming operation. This revealed a sheen approximately 2.5 by 0.5 nautical miles with three patches of brown oil. It is estimated that no more than 260 gallons of oil remained in the thick patches. A further flight 18 hours later showed that only small brown patches and sheen remained, and were rapidly dispersing.

Conclusions

- Thorough proficiency with the recovery equipment to be used is essential. Routine practice is required.
- Large volumes of oil are necessary to evaluate performance of offshore response equipment realistically.
- The use of helicopters to direct the placement of tow vessels and the use of small vessels to monitor and advise on boom conditions were both essential to maximize the efficiency of conventional recovery operations.
- Accurate measurements of meteorological and sea conditions are necessary for accurate analysis of equipment performance.
- The requirements for slow-speed towing and maneuvering of large containment booms necessitate the use of vessels with variable pitch propellers, thrusters, and good seamen in control.
- It was not possible to form a recovery configuration with two vessels while towing upwind despite two attempts during the practice run. The third vessel was necessary for recovery in normal catenary.
- Upwind collection proved impossible when winds approached 15 knots, consistent with most past observations for containment operations conducted upwind.
- The upper meteorological and sea state limits for downwind containment and recovery were not reached during this test.
- Tanks should be available to recover several times as much fluid as discharged to accommodate the oil and water emulsions and free water recovered.
- The correlation of the seakeeping ability of a boom with its ability to contain oil indicates that the nonpolluting test protocol has been verified.
- Recovery of high wax oils similar to Newfoundland crudes in 10°C water is significantly enhanced by the use of Elastol.

References
