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Expected Value of Reward Predicts Episodic Memory for 
Incidentally Learnt Reward-Item Associations
Alice Mason, Amy Lorimer and Simon Farrell

In this paper, we draw connections between reward processing and cognition by behaviourally testing the 
implications of neurobiological theories of reward processing on memory. Single-cell neurophysiology in 
non-human primates and imaging work in humans suggests that the dopaminergic reward system responds 
to different components of reward: expected value; outcome or prediction error; and uncertainty of 
reward (Schultz et al., 2008). The literature on both incidental and motivated learning has focused on 
understanding how expected value and outcome—linked to increased activity in the reward system—lead 
to consolidation-related memory enhancements. In the current study, we additionally investigate the 
impact of reward uncertainty on human memory. The contribution of reward uncertainty—the spread of 
the reward probability distribution irrespective of the magnitude—has not been previously examined. To 
examine the effects of uncertainty on memory, a word-learning task was introduced, along with a surprise 
delayed recognition memory test. Using Bayesian model selection, we found evidence only for expected 
value as a predictor of memory performance. Our findings suggest that reward uncertainty does not 
enhance memory for individual items. This supports emerging evidence that an effect of uncertainty on 
memory is only observed in high compared to low risk environments.
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Introduction
We are constantly encoding information; however, 
relatively little of that information is eventually 
consolidated into memory. In order to be adaptive, 
memory must be selective and prioritise information 
that is likely to be relevant to future decisions. There are 
many ways in which reward can affect the consolidation 
of newly learned material. For example, students studying 
for exams will (ideally) be actively focusing their attention 
and resources to promote memory for information that is 
likely to be tested on an exam (motivated learning). In other 
situations, value may be more incidental to information 
that might be later remembered; for example, a child 
might enjoy interacting with a new object and therefore 
be more likely to remember its name (incidental learning).

The effects of reward on learning have been studied in 
the context of both motivated and incidental learning. 
Neurobiological mechanisms have been proposed to 
account for both types of learning (Adcock, Thangavel, 
Whitfield-Gabrieli, Knutson, & Gabrieli, 2006; Shohamy & 
Adcock, 2010; Wittmann, Dolan, & Düzel, 2011; Wittmann 
et al., 2005). Research has focused on the role of the 
neurotransmitter dopamine in increased hippocampal 
consolidation of reward-based memories (Lisman & 

Grace, 2005; Shohamy & Adcock, 2010). Additionally, 
salient and emotional episodic memory enhancements 
have been linked to increased activity in the locus-
coeruleus-norepinephrine (LC-NE) system (Clewett & 
Mather, 2014; Clewett, Sakaki, Nielsen, Petzinger, & 
Mather, 2017; Preuschoff, ‘t Hart, & Einhauser, 2011). 
Given the difficulty of individually isolating motivational 
factors such as reward, emotion and arousal, it is likely 
that multiple neurobiological systems support increased 
hippocampal encoding (Madan, 2017; Shaikh & Coulthard, 
2013; Shohamy & Adcock, 2010; Takeuchi et al., 2016). 
Furthermore, reward-based learning may be supported 
either by synaptic (Lisman & Grace, 2005) or systems level 
consolidation processes (Braun, Wimmer, & Shohamy, 
2018; Murty, DuBrow, & Davachi, 2018; Studte, Bridger, & 
Mecklinger, 2016).

Reward-based learning is often considered within the 
context of reinforcement learning models (Diederen et al., 
2017; Sutton & Barto, 1998). The reward signal is comprised 
of the expected value, the actual reward outcome or the 
prediction error. In such models, prediction errors are used 
to update the current belief about the value of different 
actions in order to maximise future rewards. It has been 
suggested that neurons in the dopaminergic system 
encode the prediction error term of these models (Schultz, 
1998). Such models account for learning and decision-
making, but the precise relationship between the reward 
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signal and individual episodic memories is less clear 
(Bornstein & Norman, 2017; Diederen et al., 2017; Lengyel 
& Dayan, 2007). The effective reward value signal might 
be expected value, reward outcome or prediction error. 
Previous studies have not clearly distinguished between 
anticipated rewards and actual outcomes (Wittmann 
et al., 2005), more recently the focus has shifted to the 
relationship between reward cue and reward outcome 
(Bialleck et al., 2011; Bunzeck, Dayan, Dolan, & Duzel, 
2010; Mason et al., 2017b; Mather & Schoeke, 2011). 
There is evidence to suggest that memory enhancements 
could be attributed to either reward anticipation or 
a post-encoding enhancement of items after reward 
delivery (Gruber, Ritchey, Wang, & Doss, 2016; Murayama 
& Kitagami, 2014; Patil, Murty, Dunsmoor, Phelps, & 
Davachi, 2017).

Reward uncertainty is another important, but often 
ignored, signal that refers to the predictability of the 
outcome of an event. It tells us the spread of the reward 
probability distribution irrespective of the magnitude 
(Tobler, O’Doherty, Dolan, & Schultz, 2007). In the case 
where there are two possible outcomes (e.g. reward vs. 
no reward), expected value increases linearly with the 
probability of receiving a reward, whereas uncertainty 
follows an inverted U-shaped function of probability of 
reward, and is maximal at p = 0.5. A common measure 
of uncertainty is entropy. Entropy is calculated as 
the negative weighted sum of the logarithm of the 
probabilities of each possible outcome –ΣO PO log2 PO. 
Where PO is the event outcome (reward or no reward). 
Reward uncertainty is likely to be signalled by multiple 
systems. It has been associated both with changes in 
activity in the dopaminergic reward system and the LC-NE 
system, which also signals arousal and surprise (Clewett & 
Mather, 2014; Clewett et al., 2017; Kempadoo, Mosharov, 
Choi, Sulzer, & Kandel, 2016; Preuschoff et al., 2011). fMRI 
studies in humans have demonstrated distinct coding 
of reward expected value and uncertainty (D’Ardenne, 
Mcclure, Nystrom, & Cohen, 2008; Glimcher, 2011; Hsu, 
Krajbich, Zhao, & Camerer, 2009; Liu, Hairston, Schrier, 
& Fan, 2011; Ludvig, Sutton, & Kehoe, 2008; Preuschoff, 
Bossaerts, & Quartz, 2006; Preuschoff, Quartz, & Bossaerts, 
2008; Schultz et al., 2008; Tobler, Fiorillo, & Schultz, 2005; 
Tobler et al., 2007). Tobler et al. (2007) found that stimuli 
associated with increases in expected value elicited 
monotonically increasing activation in the striatum, 
whereas stimuli associated with higher variance led to 
increased activation in the orbiofrontal cortex. Other 
studies have indicated that the reward signal is comprised 
of temporally distinct linear and quadratic responses to 
expected value and uncertainty within dopamingeric 
brain regions such as the striatum (Cooper & Knutson, 
2008; Dreher, Kohn, & Berman, 2006; Rolls, McCabe, & 
Redoute, 2008).

The link between dopaminergic activity and uncertainty 
on the one hand, and dopaminergic activity and memory 
enhancement on the other, suggests that we should 
expect to see a behavioural relationship between reward 
uncertainty and memory performance. This has only 
recently been given any attention in the literature. A 

recent study examined the effects of reward uncertainty 
on recognition memory. Rouhani, Norman, and Niv (2018) 
found that participants remembered items that occurred 
within a high-risk context (large variance in reward 
distribution) better than in a low-risk context. They also 
found that across risk contexts, surprise or unsigned 
prediction error, was the best predictor of memory for 
individual items (see also De Loof et al. (2018)). The 
authors suggested that uncertainty experienced in high-
risk reward environments may improve memory in these 
contexts (Duncan, Sadanand, & Davachi, 2012; Mather, 
Clewett, Sakaki, & Harley, 2015).

What isn’t clear is whether the relationship between 
reward uncertainty and memory holds at finer time scales 
within the experimental context. Here, we ask whether 
variations in reward uncertainty during the experiment 
are linked to variations in recognition memory accuracy. 
In motivated learning we (Mason et al., 2017a) tested 
the effects of reward components on episodic memory 
encoding. On each trial, participants were presented with 
a reward probability followed by the to-be-remembered 
item. They were then presented with the reward 
outcome, but earning this was contingent upon correctly 
recognising the item at a delayed memory test. For each 
item that participants were presented with we were able 
to test the influence of reward expected value, prediction 
error, outcome and uncertainty. Across four behavioural 
studies we found consistent evidence against an effect of 
reward uncertainty on memory, and only found evidence 
favouring an effect of reward outcome on memory, with 
higher reward outcomes leading to better memory than 
lower outcomes or an absence of a reward.

In principle, it is possible that rewards act differently 
on memory when items are studied under incidental 
or motivated learning conditions (Cohen, Rissman, 
Hovhannisyan, Castel, & Knowlton, 2017; Spaniol, Schain, 
& Bowen, 2013). During motivated learning participants 
engage in different strategies to enhance encoding: these 
include selective attention and differential resource 
allocation (Ariel & Castel, 2014; Castel, 2008; Castel, 
Benjamin, Craik, & Watkins, 2002; Eysenck & Eysenck, 
1982; Loftus & Wickens, 1970; Stefanidi, Ellis, & Brewer, 
2018), and directed forgetting (Fawcett & Taylor, 2008; 
Friedman & Castel, 2011; Hayes, Kelly, & Smith, 2013; 
Lehman & Malmberg, 2009; Wylie, Foxe, & Taylor, 
2008). The learner also has the expectation at encoding 
that reward outcomes depend upon successful memory 
performance at test (Adcock et al., 2006). In contrast, in 
incidental learning paradigms the rewards are delivered at 
the time of learning and are found to increase recognition 
and recall of items associated with the rewards (Mather & 
Schoeke, 2011; Wittmann et al., 2011). Given the difference 
in reward delivery, it is conceivable that incidental 
learning relies to a greater extent on neurobiology 
mechanisms such as dopaminergic consolidation, and 
we may see a stronger coupling between rewards signals, 
identified in the neurobiological literature, and memory 
performance. Given the potential for involvement of 
different behavioural and neurobiological contributions 
under incidental versus motivated learning, it is possible 
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that an uncertainty–reward relationship might exist for 
individual items under incidental conditions.

Current Experiment
Accordingly, we conducted a behavioural experiment to 
assess the contribution of reward factors during incidental 
episodic memory encoding. The purpose of this paper is 
to test whether reward uncertainty influences memory on 
a trial-by-trial basis under incidental learning conditions. 
In addition, we will examine the influence of other reward 
predictors in order to identify the reward signals that 
drive memory performance at the behavioural level.

The reward task used in this experiment was developed 
by Preuschoff and colleagues and has been used to examine 
both dopaminergic reward signalling of uncertainty and 
to dissociate uncertainty and surprise (Preuschoff et al., 
2006, 2011). In addition, the manipulation used in this 
experiment has been shown to induce a clear neural 
signature of reward uncertainty in the striatum (Preuschoff 
et al., 2006, 2008). To examine the effects of uncertainty 
on memory, a delayed recognition memory test was used 
to probe memory for words that were originally paired with 
rewards. The neuroimaging results from the Preuschoff 
(2006) experiment indicated time-dependent encoding of 
value and risk in the ventral striatum. Risk-related activity 
followed an inverted U shape function of probability, 
whereas the relationship between value and probability 
was linear. These findings are supported by evidence from 
several other studies exploring the neural correlates of risk 
(Cooper & Knutson, 2008; Dreher et al., 2006; Rolls et al., 
2008; Tobler et al., 2007). The question is to what degree, if 
at all, reward uncertainty enhances memory. Furthermore, 
the aim of this experiment was to provide a comparison 
of the different components of reward: expected value; 
outcome; prediction error; uncertainty of reward; and 
surprisal as motivated by extensive research in single-cell 
neurophysiology in non-human primates and imaging 
work in humans (Cromwell & Schultz, 2003; Fiorillo, Tobler, 
& Schultz, 2003; Hollerman & Schultz, 1998; Schultz, 1998, 
2002; Schultz et al., 2008; Tobler et al., 2005).

Methods
We pre-registered the experiment at https://aspredicted.
org/rn2hy.pdf. The data is available on Open Science 
Framework https://osf.io/xkpfz/. All participants 
provided informed consent and the study was approved 
by the UWA Human Research Ethics Office.

Participants
Fifty students were recruited from the University of 
Western Australia undergraduate participant pool and 
were reimbursed with course credits. Sample size was 
based on anticipated effects from our previous studies 
examining reward-related learning. We are using Bayesian 
statistics as our inferential framework, which allows us 
to competitively test models and explicitly calculate a 
strength of evidence for these models. Participants had 
the chance to earn a maximum of $5.00 (all dollar values 
are in AUD), with an average of $2.77 (SD = 0.53) One 
participant was excluded from the analysis as their data 

did not save due to a network issue. This left a sample size 
of 49 participants (female = 32, M age = 21.14, SD = 5.63).

Experiment task
Stimuli
The stimuli for the recognition task were English words. 
A total of 216 words were used, taken from a pool of 400 
words used in Mason et al. (2017a; obtained in turn from 
Oberauer, Lewandowsky, Farrell, Jarrold, and Greaves, 
2012). All words were concrete nouns, and were chosen 
to refer to common objects that are larger or smaller 
than a soccer ball, with the pool consisting of 108 objects 
rated as larger and 108 rated as smaller. The words had an 
average length of 5.77 letters (SD = 1.84). The experiment 
was programmed and presented using the Psychophysics 
Toolbox for MATLAB version 2.54 (Brainard, 1997) on a 
standard desktop computer.

Learning Task
For each participant the experiment was conducted in two 
sessions occurring on different days. In the first session 
participants were exposed to a series of words, each word 
associated with a reward value with varying degrees of 
probability. There were three levels of probability (0.125, 
0.5, 0.875) and two levels of uncertainty (low, high, and 
low respectively). We decided to test the conditions 
where reward uncertainty was greatest (.5) and two 
comparison points that had the same uncertainty but 
different expected values. The findings in the reward-
memory literature do not often detect fine-grained effects 
(Bunzeck et al., 2010; Mason et al., 2017b; Wittmann et 
al., 2011) and we wanted to maximise the chances of 
detecting the effect.

On each trial participants placed a bet, following which 
they could either win or lose $0.15. The “betting” task 
was a simple task with simulated playing cards. Two cards 
were drawn without replacement by the computer from 
a simulated set of playing cards (ace to 9, where ace was 
low). The first card was drawn at random from a subset 
of cards (2, 5 or 8). The second was then drawn from the 
remaining 8 cards. Participants were to bet on whether 
the second card drawn would be higher or lower than 
the first card. When the bet was placed participants had 
not seen either card so they always had a 50% chance of 
winning (vs losing) the bet. Once the first card was drawn 
the probability of winning was known to the participants. 
The outline of a trial is shown in Figure 1.

If, for example the participant bet on the second 
card being higher, then the probability of winning 
was equal to the total number of cards in the deck (9) 
minus the number displayed on the card drawn (C1) 
divided by the number of remaining cards in the deck 
(8): Pwin = (9-C1)/8. The first card was always a 2, 5 or 8 
which meant the probability of winning was either 0.125, 
0.5, 0.875. The reward value was kept constant on each 
trial, and so the expected reward and risk varied directly 
as a function of probability of winning.

On each trial, a word was shown after card one and 
before card two. In the task used by Preuschoff et al. 
(2006) card one was displayed for 1.5 seconds, followed 
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by an anticipatory period of 5.5 seconds before card 
two was presented. In the current experiment, card one 
was displayed for 1.5 seconds, followed by a fixation 
cross for 500 ms seconds. The target word was then 
displayed for 4 s. To ensure that the words presented 
were attended to, participants were required to indicate 
whether the object was smaller or larger than a soccer 
ball. Participants used the left and right arrow keys 
(with their index and middle fingers of their dominant 
hand) to input their response. The target word remained 
on screen after this response. At end of the 4 second 
period, a fixation cross was then displayed for 500 ms, 
before card two was displayed for 1500 ms. Participants 
then had 2000 ms to select one of two boxes indicating 
whether or not they had won the bet, to make sure 
the trial events were attended to and understood. If a 
participant responded incorrectly to this question they 
had a penalty amount of $0.05 deducted. There was an 
inter-trial interval of 500 ms. If no bet was placed the bet 
was lost, and if participants failed to correctly report the 
outcome of the bet they lost $0.05.

Before beginning the experiment, the process 
was explained to participants and worked examples 
were given for each of the possible bets and card 
outcomes. Participants completed 10 practice trials 
during the first session. The experiment was run as a 
series of three blocks, with 36 trials in each block. At 
the end of the three blocks the participants randomly 
selected which block’s earnings they would keep. The 
lowest overall bonus payment a participant could earn  
was $0.

Recognition memory test
The second session always occurred the day after the first 
session. This was usually exactly 24 hours later and always 
a minimum of 12 hours. In the second session, participants 
completed a recognition test on the words shown in 
the first session. Each of the 108 old words was shown, 
randomly intermixed with 108 new words. Participants 
were required to make an old/new judgement using the 
left and right arrow keys.

Data Analysis
Data Exclusion
During the first session, participants were asked to report 
whether or not they bet correctly in each trial. This was 
included in the experimental design to assess whether 
participants were maintaining attention during the task. 
It was assumed that participants who reported their bet 
outcome correctly at least 80% of the time performed well 
in this task, and were likely paying attention. 8 participants 
were excluded for not meeting the reporting requirement 
leaving a total sample size of 41.

Results
Model Comparisons
The dependent variable was each participants’ mean hit 
rate across each of the 6 conditions: reward probability 
(0.125, 0.5, 0.85) crossed with reward outcome (0 or 0.15) 
Figure 2 shows. The false alarm rate was 0.23 (SE 0.02), 
which is comparable to previous studies and indicates 
that participants are performing above chance (Mason et 
al., 2017a). We then conducted a mixed-effects regression. 

Figure 1: Participants are told that a card will be drawn at random from the playing cards (2, 5 and 8). They then place a 
bet as to whether the second card will be higher or lower than the first. The first card appears on screen. It is followed 
by a word. The second card is then presented on screen. Finally, the participant must indicate whether or not they 
have won the bet. In order to control the number of trials per condition, the probability of winning and they outcome 
are pre-determined on each trial but the cards that are shown are adjusted depending on the participants bet. For 
example, imagine that the reward probability is 0.125 and the outcome is “Win” and the participant bets “Higher”. 
The first card shown will need to be 8 and the second card will be 9. For this same condition, if the participant had 
bet “Lower” the first card would be 2 and the second card would be 1.

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/5/1/40/468644/217-3527-2-pb.pdf by guest on 29 N

ovem
ber 2021



Mason et al: Reward and Incidental Learning Art. 40, page 5 of 11

This allowed us to accommodate individual differences, at 
least in overall performance levels (by way of a random 
subject factor). A Bayesian model comparision approach 
was used to assess the unique contribution of different 
predictors. For each of the 6 experimental conditions we 
were are able to test the following theoretically relevant 
predictors: expected value, prediction error, reward 
outcome, reward uncertainty and surpisal. Definitions 
of these predictors are listed in Table 1. We tested only 
the individual predictors, i.e. we did not include the 
interaction terms. However, the interaction of interest 
between reward probability and reward outcome is 
effectively captured by the predictor surpisal.

Models were fit using the “lmer” function in the lme4 
package (Bates, Mächler, Bolker, & Walker, 2015). The 
Bayesian Information Criteria (BIC) provided can be 
converted to an approximation of a Bayes Factor (assuming 
the unit information prior) according to the following rule: 
BFM1_M2 = exp(–0.5* (BICM1–BICM2)) Raftery (1995). The BICs 
assumed prior is relatively uninformed, and tends to be 
conservative (i.e., it can favour the null hypothesis more 
than under an informed prior; Weakliem, 1999).

For our model comparisons we first selected the model 
with the lowest BIC value and we then compared each 
of the other models to this model see Table 2. For each 
comparison, the Bayes factor provides relative evidence 
for each of the models conditional on the data. It informs 
us how much our prior beliefs should shift in response 
to the data obtained. Although there are no strict cut-
offs, according to Jeffreys (1961) we can interpret odds 
greater than 3 as some evidence, odds greater than 10 
as strong evidence, and odds greater than 30 as very 

strong evidence for a particular hypothesis compared to 
an alternative (see also Wagenmakers, 2007). In addition, 
to illustrate the goodness of fit we plot the predictions 
of each of the best models (model with the lowest BIC) 
alongside the data.

The results indicated that the best model was the 
Expected Value only model. The Bayes Factor model 
comparisons indicates some evidence that this model 
better accounts for the data than the base model 
containing no effects of probability (LMBase). Critically, 
the Expected Value model was strongly favoured over all 
other models, including all models incorporating an effect 
of reward uncertainty.

Table 1: Reward-related predictors of memory 
performance.

Predictor Description

Expected Value (EV) Probability of obtaining a reward 
multiplied by the reward magnitude

Reward Outcome 
(O)

Magnitude of the reward obtained

Prediction Error 
(PE)

Expected value of the reward minus the 
reward outcome

Reward Uncertainty 
(U)

The entropy – ΣO PO log2 PO

Surprisal (S) Information gained from observing an 
outcome O – log2(PO) where O is the 
outcome, PO is the probability of that 
outcome the outcome (reward or no 
reward)

Figure 2: Recognition memory performance as a function of the expected value of the cue and the reward outcome. 
Error bars show SEM within-subject error bars calculated using the method in (Morey, 2008). The symbols illustrate 
the predicted values for the best fitting model (Expected Value).
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Discussion
In this experiment we compared how a range of 
reward-related predictors influence incidental memory 
performance. Using a behavioural task developed to elicit 
reward uncertainty during encoding, we found that the 
expected value of a reward was the best predictor of memory 
for the words temporally linked to rewards. In our task 
participants were presented with a word between reward 
cue (which predicted the reward outcome with greater 
or lesser certainty) and reward outcome. We used mixed-
effects modelling to compare how different reward factors 
predicted recognition memory performance in a delayed 
surprise memory test. Our study is the first to directly 
compare different reward-related predictors (expected 
value, reward outcome, prediction error, uncertainty and 
surprisal) in their effect on incidental memory.

The results from our experiment—showing a specific 
effect of expected value—contribute to the growing body 
of evidence that signals related to reward prediction 
error, reward outcomes (Mason et al., 2017b) and 
expected value (Jang, Nassar, Dillon, & Frank, 2018) 
are consistently shown to affect reward-based memory 
consolidation. There has been extensive research on both 
the role of prediction errors in learning and decision-
making (Diederen et al., 2017; Rouhani et al., 2018) and 
the potential relationship between prediction errors 
and episodic memory formation on a trial-by-trial basis 
(Bunzeck et al., 2010; Ergo, De Loof, Janssens, & Verguts, 
2019; Jang et al., 2018; Mason et al., 2017b; Rouhani et 
al., 2018; Wimmer, Braun, Daw, & Shohamy, 2014). A 
few studies have found evidence in favour of the this, 
however, there appears to be more consistent evidence 

Table 2: Linear mixed effects model comparison. The first column lists each of the models we tested and the best 
model, with the lowest BIC. The predictors were: expected value (EV), uncertainty (U), reward outcome (O), prediction 
error (PE) and surprisal (S). Each of the models (M) was compared to the best model and the third column shows the 
BF comparisons.

Model BIC BayesFactor

LMEV EV –75.65 1.00

LMBase Base –71.96 6.32

LMEVUn EV & U –67.12 70.94

LMPEOut PE & O –64.91 214.10

LMEVOut EV & O –64.91 214.10

LMPEEV PE & EV –64.91 214.10

LMUn U –63.43 448.92

LMPE PE –61.73 1,052.40

LMOut O –61.25 1,339.36

LMSup S –59.63 2,999.18

LMPEUnOut PE & U & O –56.39 15,189.49

LMOutUnEV O & U & EV –56.39 15,189.49

LMPEUnEV PE & U & EV –56.39 15,189.49

LMUnSupEV U & S & EV –54.52 38,591.64

LMPEU PE & U –53.20 74,723.47

LMOutUn O & U –52.72 95,100.54

LMPESupOut PE & S & O –52.57 102,356.60

LMPESupEV PE & S & EV –52.57 102,356.60

LMEVSupO EV & S & O –52.57 102,356.60

LMUnSup U & S –50.86 240,525.53

LMPES PE & S –49.40 499,221.12

LMOutSup O & S –48.92 635,056.22

LMPEUnSupEV PE & U & S & EV –43.79 8,256,740.34

LMEVUnSupOut EV & U & S & O –43.79 8,256,740.34

LMPESupUnEV PE & S & U & EV –43.79 8,256,740.34

LMPESUn PE & S & U –40.64 40,036,172.54
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that reward outcomes are a strong predictor of memory 
in incidental learning (Bunzeck et al., 2010; Mason et al., 
2017b; Mather & Schoeke, 2011; Murayama & Kitagami, 
2014). Although evidence generally emerges for these 
signals as predictors, not all studies have provided 
consistent evidence for effects of all on memory. While 
this may be partly due to sampling variability, it may also 
be the case that different experimental procedures may 
lead to one of these signals becoming more salient and 
influencing memory to a greater degree than others. For 
example, in the current study participants were explicitly 
told the expected value of each reward cue, and the 
reward outcome was revealed later in the trial. In other 
studies, the cue and outcome appear closer in time which 
may serve to emphasise their relationship (Bunzeck 
et al., 2010; Mason et al., 2017b; Mather & Schoeke, 
2011). Another potential objection is that the majority 
of studies, including our own, provide participants 
with small financial incentives on each trial. In the 
current study, it does appear that people were response 
to the incentives as we observed an effect of expected 
value on memory. However, we know that people are 
motivated by factors other than money (Deci, Koestner, 
& Ryan, 1999) and that rewards of different magnitudes 
effect risk-seeking behaviour and potentially memory 
(Konstantinidis, Taylor, & Newell, 2017; Ludvig, Madan, 
Mcmillan, & Spetch, 2018). Therefore, future studies 
in this area may benefit from using an points based 
incentivisation scheme.

An additional issue worth considering is the relationship 
between the reward and the memory stimulus. Murayama 
and Kitagami (2014) found that rewards promoted 
memory for items presented after an unrelated reward 
task. In our experiment, the to-be-remembered item 
was not directly linked to earning a reward, but instead 
was presented for encoding between the reward cue and 
outcome; so was still embedded within the reward task 
(Mather & Schoeke, 2011). Arguably, these designs mean 
that the even under incidental learning the rewards are 
motivationally linked to the memory stimuli, suggesting 
that we need to be aware of the motivational influences 
more broadly (Madan, 2017).

There has been a broad interest in the functional 
link between mesolimbic system and episodic memory 
formation. Activation of the mesolimbic reward system 
during encoding has been consistently shown to increase 
hippocampal consolidation. Early studies focused on 
reward-related activation of the mesolimbic system. 
A variety of factors related to motivation have been 
associated with this functional link, including value, 
reward anticipation (Adcock et al., 2006), active decision-
making (Murty et al., 2018), and curiosity (Gruber, 
Gelman, & Ranganath, 2014; Marvin & Shohamy, 2016). 
In many situations and experimental designs several of 
these factors are likely to interact to influence memory 
encoding, which may contribute to discrepancy in findings 
within the literature.

We found evidence against an effect of reward 
uncertainty on memory for individual items. This 
supports findings from our recent study examining 

reward uncertainty in motivated learning (Mason et 
al., 2017a). We predicted that if reward uncertainty 
does influence episodic memory encoding, the effects 
would be larger during incidental learning when the 
conditions of learning do not promote strategic learning. 
The evidence from this and the current study supports 
the overall conclusion that reward uncertainty related 
to individual items does not enhance episodic memory 
performance. This finding is of interest in itself, but 
also in the context of a growing interest in the potential 
contribution of environmental risk to learning and 
memory (Diederen et al., 2017; Rouhani et al., 2018). 
Rouhani et al. (2018) present the first study to directly 
compare memory encoding under high and low risk 
reward environments and demonstrate a positive benefit 
of high-risk contexts on learning. These findings may 
explain why previous studies looking at uncertainty 
and learning in classrooms have supported the notion 
that uncertainty improves learning (Howard-Jones, Jay, 
Mason, & Jones, 2016; Ozcelik, Cagiltay, & Ozcelik, 2013). 
For example, Howard-Jones et al. (2016) demonstrated 
that learning through a quiz based game—where rewards 
were delivered probabilistically compared to completing 
multiple choice questions in return for a fixed number 
of points—led to better memory performance in a 
subsequent test. Overall, there appears to be growing 
support for the idea that environmental reward 
uncertainty promotes learning, which could be linked to 
increased arousal (Miendlarzewska, Bavelier, & Schwartz, 
2016; Rouhani et al., 2018).

Similarly, there is evidence from the decision-making 
literature that memory may underpin risk-seeking 
behaviours (Madan, Ludvig, & Spetch, 2014). In these 
studies participants show better memory for extreme 
outcomes associated with a risky option and presumably 
it is the expected value of the extreme that is driving the 
better memory and the risk seeking behaviours. However, 
it would be interesting to if our findings changed as a 
function of making risky choices. The current design asked 
participants to place bets on each trial where they could 
either win a small about or not win. Future studies, could 
examine memory when participants are required to place 
bets intermittently for both gains and losses.

Our findings suggest that there is not a necessary 
link between uncertainty and memory encoding. One 
explanation could be that we did not observe an effect 
of uncertainty on memory as our manipulation did not 
induce a sufficient state of uncertainty, and did not 
produce the assumed dopaminergic signal changes (we 
do not have a physiological measure of uncertainty). We 
have adapted the behavioural task used by Preuschoff 
and colleagues (Preuschoff et al., 2006, 2011), who 
found clear evidence of a direct relationship between 
reward uncertainty and dopaminergic activity. Given 
that our task was very similar to that of Preuschoff and 
colleagues, there is little reason to think that we did not 
induce a state of uncertainty at encoding. It should also 
be recognised that despite our null finding, there are 
several potential mechanisms by which activity related to 
reward uncertainty could nonetheless promote memory 
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encoding and consolidation. Shohamy and Adcock (2010) 
suggested that tonic dopamine associated with reward 
uncertainty may increase the number of disinhibited 
neurons, thereby increasing the likelihood that dopamine 
neurons would burst in response to individual events when 
there is high environmental uncertainty. It is plausible 
and consistent with our results that such a mechanism 
was at play during the experiment. However, our results 
that expected value of reward influences memory are 
most consistent with phasic activity of dopamine neurons 
enhancing hippocampal activity. We did not find evidence 
that prediction errors or surprise—usually associated 
with activity in the LC-NE system—enhanced memory 
performance (Clewett et al., 2017), however it is likely 
that there are additional neurobiolgical mechanisms 
at play when learning occurs in complex reward-based 
environments.

The current study adds weight to several previous 
indicating that the relationship between reward and 
individual items in episodic memory is modulated by 
reward value (Mason et al., 2017a; Murayama & Kitagami, 
2014; Wittmann et al., 2011). Our findings, in combination 
with previous studies, highlight that the precise 
relationship is sensitive to the rewards cues and outcomes 
used in the experimental task. Nonetheless, there is clear 
evidence that reward uncertainty on individual trials does 
not improve memory and learning.
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