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By the use of the binomial expansion theorem, the series expansion relations in terms of the

complete gamma function are obtained for Einstein integrals arising in the hydraulic and modern

sediment transport mechanics. The approach presented for Einstein integrals is accurate enough

over the whole range of parameters. The computational time for calculation of the series with

respect to the literature is fast. Furthermore, the comparison of the method with numerical

calculations demonstrates the applicability and accuracy of the method.
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NOTATION

J1(z,E), J2(z,E) Einstein integrals

E relative bed-layer thickness to water

depth

z Rouse number that expresses the ratio of

the sediment properties to the hydraulic

characteristics of the flow

Fi(n) binomial coefficient

G(s) Gamma function

INTRODUCTION

In the analysis of hydraulic and modern sediment transport

mechanics, the Einstein integrals (EI) play a central role

(Einstein 1950; Akiyama & Fukushima 1986; Guo & Hui

1991; Guo & Wood 1995; Julien 1995; Garcia 1999, 2005;

Garcia & Parker 1991). The theoretical efficient back-

grounds of these integrals have been given by Einstein

(1950). Recently, several efficient techniques and discussions

have been proposed for the calculation of EI (Einstein 1950;

Itakura & Kishi 1980 and references therein; Nakato &

Asce 1984; Guo 2002; Guo & Julien 2004, 2006; Abad &

Garcia 2006; Roland & Zanke 2006; Srivastava 2006). In

spite of all the developments of EI so far, the analytical

evaluation of EI as a function of z and E is still one of the

main problems in engineering mechanics. We note that

most of the published approximations for EI involve many

short intervals of z and E in each of which the different

expressions are used.

In this work, an attachment is made to obtain general

analytical expressions for EI with the arbitrary values of

the parameters z and E. The proposed new analytical

approach for evaluating EI is conceptually simpler than

those existing in the literature at present. The application

of formulae for the EI to the calculation of problems arising

in hydraulics and modern sediment transport mechanics

presents no difficulties when a computer is used. Moreover

the formulae can easily be implemented with an algebraic

computer language.

SERIES EXPANSION RELATIONS FOR FIRST AND

SECOND KINDS OF EINSTEIN INTEGRALS

The first and second kinds of Einstein integrals are defined

as (Einstein 1950; Guo & Julien 2004)
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J1ðz;EÞ ¼
ð1
E

12 j

j

� �z
dj ð1Þ

and

J2ðz;EÞ ¼
ð1
E

12 j

j

� �z
ln jdj ð2Þ

We can rewrite Equations (1) and (2) in the following

unified form:

Jkðz;EÞ ¼
ð1
E

12 j

j

� �z
ðln jÞk21dj

¼
J1ðz;EÞ for k ¼ 1

J2ðz;EÞ for k ¼ 2

8<
: ð3Þ

For the evaluation of Einstein integrals, Equation(3), we

use the following binomial expansion theorem for an

arbitrary real z and jxj . jyj (Gradshteyn & Ryzhik 1980;

Guseinov & Mamedov 2002, 2005):

ðx^ yÞz ¼
X1
i¼0

ð^1ÞiFiðzÞx
z2iyi ð4Þ

where F0(z) ¼ 1 and

FiðzÞ ¼
z!=½i!ðz2 iÞ!� for integer z

ð21ÞiGði2zÞ
i!Gð2zÞ for noninteger z

8><
>: ð5Þ

For i , 0 the binomial coefficient Fi(z) occurring in

Equation (4) is zero and the positive integer z terms with

negative factorials do not contribute to the summation. The

quantities G(s) in Equation (5) are well-known complete

gamma functions defined by (Gradshteyn & Ryzhik 1980)

GðsÞ ¼
ð1
0

ts21e2tdt ð6Þ

Now we can move on to the evaluation of Einstein integrals

J1 and J2 for any integer and noninteger z. For this purpose

we use the following relation (Gradshteyn & Ryzhik 1980):

IðkÞa ðEÞ ¼
ð1
E

xaðlnðxÞÞk21dx

¼ ð21Þk
Eaþ1 2 1

ðaþ 1Þk
2 dk2

Eaþ1 lnE

aþ 1
ð7Þ

where dk2 is the Kronecker symbol. Taking into account

Equations (4) and (7) in (3) we obtain for Einstein integrals

the following combined relations:

Jkðz;EÞ ¼ z!
Xz22

i¼0

ð21ÞiIðkÞi2zðEÞ

i!ðz2 iÞ!
þ ð21Þz

£
z

1þ dk2
ðlnEÞdk2þ1 2 dk2E lnEþ ð21ÞkðE2 1Þ

� �

for integer z ð8Þ

Jkðz;EÞ ¼
1

Gð2zÞN!1
lim

XN
i¼0

Gði2 zÞIðkÞi2zðEÞ

i!
for noninteger z ð9Þ

In Equation (9) the index N is the upper limit of

summation.

We note that, using binomial expansion theorem for the

calculation of Einstein integrals in the case of any integer

values z ¼ n, Guo & Julien (2004) proposed the same

general efficient formulae (their Equations (12) and (19)).

NUMERICAL RESULTS AND DISCUSSION

For the rapid and accurate calculation of Einstein

integrals in the large intervals of z amd E, we proposed

a new algorithm. The efficiency and numerical stability of

the code suggest that this approach may be quite useful

for performing HEC-RAS and HEC-6 (USArmy Corps of

Engineers 1993, 2003) using the Einstein bed load

function. From the viewpoint of computational efficiency,

accuracy and computation time of ours and various

approximations, the Einstein integrals were evaluated on

the Maple 7.0 international mathematical software. As

seen from Equation (9), the problem of the Einstein
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integrals determination reduces to the calculation of a

basic integral. The examples of computer calculations for

the Einstein integrals are shown in Tables 1 and 2. As can

be seen from these tables, our numerical results are in

agreement with the literature (Nakato & Asce 1984; Guo

& Julien 2004).

We note that, in most stand-bed natural rivers, E is very

small and z is rather large. For example, typical ranges of E

Table 1 | The comparative values of first Einstein integrals Jk(z,E) for k ¼ 1

Z E Simpson method (Nakato & Asce, 1984) Equation (9) N Equation (11) of Guo & Julien (2004) Nakato & Asce (1984)

0.2 0.00001 1.069289 1.06888 800 1.06883433 1.07729

0.6 0.00001 2.0637468 1.9569634 800 1.95695964 1.9578539

0.2 0.0001 1.068211 1.068217 800 1.068170 1.075033

0.6 0.0001 1.92707 1.919167 800 1.919167 1.920035

0.2 0.001 1.063966 1.0640303 800 1.063983 1.06468122

0.6 0.001 1.8242991 1.82425113 800 1.8242473 1.844063

0.2 0.01 1.03756583 1.0376356 800 1.037588733 1.03684628

0.6 0.01 1.5863776 1.586420161 800 1.586416336 1.587325827

1.3 0.00001 100.3616538 800 100.36165391

2 0.001 984.18548944203 984.18548944203

4 0.05 1969.4004042391 1969.4004042391

2.7 0.00001 186004145.83717 800 186004145.83717

1.8 0.0001 1972.9222509 800 1972.9222509

3.6 0.0001 9655451862.7177 800 9655451862.7177

1.5 0.001 58.6280246 800 58.628024646

3.8 0.001 89181596.66431 800 89181596.66431

1.7 0.01 30.70486633 800 30.70486633

4.5 0.01 2682275.2522864 800 2682275.2522864

Table 2 | The comparative values of the second Einstein integrals Jk(z,E) for k ¼ 2

Z E Equation (9) N Equation (18) of Guo & Julien (2004) Nakato & Asce (1984)

0.2 0.00001 21.4818990844 300 21.482610025 21.482288702

0.6 0.00001 25.56417958 300 25.568132919 25.5648601295

0.2 0.0001 21.4752444814 300 21.47595542265 21.498143196

0.6 0.0001 25.179136752 300 25.183090089 25.179803722

0.2 0.001 21.442901990 300 21.44361293118 21.447589225

0.6 0.001 24.430735254 300 24.43468859138 24.435712406

0.2 0.01 21.2997948097 300 21.3005057508 21.30016919

0.6 0.01 23.102885409 300 23.10683874748 23.103541442

1.5 0.00001 26014.81016162 300 26014.79003887

3 0.005 293425.746652994 293425.746652994

2 0.0004 217000.89580154 217000.89580154

2.5 0.00001 2228644169.010411 300 2228644169.314605

1.7 0.0001 27002.237381931205 300 27002.20543860

3.7 0.001 2303091132.1288627 300 2303091131.9042094

4.5 0.01 211604690.24577824 300 211604690.442888776
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and z for the Sacramento River near Butte City, CA are

E ¼ 0.0001–0.0004 and z ¼ 1.8–5.0. Similarly, the Missis-

sippi River below Keokuk, IA has the typical ranges of

E ¼ 0.0001–0.0004 and z ¼ 3.5–5.0 (Nakato & Asce 1984).

Any desired degree of precision is completely obtained in

the present paper. As will be clear from our tests the formula

(8) yields the desired accuracy of arbitrary values of integral

parameters E and z. We note that the values obtained from

Equation (9) are sufficiently accurate for the exact evalu-

ation of sediment motion. Tables 1 and 2 show that the

convergence properties of Equation (9) are considered to

vary widely. As can be seen from Table 1, Equation (11) in

Guo & Julien (2004) displays the most rapid convergence to

the numerical results for E , 0.5 and arbitrary values of z.

In Table 1 the indexes L are the upper limits of summations

in Equation (11) of Guo & Julien (2004). Finally, the reason

for the empty columns in Tables 1 and 2 is that the

computational results for the indicated equations are much

lower than the accuracies in the present paper. As shown in

Table 3 the arbitrary values of E and z in Equation (9) for

k ¼ 2 also converge at a good rate compared with Equation

(18) in Guo & Julien (2004).

The computer time required for the calculation of

Einstein integrals are not given in the tables due to the

fact that the comparison cannot be made with different

computers used in the literature. It is seen from the

algorithm presented for Einstein integrals that our CPU

times are satisfactory. For instance, for Einstein integrals

with sets z ¼ 4.9, E ¼ 0.8 and N ¼ 600 the CPU time taken

is about 0.022 ms on a Pentium 4 PC at 800 MHz provided

with 128 MB of RAM.

CONCLUSION

To illustrate the utility of the approximations in appli-

cations, the numerical examples were presented where

modest accuracy is sufficient and the analytical simplicity of

the approximation formulae is important. The validity of

Equation (9) has been tested by numerical calculations.

Equation (9) gives more accurate values of the Einstein

integrals than other approximations through numerical

analyses. It can be concluded that this newly proposed

approximation leads to reasonable use as integral methods

of sediment transport calculation. In conclusion, by means

of a complete gamma function, we have obtained new

simple accurate general expressions of J1 and J2 for arbitrary

z and E.
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