
Research Article

A Variable Age of Onset Segregation Model for Linkage
Analysis, with Correction for Ascertainment, Applied to
Glioma

Xiangqing Sun1, Jaime Vengoechea2, Robert Elston1,3, Yanwen Chen1, Christopher I. Amos4,
Georgina Armstrong6, Jonine L. Bernstein7, Elizabeth Claus9,10, Faith Davis11, Richard S. Houlston12,
Dora Il'yasova13, Robert B. Jenkins14, Christoffer Johansen15, Rose Lai8, Ching C. Lau6, Yanhong Liu6,
Bridget J. McCarthy11, Sara H. Olson7, Siegal Sadetzki16, Joellen Schildkraut13, Sanjay Shete5, Robert Yu5,
Nicholas A. Vick17, RyanMerrell17, MargaretWrensch18, Ping Yang14, BeatriceMelin19,Melissa L. Bondy6, and
Jill S. Barnholtz-Sloan1,3, on behalf of the Gliogene Consortium

Abstract
Background: We propose a 2-step model-based approach, with correction for ascertainment, to linkage

analysis of a binary trait with variable age of onset and apply it to a set of multiplex pedigrees segregating for

adult glioma.

Methods: First, we fit segregation models by formulating the likelihood for a person to have a bivariate

phenotype, affection status and age of onset, along with other covariates, and from these we estimate

population trait allele frequencies and penetrance parameters as a function of age (N ¼ 281 multiplex

glioma pedigrees). Second, the best fitting models are used as trait models in multipoint linkage

analysis (N ¼ 74 informative multiplex glioma pedigrees). To correct for ascertainment, a prevalence

constraint is used in the likelihood of the segregation models for all 281 pedigrees. Then the trait allele

frequencies are reestimated for the pedigree founders of the subset of 74 pedigrees chosen for linkage

analysis.

Results:Using the best-fitting segregationmodels inmodel-basedmultipoint linkage analysis,we identified

2 separate peaks on chromosome 17; the first agreed with a region identified by Shete and colleagues who

usedmodel-free affected-only linkage analysis, butwith anarrowedpeak: and the secondagreedwith a second

region they found but had a larger maximum log of the odds (LOD).

Conclusions: Our approach was able to narrow the linkage peak previously published for glioma.

Impact: We provide a practical solution to model-based linkage analysis for disease affection status with

variable age of onset for the kinds of pedigree data often collected for linkage analysis. Cancer Epidemiol

Biomarkers Prev; 21(12); 2242–51. �2012 AACR.

Introduction
Successful linkage analysis of complex diseases, when

carried out to obtain log of the odds (LODs), requires a

number of assumptions related to both the markers and
the trait of interest (See Supplementary Table S1). Both
model-based and model-free linkage analysis, where the
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term "model" refers to the genetic model for the trait
undergoing analysis, typically assume known marker
genotypic frequencies in pedigree founders, known
recombination fractions between markers, and lack of
interference between markers. Both models usually
assume all markers are in Hardy–Weinberg equilibrium.
Akeydifference between these 2 types of linkage analysis,
once certain model parameters are assumed to be known,
is the direction of the approach: typically, model-free
linkage as performed by Shete et al, (1) analyzes the
markers conditional on the trait, whereas model-based
linkage analyzes the trait conditional on the markers. In
model-free linkage analysis the markers must be inde-
pendent or their dependenciesmust be correctlymodeled.
Conversely, inmodel-based linkage analysis, thepedigree
members’ trait values must be independent, or their
dependencies must be correctly modeled. Hence, the
models differ in their assumptions regarding linkage
equilibrium of the markers: model-free linkage requires
linkage equilibrium, though this assumption may be
ignored when comparing affected sib pairs to discordant
sib pairs (2); model-based linkage does not require one to
assume linkage equilibrium among the markers—but we
do typically assume random ascertainment of markers
when estimating their genotypic frequencies.
With respect to the trait, model-free linkage analysis

does not require known genotypic frequencies in the
pedigree founders or any penetrance parameters. Mod-
el-based linkage analysis requires known penetrance
parameters. The assumption that the penetrance para-
meters are known is a major obstacle to carrying out
model-based linkage studies, and represents the main
reason why most linkage studies of complex diseases are
conducted using a model-free approach.
Age-of-onset data can be incorporated into segregation

models to determine the penetrance parameters of the
different genotypes as functions of age. Segregationmod-
els can then be used to empower subsequent linkage
analysis (3, 4). Prior studies have shown that the use of
age-of-onset data can increase the significance levels of
linkage analysis, and hence the statistical power, of any
jointmethod of analysis (5). One approach to studying age
of onset has been to analyze it as a right-censored quan-
titative trait (6). This was done by extending the program
Loki, which uses a general segregation/linkage Markov
chain Monte Carlo Bayesian framework (7) to analyze a
quantitative trait. Daw and colleagues (6) suggested the
location of linkage could be well estimated even though
there may be appreciable bias in the estimated model
parameters generated in this manner.
Adjustment for ascertainment has only beenwell under-

stood for sibship studies or for cases of true single ascer-
tainment. Elston (8) proposed a pedigree likelihood for
segregation analysis that can allow for both ascertainment
and age of onset. Allowance for single ascertainment has
been incorporated into Loki (9). A very general likelihood
approach to allow for ascertainment in general pedigrees
has been formulated by Ginsburg and colleagues (10, 11),

but this approach requires the truepedigree structures and
the proband sampling frame (12) to be well defined, and
full phenotypic informationmust be available on all mem-
bers of the sampled pedigree who fall within the proband
sampling frame. To resolve some of the assumptions of a
model-based analysis, we have developed a segregation-
linkage approach with correction for ascertainment by
setting aprevalence constraint todetermine the best-fitting
segregation model, and this article illustrates its applica-
tion, assuming a bivariate phenotype (affection status and
age of onset) on a set of families collected to study the
inheritance of glioma for which a model-free analysis has
been previously carried out (1). This data set required us to
allow for multiplex ascertainment (13, 14) based on the
presenceofaprobandandanadditional affected relative in
the family, and then to allow for further selection of
families genotyped for linkage analysis. To our knowl-
edge, no joint segregation linkage analysis with appropri-
ate correction for multiplex ascertainment has been devel-
oped, though joint analyses have been successfully carried
out using Loki with an incorrect ascertainment model (6).
In this article, we develop an approximate method to
adjust for multiplex ascertainment, in both segregation
and linkage analysis, and illustrate its use for a trait, the
occurrence of glioma,with variable age of onset.We justify
its use with a simulation study, incidentally noting a
problem that occurswhen attempting to carry out a Bayes-
ian analysis on the same data without appropriate adjust-
ment for ascertainment.

Materials and Methods
Data

The segregation analysis was conducted on 6,983 indi-
viduals in 281 pedigrees (Table 1), all ascertained from
GLIOGENE study sites in the United States (15). Families
were ascertained by the presence of a proband (i.e., an
individual affected with a glioma) with a first- or second-
degree relative also affectedwith glioma. Three pedigrees
had loops,whichwere all formedby 2 siblings in 1 nuclear
family married to 2 siblings in another nuclear family.
These loops were cut by assigning the siblings most
distant to the segregating relatives as pedigree founders.
Although the pedigree structure of all 6,983 individuals
was used, only those pedigree members whose affection
status and age were known could enter the analysis: for
affected persons, age was age at onset of glioma or age at
examination; for unaffected persons, age was the age at
which last known to be unaffected.

The linkage analysis data set comprised a subset of 74 of
these 281 pedigrees, chosen to be genotyped on the basis
of their informativity for linkage (1), and both affected and
unaffected persons were genotyped using the Illumina
Human370 chip.

Fitting segregation models
The SEGREG program in the Statistical Analysis for

Genetic Epidemiology (S.A.G.E.) version 6.1 package
was used to fit diallelic monogenic models for a binary
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trait with variable age of onset, to define individual-
specific age-dependent penetrance parameters to be
used in multipoint linkage analysis. To find the best
model to conduct linkage analysis, we fitted to the
pedigree data 2 types of models that represent a mixture
of 2 genotypic distributions: those in which there are 2
susceptibilities and a common age of onset distribution,
and those with 2 age of onset distributions and a
common susceptibility. Susceptibility is defined as the
probability of disease if the individual lived to an
infinite age and need not equal 1. Sex was included in
the model as a covariate of either the logit of suscepti-
bility or of the mean or variance of age of onset, so in all
we fitted 6 distinct segregation models, each of which
could result in dominant or recessive inheritance. The
logistic density function was assumed for age of onset,
but a Box–Cox (16) power transformation parameter (l1)
was also simultaneously estimated, to allow for depar-
ture from this distributional form. Further details are
given in the Supplementary Methods.

In addition to assuming single ascertainment (i.e., con-
ditioning the likelihoods on the phenotypes of the pro-
bands) a prevalence constraintwas included in themodel.
For this we assumed the population prevalence was on
average 0.04%, with the prevalence for males being 1.5
times higher than that for females. Rather than fixing the
disease prevalence, as was often typically done in early
segregation analyses, we specified prevalence using 2
numbers as implemented in SEGREG—the number of
affected individuals (R) in an independent sample of size
(N) (see SupplementaryMethods). For this analysis, these
numbers were set to be 144 and 300,000 for males, and 96
and 300,000 for females. The lifetime prevalence R/Nwas
taken to be the prevalence at 90 years old, andN¼ 300,000;
this was calculated from prevalence rates obtained from

the Central Brain Tumor Registry of the United States
registries (17).

For those relative pairs genotyped for linkage analysis,
the recorded relationships were verified using genome-
wide genotype data with the program RELTEST in S.A.G.
E. FiveMZ twin pairs were identified, and one out of each
pair of the MZ twin pairs was excluded from both the
segregation and the linkage analyses.

Three segregation models that best fit the data on the
basis of Akaike’s A Information Criterion (AIC) were
selected for linkage analysis. We reestimated the trait
locus allele frequency among founders of the 74 families
chosen for linkage analysis by remaximizing the likeli-
hoods of the 3 best-fitting segregation models, but fixing
every parameter (other than the allele frequency at the
trait locus) at the values estimated in the whole set of
families. The rationale for doing this is that genotypic
frequencies need to reflect those of the founders of the
specific pedigrees used in the linkage analysis. No prev-
alence constraint was used when reestimating allele fre-
quencies, because that would have resulted in the popu-
lation genotypic frequencies rather than the frequencies
among founders of the linkage family subset. We thus
assume selection of the families for linkage analysis,
enriched by affected members, has only a minor effect
on the penetrance parameters, but a major effect on the
pedigree founder genotype frequencies. Larger likeli-
hoods and smaller AIC values resulted after including
single ascertainment in the model when reestimating the
trait locus allele frequency, so this was done.

Model-based multipoint linkage analysis
In the linkage subset, large pedigrees were trimmed to

reduce the number of inheritance vector bits to 21 or less,
as required for ease of computing, as follows:

Table 1. Overall characteristics of the glioma segregation and linkage data sets

Segregation data Linkage data

Number of pedigrees 281 74
2 and 3 generations 35 28
4 generations 192 43
5 and 6 generations 54 3

Average size of
pedigrees � SD

24.88 � 9.93 15.07 � 4.37

Number of individuals All Male Female Unknown All Male Female
Affected 633 335 298 0 170 88 82
Unaffected 3,561 1,743 1,818 0 727 338 389
Unknowna 2,789 1,445 1,334 10 218 123 95
Total 6,983 3,523 3,450 10 1,115 549 566

Proportion of affected 0.091 0.095 0.087 0 0.152 0.160 0.145
Average age � SD 56.19 � 21.41 55.01 � 20.99 57.35 � 21.76 — 54.36 � 20.38 53.22 � 19.80 55.39 � 20.88
Average age of
onset � SD

49.39 � 19.02 49.28 � 17.79 49.52 � 20.33 — 47.51 � 17.98 48.60 � 16.31 46.33 � 19.65

aNot fully informative, unknown for affection status or age.
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A. Eliminated all linkage uninformative branches (e.g.,
where no DNA was available)
A.1 Trimmed off all the antecedent branches with no

DNA.
A.2 Trimmed off all the descendant branches with no

DNA.
A.3 Trimmed off all siblings with neither DNA nor

descendant branches.
B. Eliminated a few genotyped persons

B.1. In 1 pedigree we eliminated 3 genotyped unaf-
fected siblings farthest away from the part of the
pedigree segregating for the trait.

B.2. If, upon eliminating according to the above rules,
the number of bits for a pedigree was still too
large, the youngest unaffected genotyped off-
spring was eliminated. This resulted in eliminat-
ing an additional 11 unaffected genotyped off-
spring. In total, apart frommonozygotic twins,we
eliminated only 14, largely linkage-uninforma-
tive, genotyped offspring.

The SNPs used in the genome-wide multipoint link-
age analysis were selected to have minor allele fre-
quency (MAF) �0.3 to increase informativeness, and
genetic distance between any 2 neighboring SNPs � 0.4
cM to have a more accurate estimate of genetic (as
opposed to physical) distance while allowing for as
many appropriate markers as possible for multipoint
linkage across the genome. A total of 3,404 markers
were thus selected.
To analyze a linkage region discovered on chromosome

17, 2 sets of SNPs were used. The first set consisted of the
138 SNPs originally used by Shete and colleagues (1),
which were selected to have MAF �0.05 and pairwise
linkage disequilibrium (LD) r2 � 0.004. The second set
included the SNPs in the first set after excluding those
with intervals between consecutive SNPs <0.2 cM, but
adding in those with MAF >0.3 and interval �0.2 cM.
Therewere 173 SNPs in this set, where some SNPswere in
strong LD as there was no selection of SNPs based on LD.
Thus, the limitation in the second setwas based on genetic
distance rather than LD. SNPs were also excluded if they
were more than 10 cM away from any position, because
the assumption of no interference only applies up to a
distance of �10 cM; note within 10 cM the Haldane and
Kosambi map functions are almost identical (18).
The founder allele frequencies of SNPs were estimat-

ed by maximum likelihood with the program FREQ in
S.A.G.E. Model-based multipoint linkage analysis was
conducted with the MLOD program, specifying the
Kosambi map function to obtain recombination frac-
tions between consecutive markers from the genetic
distances in the deCODE map (19). We conducted
multipoint linkage analysis using the 3 best segregation
models, but with the trait locus allele frequencies rees-
timated in the linkage pedigrees. We assumed locus
homogeneity across the 74 pedigrees, and multipoint
LODs were estimated at each SNP and at every 2 cM.

Simulation study to investigate type I error and
power

To study the performance of our approach, we con-
ducted a small simulation study. To minimize computa-
tion time, we applied the model to nuclear family, rather
than extended pedigree, structures. To approximate the
amount of information in our pedigrees, we used 220
nuclear families each comprising 6 siblings and 2 parents.

On each data set, we simulated 2 marker SNPs with 2
different values of LD between them, and 1 unobserved
trait locus that was either linked or not linked to these 2
simulated SNPs. LD between the 2 SNPs was set as r2¼ 0,
0.4, and 0.8, and for each case we set the MAF at 0.1, 0.2,
0.3, 0.4, or 0.5 for both SNPs. The genetic distance between
the 2 SNPswas 0.2 cM and the unobserved trait locus was
in linkage equilibrium with the 2 marker SNPs, 0.2 cM
away from the closest of the 2 SNPs to simulate linkage.
The penetrance functions that best fitted the segregation
glioma data set (model 1 in Fig. 1)were then applied to the
trait locus genotypes. Because the penetrance function is
age related, age was first assigned according to the age
distribution in the glioma data, that is, according to the
distributions of mother’s age, of the age difference
between mother and her first child, between consecutive
siblings, and between couples. For each affected individ-
ual, the age is age at examination; and the age of onsetwas
assigned according to themean difference between age of
onset and age at examination in the glioma data. One
affected offspring in each family was taken to be the
proband, with probability assigned according to the gli-
oma data. We simulated families until we had 100 data
sets—of 220 nuclear families each—that satisfied the cri-
terion of containing an offspring proband and at least 2
affected members. From these, we selected those sibships
(without parents) with at least 2 affectedmembers to form
the linkage data subsets. There were 60 to 94 sibships in
each linkage data set. We analyzed each of these 100 data
sets using the same procedure used to analyze our glioma
pedigrees.We assumedHardy–Weinberg proportions for
the trait locus and each marker locus.

We analyzed each of the 100 simulated segregation data
sets using the same setting of the prevalence constraint as
for the glioma data. Then we reestimated the allele fre-
quencies at the trait locus in the corresponding simulated
linkage data set. Type I error and powerwere respectively
evaluated using the LOD thresholds 0.588 and 1.175,
which correspond to the P values 0.05 and 0.01 for a single
linkage test. The proportion of data sets with maximum
LODs greater than those thresholds are reported as the
type I error and power.

Results
Table 1 shows the general characteristics of the

segregation and linkage pedigrees. All 6 segregation
models using the 281 pedigrees showed an autosomal
dominant model with a rare trait locus allele (allele
frequency ¼ 0.00047). Three models that fit the data
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best (Table 2) on the basis of their AICs were subse-
quently used for the linkage analyses. These 3 models
are: susceptibility dependent on genotype andmean age
of onset dependent on sex (model 1); mean age of onset
dependent on genotype, with that mean dependent on
sex (model 2); and mean age of onset dependent on
genotype, with susceptibility dependent on sex (model
3). In practical terms the 3 models are identical: in
models 1 and 2 the susceptibilities for the AA and AB
genotypes are virtually 1 (see Supplementary Methods)
and Fig. 1 shows the cumulative distribution of age of
onset for males and females, respectively, for all 3
models shown in Table 2 (see Supplementary Methods).
Up to age 100, the distributions of age of onset under the
3 models are very close, with males being more suscep-
tible than females for AA and AB genotype carriers.
Penetrance of the BB genotype is always virtually 0 up
to 100 years old, for both males and females. The
reestimated trait allele frequency in the 74 linkage
pedigrees was 0.13 for all 3 models.

All 3 models gave similar genome-wide multipoint
linkage results (Supplementary Fig. S1). The strongest
evidence for linkage was identified on chromosome 17,
with 2 peaks at the positions 72.3 cM and 87.3 cM from
pter, themultipoint LODs being respectively 2.5 and 3.1 at

these 2 positions (Fig. 2). No strong linkage was found on
any other chromosome region (Supplementary Fig. S1). It
should be noted, when a linkage analysis was conducted
using the segregation models shown in Table 2, that is,
without reestimating the allele frequencies to reflect those
of the families actually used for the linkage analysis, all
multipoint LODs were negative, across the whole
genome. When analyzing the region within 10 cM of each
linkage peak on chromosome 17, the first set of SNPs
yielded lower information content (20) than the second
set, as expected. At the first linkage peak, where the
model-free analysis showed stronger linkage evidence,
the second SNP set produced a maximum multipoint
LOD 0.3 lower than the first SNP set. At the second peak,
the 2 SNP sets resulted in similar maximum LODs.

Table 3 summarizes the findings from the simulation
study. Power only considersmaximumLODswithin 2 cM
of the trait locus. We initially used the same criterion for
type I error, finding it to be inflated only when theMAF is
0.1, but the inflation increasedwhen taking themaximum
LOD at any position. However, for LOD > 1.175, the type I
error is much better controlled, though perhaps increased
for a small allele frequency. Note that otherwise the
estimated type I error is never larger than that found for
r2 ¼ 0.
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Figure 1. Cumulative age of onset
distribution for genotypes AA and
AB as estimated from the
segregationmodels. The topplot is
for males, the lower one is for
females.
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Discussion
This study showed that by using a segregation analysis

procedure with a prevalence constraint, and then reesti-
mating the trait model allele frequencies appropriate for
the actual linkage sample, a model-based multipoint
linkage analysis is possible when single ascertainment
was not followed. The simulation study, based on the
particular model found for the glioma data, provides
justification for the 2-step procedure used here. The sub-
stantive findings for the data set analyzed are similar to

those of model-free linkage in the same data set (1), but
yield stronger evidence for linkage at a second region in
the same chromosome, 87.3 cM frompter. The observation
that the LODs drop below 0 between these 2 regions
suggests there may be 2 separate loci of interest on chro-
mosome 17q. Thebest segregationmodelswere consistent
with autosomal dominant inheritance of a rare disease
allele, consistent with a recessive cellular effect under
Knudson’s 2-hit model, the second hit having a variable
age of occurrence (21). The estimated trait locus allele

Figure 2. Model-based multipoint
linkage LODs on chromosome 17
using the 3 trait locus segregation
models. Multipoint LOD scores have
been truncated at �3, some scores
are below �3.
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Table 2. Segregation model parameter estimates � SEs for the 281 glioma pedigrees using SEGREG

Model 1 Model 2 Model 3

mAA ¼ mAB ¼ mBB 90.38 � 2.38 mAA
a 90.36 � 1.41 mAA

a 83.61 � 2.29
dbsex 13.67 � 3.01 mAB

a 90.36 � 1.41 mAB
a 83.61 � 2.29

s2 b 895.81 � 79.22 mBB
a 205614170.7 � INF mBB

a 10603.79 � INF
uAA

c 26.12 � INF bsex
d 13.671490 � 0.000004 s2 b 838.71 � 65.08

uAB
c 26.12 � INF s2 b 895.2753 � 0.0003 uAA ¼ uAB ¼ uBB 8.83 � 0.89

uBB
c �60.36 � INF uAA ¼ uAB ¼ uBB 424.29 � INF bsex

d �15.59 � 1.76
l1

e 0.47 � 0.08 l1
e 0.4711195 � 0.0000002 l1

e 0.52 � 0.08
qA

f 0.00047 � 0.00004 qA
f 0.00047 � 0.0000 qA

f 0.00047 � 0.00004
–2ln(L) 10077.9 –2ln(L) 10077.9 –2ln(L) 10080.8
Akaike's AIC 10091.9 Akaike's AIC 10091.9 Akaike's AIC 10094.8

NOTE: � INF indicates that the likelihood is flat and it is not possible to estimate a SE
amAA, mAB, mBB are median unbiased estimates of the mean ages of onset for genotypes AA, AB, and BB, respectively
bs2 is the variance of age of onset on the transformed scale
cuAA, uAB, uBB are the logits of susceptibility for genotypes AA, AB, and BB, respectively
dbsex is the effect of sex on mean age of onset for model 1 and model 2, the effect of sex on the logit of susceptibility for model 3
el1 is the power parameter in the Box–Cox transformation, the shift parameter l2 is fixed at 0
fqA is the allele frequency for allele A at the trait locus

Segregation/Linkage of Glioma Correcting for Ascertainment

www.aacrjournals.org Cancer Epidemiol Biomarkers Prev; 21(12) December 2012 2247

D
ow

nloaded from
 http://aacrjournals.org/cebp/article-pdf/21/12/2242/2274458/2242.pdf by guest on 04 N

ovem
ber 2024



frequencywas 1 in 2,000 in the population but 13% among
the founders of the multiplex pedigrees selected for
linkage, and the penetrance (i.e., probability of a het-
erozygous genotype becoming homozygous) by age 60
was approximately 20%. These segregation analysis
results do not differ considerably from those used
previously for homozygosity mapping in Northern
Sweden (22). That study found autosomal recessive
inheritance models gave better results for homozygosity
mapping as compared with dominant models when
assuming a higher population allele frequency (1 in
1,000) and penetrance (40% in one model and 60% in
the other), but without allowing for age of onset. Differ-
ences in penetrance between men and women in our
analysis are, by assumption of the penetrance con-
straint, consistent with the known sex difference in
population incidence of gliomas (17).

The cumulative age of onset distributions for all 3 best-
fitting models were similar (up to 100 years old), and the
model-based linkage results based on the 3 models were
nearly the same, which argues for the reliability of this
analysis approach and our results. In fact, a less precise
prevalence constraint did not have a large effect on our
segregation models: the prevalence function is nearly the
samewhen assuming the samemean prevalence but with
2 quite different precisions (Fig. 3).

Model-based linkage analysis including both affected
and unaffected persons does not require the assumption
of linkage equilibriumof themarkers, unlike affected-only
linkage analysis, because the likelihood function of phe-
notypes is conditional on markers rather than the other
way around. That linkage equilibriumof themarkers is an
unnecessary assumption was also shown by Xing and
colleagues (2) for model-free linkage analysis when both
affected and unaffected persons are included.When com-
paring the allele sharingwith that expected under linkage
equilibrium, which is the essence of affected-only model-

free linkage analysis, there is a clear bias introduced by
LD. However, if the bias in the allele sharing is similar for
both affected and discordant pairs, the overall result is
that the 2 biases cancel each other out when both pheno-
types are included. In our study, because we included
unaffected relatives, bias would only occur as a result of
misspecifying the ascertainment of families (which led
to elimination of unaffected persons, but was corrected
for using the prevalence constraint) or by ignoring resid-
ual correlations among family members (which we
checkedby including apolygenic component in themodel
used for analysis and finding it to be not significant).

All current approaches to linkage analysis make the
assumption of accurate specification of recombination
fractions between markers, so using more SNPs in the
linkage analysis could potentially provide even more
linkage information (provided the genetic intervals
between consecutive SNPsare accurate).Useof additional
informative SNPswith intervals�0.2 cMresulted in lower
multipoint linkage at the first peak, whether these mar-
kers were in LD or not. It is important to note that there
would have been absolutely no evidence for linkage had
wenot reestimated the trait allele frequencies in the subset
of families used for the linkage analysis. Our simulation
study shows the validity and efficiency of this 2-step
analysis.

We calculated family-specific multipoint LOD scores
across the region on chromosome 17 and found that 30
families contributedpositive LODs to bothpeaks, 13 to the
first peak, and 9 to the second peak. The largest family
specific multipoint LOD under a peakwas 0.59, under the
first peak. That the family-specific LODs are small is not
surprising, given the low penetrance of glioma—<0.2 at
the average age of 54 (see Fig. 1). Therefore, we did not
calculate heterogeneity LODs, though this would be the
next step if there had been higher penetrance, and hence
more linkage-informative pedigrees.

Table 3. Type I error and power of multipoint linkage analysis using simulation data, evaluated by the LOD
thresholds 0.588 and 1.175, which correspond to the P values 0.05 and 0.01 for a single linkage test

LOD > 0.588a LOD > 0.588b LOD > 1.175b

MAF of the
2 SNPs r2 ¼ 0 r2 ¼ 0.4 r2 ¼ 0.8 r2 ¼ 0 r2 ¼ 0.4 r2 ¼ 0.8 r2 ¼ 0 r2 ¼ 0.4 r2 ¼ 0.8

Type I error 0.1 0.01 0.06 0.08 0.07 0.09 0.08 0.01 0 0.03
0.2 0.03 0.01 0.01 0.06 0.04 0.03 0 0 0
0.3 0 0.02 0.01 0.10 0.06 0.07 0 0 0
0.4 0.01 0.02 0.03 0.10 0.11 0.09 0 0.02 0
0.5 0.01 0.01 0.03 0.10 0.06 0.07 0.02 0.01 0.01

Power 0.1 0.96 0.91 0.86 0.96 0.91 0.86 0.90 0.83 0.75
0.2 0.99 1 0.99 0.99 1 0.99 0.99 0.97 0.92
0.3 1 1 0.97 1 1 0.97 1 0.99 0.95
0.4 1 1 0.99 1 1 0.99 1 1 0.97
0.5 1 1 1 1 1 1 1 1 0.99

aEvaluated within 2 cM of the trait locus.
bType I error evaluated anywhere over the genome, power evaluated within 2 cM of the trait locus.
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We also analyzed our age of onset data on chromosome
17 using the multipoint linkage package Loki, where age
of onset for theunaffected is assumed right censored anda
posterior distribution is obtained for all unknown para-
meters. The form of the model assumed is similar to our
model 2, but with 6 sex-dependent normal age-of-onset
distributions, 2 for each genotype, rather than 4 sex-
dependent logistic age-of-onset distributions after power
transformation (assuming dominance) (Supplementary
Methods). Loki identified 4 possible linkage locations on
chromosome 17 (Supplementary Fig. S2), including the 2
found by our method but shifted slightly, with more
evidence for linkage at 87to 89 cM from pter (further
details are given in the Supplementary Methods and
Supplementary Figures S2, S3, and S4). But by far the
highest peak–expressed as a Bayes’ factor, the posterior
probability divided by the prior probability–was found at
2.5 cM from pter on chromosome 17 (Supplementary
Figures S2 and S4). The estimated model at all 3 peaks
was one of overdominance, which simulation studies
have suggested could be due to not allowing for ascer-
tainment, though estimation of the linkage location does
not seem to be affected (23). Because neither our model-
basedanalysis nor thepreviousmodel-free analysis found

any peak at this location, and because there is evidence
that the Monte Carlo Markov Chain sampler was not
mixing well at that location (Supplementary Fig. S3), this
new linkage peak could well be a type I error. With
hindsight we repeated all the Loki analyses disallowing
overdominance, but then no linkage signals were found
on chromosome 17.

Our study provides an approach for linkage analysis
for a bivariate trait (comprising a binary disease affec-
tion status and a censored quantitative age of onset)
when there is multiplex ascertainment. Recent advances
in genome-wide sequencing often reveal thousands of
low penetrance, low frequency sequence variants.
Hence, it can be challenging to filter out true deleterious
variants from those that are benign. Linkage methods
can both help decide true genomic areas of interest and
screen families that will be most informative for
sequencing. In our 2-step analysis, we fitted segregation
models for both disease affection status and age of onset
using the whole sample, whereas we adjusted the like-
lihood for ascertainment (together with a correction for
single ascertainment) by incorporating a prevalence
constraint to obtain estimates of the penetrance para-
meters, and then we reestimated the trait allele

Figure 3. Cumulative age of onset
distribution taking into account the
prevalence constraint (for genotypes
AA and AB) as estimated from the
segregation models. Averaging over
the 2 sex groups, R ¼ 240 and N ¼
600,000 for the precise prevalence
constraint andR¼2.4 andN¼6,000
for the less precise prevalence
constraint. The upper plot is for
males the lower one is for females.
Note that R and N do not need to be
integers.
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frequencies that correspond to those of the founders of
the linkage pedigrees. Therefore, this method provides
a practical solution to model-based linkage analysis for
disease affection status with variable age of onset for the
kinds of pedigree data often collected for linkage
analysis.
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