An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation

SUNCHUNG PARK1 and KYUNG-HWAN HAN1,2

1 Department of Forestry, 126 Natural Resources Building, Michigan State University, East Lansing, MI 48824-1222, USA
2 Author to whom correspondence should be addressed (hanky@msu.edu)

Received January 2, 2003; accepted March 1, 2003; published online July 15, 2003

Summary The plant hormone auxin regulates various growth and developmental processes by controlling the expression of auxin-response genes. While many genes up-regulated by auxin have been characterized, less is known about the genes that are down-regulated by auxin. We isolated and characterized an auxin-repressed gene (RpARP) from the tree legume, \textit{Robinia pseudoacacia} L. A sequence similarity search in public databases showed that the RpARP gene has homologs in various higher plants including monocots and dicots. The deduced amino acid sequences are highly conserved among these homologs (up to 85\% identity). Northern blot analysis showed that auxin repressed RpARP gene expression and that repression was dependent on the presence of metabolizable sugar and on protein synthesis. In addition, cold treatment abolished the auxin-mediated repression of RpARP gene expression. Results from transgenic plant analyses suggest that RpARP gene expression is posttranscriptionally regulated by auxin and by the untranslated regions. Sequence analysis of the promoter region (\textasciitilde{}70 and \textasciitilde{}500 bp upstream of the putative transcription initiation site) of the RpARP gene identified four sucrose-repressible response elements (TATCCAT-motifs; Huang et al. 1990), suggesting that the \textit{cis}-elements responsible for regulation by sucrose are located in the promoter region. In fact, the expression of the transgenic RpARP gene was unaffected by sucrose when driven by a CaMV 35S promoter. We present evidence that RpARP gene expression is negatively associated with hypocotyl elongation.

Keywords: auxin, auxin-repressed protein, posttranscriptional regulation

Introduction

Auxin, a plant growth regulator produced mainly in apical buds, plays a key role in a wide variety of growth and developmental processes such as lateral root formation, apical dominance, tropism and differentiation of vascular tissue (Berleth et al. 2000, Hamann 2001, Muday 2001). Two major experimental approaches have been employed to investigate the molecular basis of auxin action on these developmental processes. One is to identify and analyze mutants that lack normal auxin responses. Two related families of proteins, the AUX/IAA proteins and auxin response factors (ARFs), were identified as key regulators of auxin-modulated gene expression (Ulmasov et al. 1997, Rouse et al. 1998). These protein families function as transcriptional regulators and are thought to interact with auxin-induced genes to activate or repress their expression. It was recently found that protein degradation by ubiquitin-mediated processes is important in the auxin response (Ruegger et al. 1998). The other approach involves the use of molecular biology tools to identify and characterize genes regulated by auxin signals. This approach has led to the identification of several classes of early auxin-response genes and auxin-responsive \textit{cis}-elements within the promoters of these genes (Guilfoyle et al. 1998). The expression level of early (primary) auxin-response genes increases within minutes of auxin application, independent of de novo protein synthesis (Abel and Theologis 1996, Walker and Estelle 1998). Although many mutants and cDNA clones associated with auxin signaling have been isolated and characterized, our knowledge of the mechanisms by which auxin regulates various biological functions is still limited, partially because most molecular studies have focused on the primary “response genes” that are up-regulated by auxin signals (Hagen and Guilfoyle 2002).

Auxin-repressed protein (ARP) genes and their role in plant growth and development are relatively understudied. So far, three orthologs of ARP have been isolated and characterized. The SAR5 gene was first isolated by differential screening of auxin-deprived strawberry receptacles (Reddy and Poovaiah 1990). Reddy and Poovaiah (1990) showed that the SAR5 gene was repressed by auxin and that repression of the gene was positively correlated with strawberry fruit maturation. Another ortholog, \textit{PsDRM1}, has been reported as a bud dormancy-related gene from pea. The abundance of \textit{PsDRM1} transcripts in axillary buds declines within 6 h of apical bud removal. Transcripts re-accumulate when the axillary buds become latent again and the newly established apical bud
becomes active (Stafstrom et al. 1998). Therefore, the gene was named dormancy-related protein (DRP). However, it is unknown how the gene is regulated at the molecular level, or how the two different plant developmental processes are related to ARP expression. Steiner et al. (2003) reported a new member of the auxin-repressed protein family from tobacco, whose transcript levels were high during pollen maturation, but rapidly declined to minimal levels in germinating pollen.

Recently, we identified an ARP ortholog (named RpARP) from the expressed sequence tags (ESTs) derived from the trunk wood of 10-year-old black locust (Robinia pseudo-acacia L.) (Yang et al. 2003). The gene was expressed across the trunk wood (bark/cambium, sapwood and sapwood–heartwood transition zone). In this study, the auxin-repressed gene RpARP was isolated and characterized. A sequence similarity search in public databases was performed to identify any homologs. Northern blotting was carried out to determine the effects of auxin, sugar, protein synthesis, acidic pH, low temperature, and hormonal and abiotic conditions on auxin-induced repression of RpARP gene expression. Transgenic plants were produced to determine if the untranslated regions and sucrose regulatory elements play a role in the repression of the gene. The relationship between RpARP expression and hypocotyl elongation was also determined.

Materials and methods

Plant materials

Black locust seeds were germinated as described by Han et al. (1993). Seven-day-old hypocotyls (~2.5 cm long) from the seedlings were used. Arabidopsis thaliana (L.) Heynh. plants were grown under sterile conditions; ecotype Columbia seeds were grown at 25 °C in a 16-h daily photoperiod. The plants were used as probes.

Isolation of the full-length RpARP gene and its promoter region

The RpARP gene (Genbank AY009094) was isolated through the black locust EST sequencing project (Yang et al., unpublished data). Total RNAs were purified from both the cambial and heartwood regions of 10-year-old black locust trees and used to construct directional cDNA libraries in the pTriResEx plasmid vector (Clontech, Palo Alto, CA). The resulting libraries were applied to EST sequencing. Based on a computational contig search, approximately 15 RpARP clones were detected out of the 4000 sequenced clones. The presumed whole transcript of RpARP was determined through multiple alignments. The RpARP gene promoter was cloned from 2.5 μg of genomic DNA isolated from a black locust seedling with the Genome Walker Kit (Clontech), according to the manufacturer’s instructions.

Construction of binary vectors and plant transformation

The 700-bp fragment of RpARP cDNA including the 5′-UTR and 3′-UTR was prepared from pTriARP by restriction digestion with SmaI and SacI. The fragment was inserted into the corresponding sites of the binary vector pBI121 under the control of the CaMV 35S promoter to produce the recombinant vector, pBIARP (Figure 1A). To construct pBIARPGUS, a polymerase chain reaction (PCR) using primers containing linker sites, XbaI (5′) and SmaI (3′), was performed on pTriARP to yield 400 bp of RpARP coding region. The resulting PCR product was cloned into pGEM-T (Promega, Madison, WI) to produce the plasmid pGEMARP. The SmaI-XbaI fragment of pGEMARP was cloned into the corresponding sites of pBI101 (Genbank U12639.1) to yield pBIARPGUS (Figure 1A). Arabidopsis ecotype Columbia was transformed using recombinant Agrobacterium tumefaciens by the vacuum infiltration method (Bechhold et al. 1998). Transformants were selected on MS medium supplemented with 0.7% (w/v) agar, 1% (w/v) sucrose and 50 mg l−1 kanamycin.

Elongation measurement

Black locust seedlings with uniform hypocotyl lengths (~25 mm) were selected and elongation was measured. Hypocotyls were cut into 5-mm segments and immersed in MS medium + 2% (w/v) sucrose (Figure 2), or in liquid MS medium with or without 2% sucrose, 10 µM naphthaleneacetic acid (NAA), 20 µM fusicoccin (FC), 2% mannose, or low temperature (4 °C). Segments were incubated at 25 °C in a 16-h daily...
Hormone and chemical treatment

Hypocotyl segments (5 mm in length) were cut from below the apical meristem of 7-day-old seedlings and incubated in liquid MS medium supplemented with the indicated hormones or chemicals with gentle agitation on a shaker at 30 cycles per min at 25 °C. All hormones and chemicals were purchased from Sigma-Aldrich. Working and stock concentrations of hormones and chemicals were as follows unless otherwise noted: 10 µM FC (diluted from 10 mM stock solution in dimethyl sulfoxide (DMSO)); 50 µM cycloheximide (CHX, from 200 mM in DMSO); 20 µM abscisic acid (ABA, from 10 mM in EtOH); 20 µM 2-chloroethyl phosphonic acid (EP, from 100 mM in EtOH); 20 µM gibberellic acid (GA, from 50 mM in H2O); 20 µM jasmonic acid (JA, from 200 mM in EtOH); and 10 µM α-naphthaleneacetic acid (NAA, from 1 mM in H2O). After the treatments, tissues were frozen in liquid nitrogen and stored at –80 °C for later RNA analysis.

Northern blot analysis

Total RNA was isolated from black locust hypocotyl segments or from whole tissues of transgenic Arabidopsis plants using the Trizol reagent (Invitrogen, San Diego, CA). Six micrograms of total RNA were separated on a formaldehyde-agarose gel and transferred to Hybond-N membranes. Hybridization of the northern blots was performed in UltraHyb solution (Amersham-Pharmacia, Piscataway, NJ) at 42 °C according to the manufacturer’s instructions. The RpARP and GUS genes were amplified by PCR using gene-specific primers, labeled with 32P-dCTP in a random primed reaction and used as probes. To quantify the northern signals, autoradiography films were scanned and analyzed with the ImageQuant program.

Results

Regulation of RpARP expression through mRNA stability

To investigate the regulation mechanism and biological function of RpARP, we generated transgenic Arabidopsis plants harboring T-DNA containing a full-length RpARP cDNA, with or without the untranslated regions (UTRs), driven by the CaMV 35S promoter (Figure 1A). The transgenic plants had a phenotype similar to that of the wild type. Expression of RpARP (with UTRs) was repressed in response to exogenous auxin in pBIARP transgenic plants, even though the gene is under the control of the constitutive CaMV 35S promoter (Figure 1B). On the other hand, the level of RpARP transcripts was unaffected by exogenous auxin in transgenic plants harboring the 35S::RpARPorf:GUS construct (pBIARPGUS, Figure 1A), which contains only 350 bp of the RpARP coding region and no UTRs. The expression of transgenic RpARP was unaffected by sucrose in transgenic plants transformed with either pBIARP or pBIARPGUS constructs. To determine if the cis-element(s) for sucrose signaling is located in the promoter region, we sequenced the 2 kb genomic region upstream of the RpARP coding region and searched for putative cis-elements. Four sucrose-repressible response elements (Huang et
were found between 70 and 500 bp upstream of the putative transcription start site (Figure 3).

RpARP gene expression is negatively correlated with hypocotyl elongation

We examined expression of the *RpARP* gene in segments of elongating hypocotyls with different elongation rates. Hypocotyls (25 mm in length) were cut into 5-mm segments and incubated on MS medium for 24 h. Then, percent elongation and *RpARP* transcript levels were measured at different regions. Hypocotyl segments showing higher percent elongation had a lower level of *RpARP* expression and vice versa (Figure 2). To further confirm that the expression of the *RpARP* gene was negatively associated with hypocotyl elongation, we examined the effects of various treatments that affect shoot elongation. In general, relatively lower levels of gene expression were observed in treatments that increased shoot elongation, with the exception of the SU+FC+ and Mn+N+ treatments (Figure 4).

The ARP gene family is specific to higher plants

The BLAST search against NCBI dbEST and The Institute For Genomic Research (TIGR) Plant Gene Indices (http://www.tigr.org/tdb/tgi) identified homologs of *RpARP*, all of which are from higher plant species (four monocots and eight dicots). No significant hits were obtained from other organisms such as animal and fungal species using a 1.0E−5 E-value cutoff. Multiple alignments of the deduced amino acid sequences of the orthologs revealed the presence of highly conserved amino acid domains at both the N-terminal and C-terminal ends (Figure 5A). The deduced amino acid sequence of *RpARP* is highly conserved among plant genes (up to 85% identity at the amino acid level). To examine the evolutionary relatedness of the 12 putative ARP proteins, we generated an unrooted phylogenetic tree with the deduced amino acid sequences (Figure 5B). The tree showed that plant ARPs separated into two distinct clades of dicots and monocots. Sequences from all of the legume species (black locust, pea and soybean) were clustered together.

Suppression of RpARP gene expression by auxin

Expression of the *RpARP* gene in response to exogenous auxin treatment was analyzed by Northern blotting (Figure 6). Total RNA was extracted from black locust seedling hypocotyl fragments of black locust seedlings incubated in auxin-free MS medium after pretreatment with 10 µM NAA for 24 h, or in MS medium + 10 µM NAA after no pretreatment with auxin. *RpARP* transcript levels declined within 3 h of exogenous auxin application and were undetectable by Northern blot after 6 h. However, *RpARP* transcripts re-accumulated rapidly when tissues were transferred to auxin-free MS medium (Figure 6A). Auxin-mediated repression of *RpARP* was effectively

```
1 tgggctgtgt ggttgatagc acaaatgact cacttggaga cagttcaca cggagataa
ggggggggg gggggtgcg caggaaatgc gagggggaa gggggattg ggaggggtag
ggggggggg gggggtgcg caggaaatgc gagggggaa gggggattg ggaggggtag
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
```
achieved with NAA concentrations as low as 0.1 µM NAA (data not shown). To determine if the auxin-mediated reduction of RpARP transcript was dependent on de novo protein synthesis, we carried out the same experiment with a protein synthesis inhibitor, cycloheximide. Cycloheximide treatment retarded the reduction of RpARP transcripts by auxin and blocked the re-accumulation of transcripts in the auxin-free medium (Figure 6B). The effects of various growth regulators, such as ABA, benzyladenine (BA), EP and GA, and abiotic stresses, such as salt stress and cold treatment with or without exogenous auxin, on RpARP gene expression were determined (Figure 7). Cold treatment increased RpARP gene expression whether auxin was present or not, whereas salt slightly depressed the repression by auxin. Treatment with GA resulted in the loss of the RpARP transcript even in the absence of auxin. In the presence of sucrose, auxin effectively repressed RpARP gene expression in all treatments except cold stress.

RpARP gene expression is suppressed by fusicoccin and acidic pH

To determine the relationship between the physiological action of auxin and RpARP gene suppression, samples were treated with FC. Expression of RpARP was suppressed by both FC and acidic pH treatments (Figure 8). Under FC treatment, RpARP was suppressed in 1 h; however, FC and low pH treatments appear to be less effective than auxin in depressing the RpARP transcript. The RpARP transcript was undetectable after 2 h of auxin treatment (Figure 6), whereas it was clearly detectable even after 6 h of treatment with FC or low pH (Figure 8). In addition, the transcript level increased again after 9 h of FC treatment.

Effects of sucrose and low temperature on auxin suppression of RpARP mRNA expression

Our next question was whether factors associated with auxin-mediated growth can also affect expression of the RpARP gene. Sucrose-deprivation and low temperature conditions inhibited the auxin-modulated elongation of hypocotyl segments (Figure 4A). Sucrose deprivation increased RpARP expression, and in the low temperature treatment, RpARP gene expression was unaffected by exogenous auxin (Figure 9A).

In order to gain some insight into the physiological role of sucrose in auxin-mediated suppression of RpARP, we tested the effects of sugar analogs, mannose and mannitol, on the expression of the RpARP gene (Figure 9B). We analyzed the expression of the gene over time (0.5, 1, 3, 6, 9 and 24 h) in MS medium containing 2% sucrose, 2% mannose, or 2% mannitol. Mannitol had no effect on gene expression, whereas the effect of mannose was intermediate between that of the control and sucrose treatments.

Discussion

It has long been appreciated that auxin is an important regulator of developmental processes such as tropism, apical dominance and rhizoid initiation in higher plants, modifying the expression patterns of genes involved in these processes (Theologis 1989, Worley et al. 2000). This auxin-mediated regulation mechanism is often highly conserved. For instance, despite differences in the chemical composition of cell walls, the physiological response of all seed plants to auxin and acid is similar, and the key protein mediating the rapid elongation process, expansin, is highly conserved structurally and functionally among seed plants (Shcherban et al. 1995, Cooke et al. 1999).
2002). The ARP gene is another example. We isolated an ARP ortholog (RpARP) from black locust, a tree legume. The RpARP gene was repressed rapidly by exogenous auxin, consistent with previous studies, supporting the idea that ARP genes might have common patterns of expression and hormonal regulation. A sequence homology search with dbESTs indicated that the ARP gene is present in many plant species and its amino acid sequence is highly conserved. The two clades shown in the phylogenetic tree of Figure 5B are consistent with the evolutionary distance between monocots and dicots (Soltis et al. 1999). Sequences from the legume species were clustered together, indicating that RpARP (from a legume tree) is structurally closer to ARPs of other legume species (pea and soybean) than to those of tree species such as poplar. The high level of structural conservation between monocotyledonous and dicotyledonous plants suggests that (a) the ARP gene family might have formed before the evolutionary divergence of monocots and dicots; (b) the ARP protein has strict functional constraints that limit structural modification while maintaining function; and (c) the function of the protein is important to normal development or physiology of higher plants. Furthermore, ARP homologous sequences are found only in higher plants, suggesting that the gene plays a role in processes specific to higher plants. Although the ARP gene in black locust is repressed by exogenous auxin, as observed in previous studies with strawberry, it is still unknown if these genes are functionally conserved.

Sucrose and auxin regulate RpARP gene expression by dif-

Figure 5. Multiple alignment and evolutionary tree of the predicted RpARP amino acid sequence with other plant ARPs. (A) Sequences of Arabidopsis1 (At1g28330), Arabidopsis2 (At2g38330), barley (TC26321), cotton (TC9854), maize (TC138763), rice (TC82951), soybean (TC132184), wheat (TC40040), pea (AF029242), strawberry (L44142) and poplar (BI136544) are compared. Identical amino acid sequences are highlighted in black and sequence similarities in grey. Sequence alignment and sequence identity/similarity was displayed using Clustal W and BOXSHADE programs of the General Computer Group Package. (B) An unrooted phylogenetic tree of putative ARP proteins, shown in (A), was generated using the CTREE program based on the Neighbor-Joining algorithm from the San Diego supercomputer center (http://biowb.sdsc.edu). Symbols: a = AGI number; b = TIGR number; and c = Genbank number.
ferent mechanisms. For example, the transcript level of RpARP was effectively reduced by exogenous auxin in transgenic plants transformed with the 35S::RpARP construct containing the RpARP structural gene with UTRs, but not in transgenics carrying 35S::RpARPorf:GUS, a construct that has the coding region but no UTRs. On the other hand, sucrose had no effect on either construct (Figure 1B). These results suggest that auxin regulates the ARP gene posttranscriptionally, and that the responsible cis-elements are likely located in the UTR regions. A number of mRNA instability sequences have been identified in the UTR regions. For example, AU-rich elements (AREs), known as the archetypal mRNA instability determinant, were found in the 3′-UTR of mammalian genes such as lymphokine and cytokine (Chen and Shyu 1995). The downstream element, which is responsible for mRNA instability in plants, was found in the 3′-UTR of the small auxin-up RNA (SAUR) transcripts (Gil and Green 1996). However, although UTRs are involved in auxin-mediated regulation of the RpARP gene, no known regulatory element was found in the UTRs. Therefore, auxin-mediated regulation of RpARP transcript stability might represent a novel mechanism for posttranscriptional regulation of gene expression.

Treatment of hypocotyl fragments with the protein synthesis inhibitor, cycloheximide, slowed the repression of RpARP transcription and blocked the re-accumulation of transcripts in

Figure 6. Expression of RpARP mRNA in response to auxin and cycloheximide treatments. (A) Hypocotyl segments of a black locust seedling were treated with MS + 2% (w/v) sucrose medium containing 10 µM naphthaleneacetic acid (NAA+) for the indicated time, or without NAA (NAA–) after 24 h pretreatment with 10 µM NAA. (B) Hypocotyl segments were treated as in (A), with the addition of 40 µM cycloheximide (CHX+). Total RNA was extracted at the indicated times, and 6 µg of total RNA was loaded per lane. Agarose gels were stained with ethidium bromide (lower panels) to confirm equal loading of rRNA in each lane. Blots were probed with a random-primer-labeled RpARP cDNA.

Figure 7. Comparison of RpARP transcript levels under various hormonal and abiotic conditions. Total RNA was extracted from black locust hypocotyl segments immersed for 24 h in liquid MS + 2% (w/v) sucrose medium containing 20 µM of the hormones abscisic acid (ABA), benzyladenine (BA), ethephon (EP), gibberellin (GA) and mexitol jasmonate (MeJA), or treated at 4 °C (Cold) with or without 10 µM naphthaleneacetic acid (NAA) or 300 mM NaCl (Salt) in the absence (−) or presence (+) of 10 µM naphthaleneacetic acid (NAA) as indicated. For the control (Con), samples were incubated only in MS medium + sucrose. Six micrograms of RNA was loaded per lane and hybridized with RpARP cDNA. Agarose gels were stained with ethidium bromide (bottom) to confirm equal loading of rRNA in each lane.

Figure 8. Fusicoccin and acidic pH can repress RpARP mRNA expression. Excised hypocotyl segments of black locust seedlings (7 days old) were treated with MS + 2% (w/v) sucrose medium buffered with 5 mM MES (pH 3.5), with or without 10 µM fusicoccin (FC and C, control, respectively). Total RNA (6 µg) was isolated after treatment at the indicated times (0.5, 1, 3, 6, 9, 12 and 24 h) and subjected to RNA blot hybridization using probes specific for RpARP. The 25S rRNA bands of the corresponding ethidium bromide-stained gels are shown on the right.

Figure 9. Effects of sucrose and low temperature on auxin suppression of RpARP mRNA expression. (A) Hypocotyl segments were treated with liquid MS medium containing 10 µM naphthaleneacetic acid (NAA) and 2% (w/v) sucrose (SU+NAA+), 10 µM NAA only (SU–NAA+), 2% sucrose only (SU+NAA–), MS medium only (SU–NAA–), or 10 µM NAA and 2% sucrose with cold treatment, 4 °C (SU+NAA+Cold+). (B) Analysis of RpARP mRNA expression under various sucrose isomers. Hypocotyl segments were incubated for 0.5, 1, 3, 6, 9 and 24 h in MS medium containing 2% sucrose (SU), 2% mannose (MN), or 2% mannitol (MT). For the control (C), only MS medium was used. Total RNA (6 µg) was isolated after treatment at the indicated times and subjected to RNA blot hybridization with probes specific for RpARP. Agarose gels were stained with ethidium bromide to confirm equal loading of rRNA in each lane. (SU+NAA+ is a duplication of the left half of Figure 6a.)
auxin-free medium (Figure 6B), indicating that protein synthesis is required for auxin-mediated suppression of ARP gene expression.

Fusicoccin, which is known to induce rapid cell elongation through the activation of the transport protein H+-ATPase in the plasma membrane (Blatt 1988), causing strong acidification of the cell walls (Marre 1979, Kutschera and Schopfer 1985), also repressed RpARP gene expression (Figure 8). The increase in RpARP transcript levels after 9 h of FC treatment (Figure 8) suggests that the FC effect might be transient. Whether H+-ATPase activation is involved in the auxin-mediated repression of RpARP is not known.

Sucrose-deprivation and low temperature conditions inhibited auxin-modulated elongation of hypocotyl segments (Figure 4A). Sucrose has been known to affect auxin-mediated elongation and growth (Stevenson and Cleland 1981, Seyedin et al. 1982, Gray et al. 1998), and low temperature is known to be a general inhibitor of auxin transport and metabolism (Keitt et al. 1967).

Cis-elements responsible for the sucrose signal might be located at genomic regions upstream of the RpARP gene. Four copies of conserved TATCCA cis-elements were present in the promoter region of RpARP. This sucrose-repressible response element was reported to be responsible for sugar repression of the α-amylase gene in rice (Lu et al. 1998, Toyofuku et al. 1998). Lu et al. (1998) identified nuclear proteins binding to TATCCA in a sequence-specific and sugar-dependent manner.

To further understand the physiological role of sucrose in auxin-mediated repression of ARP genes, we tested various sugar analogs for their effects on RpARP expression. Mannitol (non-permeable through plasma membranes) mimicked the effect of the control treatment lacking sucrose, whereas mannose (a permeable but non-metabolizable sugar; Gibson 2000) showed an intermediate effect between the control and the sucrose treatments (Figure 9B). These results indicate that sucrose is needed for both intracellular osmotic regulation and metabolic energy. Sugars are important regulators of various processes associated with plant growth and development and function as metabolic resources and as structural constituents of cells. In recent studies, sugar was found to favor the expression of growth-related genes while repressing the expression of the stress-related gene (Ho et al. 2001).

Both auxin and sucrose are required to completely repress the expression of RpARP gene. This is consistent with the auxin-induced elongation process. According to the acid growth hypothesis (Kutschera 1994), auxin stimulates proton pumping, which results in hyperpolarization of the plasma membrane, thereby inducing cell elongation through acid-dependent cell wall loosening (Senn and Goldsmith 1988, Rayle and Cleland 1992). But after 4 to 6 h, the growth rate begins to decrease without a supply of exogenous sucrose, which is needed for osmotic regulation and the formation of new cell wall compounds (Cheung and Cleland 1991, Inouhe and Yamamoto 1991). Previous studies have indicated that ARP gene expression is low in actively growing tissues (Reddy and Poovaiah 1990, Stafstrom et al. 1998). These results led us to hypothesize that the RpARP gene must be down-regulated for auxin-mediated elongation to occur.

Here, we present two pieces of evidence in support of this hypothesis. First, RpARP mRNA expression was lower at the upper positions of the hypocotyl, which have more enhanced elongation ability than the lower positions (Figure 2). Second, physiological conditions that stimulate elongation effectively repressed RpARP mRNA expression, except in the SU+FC+ and Mn+N+ treatments (Figure 4). This may be due to the transient nature of the FC and mannose effects on gene expression. The RpARP gene is expressed at various developmental stages (e.g., from seedling to mature wood) and in various tissues (i.e., leaves, roots, hypocotyl and stem), and most abundantly in non-growing tissues. It is feasible that the RpARP gene needs to be repressed for cell growth, probably through cell wall loosening, structural modification to the cell wall, or an increase in elasticity of the cytoskeleton. This seems to corroborate previous results with ARP genes isolated and characterized from pea (PsDRM1; Stafstrom et al. 1998) and strawberry (SARS; Reddy and Poovaiah 1990). Repression of SARS was associated with strawberry fruit maturation, whereas the expression level of PsDRM1 was high in dormant axillary buds. These different plant developmental processes are related to cell elongation or expansion processes regulated by auxin.

In conclusion, the RpARP gene likely plays a role in biological processes that are characteristic under non-growing (i.e., dormant) or stress conditions such as cold and sucrose-starvation. Subcellular localization of the RpARP protein, its interaction with other proteins, and analysis of transgenic plants that over-express or suppress the RpARP gene will help determine the biological function of this gene. We are in the process of generating transgenic plants for such studies.

Acknowledgments

We thank Merilyn Ruthig for technical assistance. This project is supported by a USDA Grant to the Eastern Hardwood Utilization Program at Michigan State University (No. 98-31458-5995).

References

AUXIN-REPRESSED GENE EXPRESSION AND SHOOT ELONGATION

