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DISCUSSION

O

Fig. 3

.., is drawn, the free gaps between them represent stable bands.
These bands are eliminated eventually by overlapping of the
circles, Fig. 3. This agrees exactly with the criteria given by the
author. In fact, the only departure indicated by the foregoing
approach from the author’s analysis concerns the behavior at
Q=worQ=w'. Withk = 0,wehave { = 0and »unbounded;
the corresponding shaft speed is € = ,’. Similarly, only £ is
unbounded at @ = w,. It is readily checked by substituting the
solution £ = P; + Pi, 7 = Q1 + Q.f into the original equations
that @ is zero at & = w, and P, is zero at @ = w,’. At shaft
speeds between w, and w,’, both £ and 7 are unbounded, being
nonzero components of the rectilinear deflection referred to pre-
viously. Clearly, if w,” = w,, the Mohr’s circles shrink down to
points, and we then have the familiar eigenvalue problem.

The approach made here, with A having a positive (or zero)
real part and no imaginary part, gives all the solutions. This
may be checked from the governing equation (29) in the paper,
which is a biquadratic in A with a positive definite discriminant.
Hence A2 is either real positive or real negative, equation (30),
and A is either purely real or purely imaginary.

Only External Damping Present, 3 = 0
With the same notation,

2 2
<>\+%> —Qz+<w02—%>=0

a " sin 20
<)\ +E> = (2 — w,?) 4

(22d)

Thence, eliminating [\ + («/2)] and solving,

1 , 2 2\ 2
Q= s »{(wf - %) + |:<wa2 — az)
¥ (@ — w2 sin; 20]-/1}

Again using a Mohr’s circle diagram and using an auxiliary point
0’ where 00’ = «a?/4 (Fig. 4), we find

Q2 = L0'A + 0'B)

wherein O’B is positive and O’A is accounted positive or negative
according to whether O’ is to the left or right of A, respectively.

In this case, not all points B on the circle correspond to un-
stable motion. Using the first of equations (22d), we have

<>\ +—‘;‘—) = HO'A + 0'B) — (04 — 00") = }0'B — 0'4)

Thence, for instability, we must have $(0'B — 0'4) > a?/4 =
00’; ie., 0'B 2 O'A + 200'. The positions B for which this is
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Fig. 4

satisfied define the reduced-width instability bands referred to by
the author.

The form of equations (22d) suggests that the corresponding
characteristic equation for A, equation (31), should reduce to a
biquadratic in (A 4+ «/2). This is readily checked, and in fact we
find

a \* a? a \?
—_— 2 ’2 2 =i o —
()\+2)+(w,+w, + 2Q 2><>\+2>
o? «?
& O e T ek s o ¥
P Y P

Insertion of the condition that (A + «/2) shall be real and
2> a/2 leads to the condition

W= (02 + @, — )P + 0%, <0

which corresponds to the stability inequality (32) in the paper.
There appears to be a misprint in equation (35) of the paper, in
which the writer believes the term 4w,2w,’? should take a minus
sign; viz.
Q’_2, Q'/z - _%_(wrz + wrlz = az)
F 3w + 0,2 — @) — 40,20, (35a)

Since the criteria developed in the foregoing on the basis of A real
positive agree exactly with the author’s stability ecriteria, the
writer had expected to reach identical conclusions on the position
and width of the unstable bands but this is not the case. This
is the only serious difference on which he wishes to comment.

The writer disagrees with the requirement o < w,” + w, given
in expression (33) for the following reasons:

Write

AR = @ = (@0 + 0,2 — OV + 0w,

and suppose that for some value @ = a,, f(022) is positive for
0 £ @ £ . Then for another value 3, greater than a,, f(2?) is
a fortiort positive in the same range. Ience it follows that an in-
crease in damping cannot introduce instabilities which were ab-
sent in the case of the smaller damping. The writer thinks there
is a mistake in the paper here which arises from the omission of
the condition that for an instability we must have 22 > 0; i.e., a
real shaft speed. It will be noticed that the characteristic equa-
tions for A involve 22, and thus the insertion of the Routh eri-
teria without including the additional condition €2 > 0 admits the
possibility of the whole range of values of 22 from — » to + .
Thus it is believed that, although f(£2?) as defined in the fore-
going can be made negative by taking sufficiently large «, the
region in which f(22) is negative is entirely made up of negative
values of 2% Fig. 5. For example, if @« > w,” + w,, then inspec-
tion of equation (35a) shows 2,2 and €,? both to be negative.
The correct interpretation is thought to be that, as & increases
from zero, the unstable bands diminish in width and eventually
vanish in the first mode, then in the second mode, and so on.
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Fig. 5

Internal Damping Present

If B # 0, the governing equation (39) does not in general reduce
to a biquadratic. Instabilities ean exist with A having a positive
real part and nonzero imaginary part. An approach on the lines
given in the foregoing is still possible, with & now being complex,
but it is probably simpler in this case to stay with the charac-
teristic equation for A and use the Routh criteria, as the author
does in the paper. It is suspected that the nature of such un-
stable motions may be as follows:

If k is complex, then it is possible to find a pair of orthogonal
axes at some angle ¢ to the principal axes of bending such that the
ratio of displacement along these axes, say £4/7¢, is purely
imaginary. The movements £4 and 74 would then be in quadra-
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ture, and the displaced centroid of the cross section would be
situated on an ellipse rotating with the Ow, Ov-axes, having &, and
N¢ as principal axes, the semiaxes of the ellipse increasing ex-
ponentially with time. If this is so, then the rectilinear motions
referred to in the first two portions of this Discussion would be
particular cases in which the ellipse has one of its principal axes
zero, thus collapsing into a straight line.

A final minor point. In the case @ = 0, 8 = 0, a nondecaying
solution A = £ exists for the characteristic equation (29) when

B e O
2w+ w,"?)

Thus any forcing term at this frequency produces an unbounded
particular integral, giving the secondary critical speeds referred to
in the paper. Where the existing term is due to gravity (as it
always is in practice), it suffices that there shall be a nonzero
gravity component at right angles to the shaft axis so that any
nonvertical shaft may exhibit this kind of instability.

Summary

If 8 = 0, the characteristic equations for A are biquadratic in
(N 4+ «a/2). A class of rectilinear instability modes exists
corresponding to A having a positive real part and no imaginary
part. This class appears to cover all of the instabilities in free
motion when internal damping is absent. A Mohr's circle type
of diagram can then be used to identify the direction of the un-
stable displacement at any shaft speed © and the value of \ asso-
ciated with it.

Traveling Force on a
Timoshenko Beam’

SING-CHIH TANG.2 At the end of this paper, the author men-
tioned that the discontinuity of velocity at x = z,, except for the
case V = ¢,, was constant as the load position changed. He did
not say what the constant was and how the discontinuity of
velocity at z, increased indefinitely as the load traveled along the
beam with V = ¢,.

It is very simple to find the discontinuity at x = x, by use of the
method of characteristics® to solve this hyperbolic partial dif-
ferential equation. One may also find the discontinuity by ex-
pansion of the Laplace inversion integral (18) immediately after
the shear wave front.

Problem 1 in the paper for V' = ¢, is taken as an illustration.
TFrom equation (18) of the paper, one has

ctiw

wAE 1) = — (AN - Ase— 2 4 e~ PPE) pePTdp

2mi c—iw

Since the middle term in the foregoing equation is due to the con-
tribution of the bending wave front, which has greater speced than
that of the shear wave, the integral due to this term is continuous
at * = x,. The discontinuity of w, is only due to the rests.
Since ¢ is an arbitrary constant greater than the real part of all
singularities of the integrand, ¢ may be taken arbitrarily large,
say N. Therefore

1By A. L. Florence, published in the June, 1965, issue of the
JOURNAL OF APPLIED MECHANICS, vol. 32, TrRans. ASME, vol. 87,
Series II, pp. 351-358.

2 Research Scientist, Engineering and Research Staff, Ford Motor
Company, Dearborn, Mich.

3 Sing-chih Tang, ‘A Solution on the Timoshenko Beam Under a
Moving Force,” submitted to ATAA Journal for possible publication.
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One expands A, 4;, and e M in the power of 1/p as follows:

A= Bp'/’[p + N(p2 — a’)'/’] /2

= /2 I:l__] L_'_O(L)il
v 2y(y — 1) p? p!

1+ ay
pp? — @)

Yy — p 1

@ — a7 p?
1 1
+ vy — 1)] =kyy—-1)—-——+0 (7)]
P? P
1 1 1
—Mf _ oy — V2t —— e —
¢ c“’{ v p“[l 2v(y — 1) p!+0<p‘)]}
= 5 1 E'_' 1 0 <l>]0_7.'/2,,5
P

+

A[ = gl:—

o 1 +77-..v —— — i
[ 2yvHy=1) p " Sy(y— 1)}
Because one wishes to find the jump of w, at « = z, only, the
integrand is truncated after the term of order 1/p. Therefore

(Ae=NE  CrePBEYpePT

V/2¢ 2
Yg 3 1 1 ] — /2
- S 0 p(r—v /%)
k[ 2 +3(’Y—1)P * <p2> ¢

Finally, the jump of w, at x = =,

1 'Yl/zf Ez 1] p(r—~'7)
g 3 Y 1
Aw, ori ) g, K[ ) + - € dp
ast/2 2
o M oty o K
s %~ E)+8(7_1)

where 8 is the Dirac §-function. By the same procedure, Aw, in
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