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such comments are as follows. First, Humphreys11 has presented 
dynamic results for shallow arches showing symmetric behavior in 
a region of the geometry parameters where asymmetric static 
behavior would be expected to govern. These results suggest that 
axisymmetric dynamic behavior is possible above static geometric 
limits. Second, comparisons between conical and spherical caps 
as carried out in the author's paper show that a cone having a 
strength equivalent to a sphere has a height exceeding that of the 
sphere. Both of these results suggest that the results in the paper 
for a rigidly clamped cone are applicable for values of X beyond 
the static clamped spherical limit of 5.5. Thus, the author will 
stand on the higher estimated limits suggested in the paper; 
clearly, however, complete dynamic solutions including asym-
metry are required for precise establishment of these values. 

11 J. S. Humphreys, "Dynamic Deformation States of Curved 
Beams Under Impulsive Loads," J O U R N A L OF A P P L I E D M E C H A N I C S , 

vol. 3 0 , T R A N S . A S M E , vol. 8 6 , Series E , 1 9 6 3 , pp. 3 0 9 - 3 1 0 . 

(7i sin5 9 + /•> cos2 9), which is t he second moment of area for bend-
ing about an axis making an angle 6 with the major principal 
axis. The first of equations (22c) involves this moment of inertia 
and the second of them involves the product of inertia with re-
spect to this axis and its orthogonal partner. The unstable 
motion consists of bending about this axis increasing  exponen-
tiall y with time, and this motion is rectilinear relative to the rotat-
ing axes Ou, Ov, Fig. 1 of this Discussion; the displacements £ 
and 7j are components of this displacement. Eliminating X be-
tween equations (22c) and solving the resulting biquadratic for 
its real solution, one finds 

0 1 - H w ' 2 + [ (cos2)2 + (co/2 - cor2)2 

The solutions for Q- may be displayed conveniently on a Molir's 
circle type of diagram shown in Fig. 2, in which the abscissa is an 
axis of (angular velocity)2. With the notation there used, 

The Vibration of Unsymmetrical 
Rotatin g Shafts1 

L. G. JAEGER.2 The author has presented a paper which is ad-
mirably clear, concise, and thought-provoking. The writer would 
like to have his comments on the following approach to the free-
motion problem: 

Beginning with equations (22) and (23), for the complementary 
function, seek solutions of the form T) = Qe™ and £ = ki), where k 
is a constant (possibly complex). Then equations (22) and (23) 
of the paper may be written 

A-X2 + ( a + /3)X + (cor2 - fi2)A- - 20X - aO = 0 

X2 + (a + (S)X + (co/2 - fi2) + 2QAX - akQ = 0 

Multiplying the first of these by k and adding, and then multiply-
ing the second by k and subtracting, gives 

(1 + A2)[X2 + ( a + /3)X - O2] + (a>r2fc2 + co/2) = 0 (22n) 

(co/2 - cor2)A- + (1 + A-2)(2X + a)Q = 0 (226) 

Undamped Motion a = = 0 

By(226), X is real positive if k is real negative. Let k = —tan 9, 
wher e tan 9 is real positive, and investigate the class of unstable 
motions which occur. Then 

1 + A-2 see2 9 

and 

= —sin 9 cos 9 = 
sin 28 

1 + A;2 

Equations (22<i) and (226) then become 

X2 — 0 2 + co„2 = 0 

sin 28 
X = (co/2 - cor2) 

40 

where 

coo2 = cor2 sill2 9 + co/2 cos2 9 

0 2 = — [OA + [OA2 + / l f l 2 ] 1 / ' } 

fis = _ (OA + OB) 

Thence, using the first of equations 22(c), X2 = ^(OB — OA). 
Letting 9 range over values 0 to 7r/2, all of which correspond to 

X positive, instability is encountered over the whole range of 
angular velocities between cor2 and co/2. Drawing any vertical 
line intersecting the Molir's circle, one may identify the axis about 
which the incremental bending takes place and the angular 
velocity at which it occurs. It may be noted that, for only slightly 
unsymmetrical shafts, 0 is very closely cog. 

If the succession of Molir's circles corresponding to r = 1, 2, 3, 
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Fig. 1 

(22c) 

The physical significance of the angle 8 is thus apparent. 
Since cor2 is proportional to I\ and co/2 to h , co»2 is proportional to 

1 By S. T. Ariaratnam, published in the March, 1965, issue of the 
J O U R N A L OF A P P L I E D M E C H A N I C S , v o l . 3 2 , T R A N S . A S M E , v o l . 8 7 , 

Series E , pp. 1 5 7 - 1 6 2 . 
2 Professor of Applied Mechanics, Department of Civil Engineering 

and Applied Mechanics, MeGill University, Montreal, P. Q„ Canada. Fig. 2 
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Fig. 3 

. . . ., is drawn, the free gaps between them represent stable bands. 
These bands are eliminated eventually by overlapping of the 
circles, Fig. 3. This agrees exactly with the criteria given by the 
author. In fact, the only departure indicated by the foregoing 
approach from the author's analysis concerns the behavior at 
fi = co rorfi = co/. With  k = 0, we have £ = 0 and TJ unbounded; 
the corresponding shaft speed is fi = co/. Similarly, only £ is 
unbounded at fi = cor. It is readily checked by substituting the 
solution £ = Pi + P2t, TI = Qi + Qit into the original equations 
that Qi is zero at fi = cor and P2 is zero at fi = co/. At shaft 
speeds between cor and co/, both £ and r) are unbounded, being 
nonzero components of the rectilinear deflection referred to pre-
viously. Clearly, if co/ = cor, the Mohr's circles shrink down to 
points, and we then have the familiar eigenvalue problem. 

The approach made here, with X having a positive (or zero) 
real part and no imaginary part, gives all the solutions. This 
may be checked from the governing equation (29) in the paper, 
which is a biquadratic in X with a positive definite discriminant. 
Hence X2 is either real positive or real negative, equation (30), 
and X is either purely real or purely imaginary. 

Only External Damping Present, /3 = 0 

With the same notation, 

( x + ! ) • - • > + ( » • - ? ) = » 

/. a \ , , sin 2 0 
+ = ( W r - W ' ) - T " 

Thence, eliminating [X + {a/2)] and solving, 

+ ( C O / 2 - CO, 2 ) 2 -
i2 2011/2 

satisfied define the reduced-width instability bands referred to by 
the author. 

The form of equations (22d) suggests that the corresponding 
characteristic equation for X, equation (31), should reduce to a 
biquadratic in (X + a/2). This is readily checked, and in fact we 
find 

(22 d) 

N 

Again using a Mohr's circle diagram and using an auxiliary point 
0' where 00' = a 2 / 4 (Fig. 4), we find 

fi2  = H O ' A + O'B) 

wherein O'B is  positive and O'A is accounted positive or negative 
according to whether 0' is to the left or right of A, respectively. 

In this case, not all points B on the circle correspond to un-
stable motion. Using the first of equations (22d), we have 

^X + = i(0'A + O'B) - {OA - 00') = i(0'B - O'A) 

00'; i.e., O'B ^ O'A + 200'. The positions B for which this is 

( X + F ) ' + ( « . - + « , ' • + 2 G - - F ) ( X + ! ) ' 

+ (»-• ' f ) ("•" t ) " " 

Insertion of the condition that (X + a/2) shall be real and 
a/2 leads to the condition 

fi1  - (cor2 + co/2 - a2 ) f i2 + cor2co/2 ^ 0 

which corresponds to the stability inequality (32) in the paper. 
There appears to be a misprint in equation (35) of the paper, in 

which the writer believes the term 4cor2co/2 should take a minus 
sign; viz. 

fir2, fi/2 = i(cor2 + co/2 - a 2 ) 

=F |-[(cor2 + to/2 - a2)2 - 4 c o r 2 c o / 2 ] ( 3 5 a ) 

Since the criteria developed in the foregoing on the basis of X real 
positive agree exactly with the author's stability criteria, the 
writer had expected to reach identical conclusions on the position 
and width of the unstable bands but this is not the case. This 
is the only serious difference on which he wishes to comment. 

The writer disagrees with the requirement a iC co/ + cor given 
in expression (33) for the following reasons: 

Write 

/ ( f i 2 ) = fi4 - (cor2 + co/2 - a2 ) f i2 + cor2co/2 

and suppose that for some value a = a,, / ( f i 2 ) is positive for 
0 ^ fi ^ co. Then for another value /32, greater than « i , / ( f i 2 ) is 
a fortiori positive in the same range. Hence it follows that an in-
crease in damping cannot introduce instabilities which were ab-
sent in the case of the smaller damping. The writer thinks there 
is a mistake in the paper here which arises from the omission of 
the condition that for an instability we must have fi2 > 0; i.e., a 
real shaft speed. It will be noticed that the characteristic equa-
tions for X involve fi2, and thus the insertion of the Routh cri-
teria without including the additional condition fi2 > 0 admits the 
possibility of the whole range of values of fi2 from — °° to + co. 

Thus it is believed that, although / ( f i 2 ) as defined in the fore-
going can be made negative by taking sufficiently large a, the 
region in which/ ( f i 2 ) is negative is entirely made up of negative 
values of fi2, Fig. 5. For example, if a > co/ + cor, then inspec-
tion of equation (35a) shows fir2 and fi/2 both to be negative. 

The correct interpretation is thought to be that, as a increases 
from zero, the unstable bands diminish in width and eventually 
vanish in the first mode, then in the second mode, and so on. 

232 / m a r c h 1 9 6 6 Transactions of the A S M E 

D
ow

nloaded from
 http://biom

echanical.asm
edigitalcollection.asm

e.org/appliedm
echanics/article-pdf/33/1/231/5447301/231_1.pdf by guest on 07 June 2023



d i s c u s s i o n 

ture, and the displaced centroid of the cross section would be 
situated on an ellipse rotating with the Ou, Ov-axes, having £0 and 

as principal axes, the semiaxes of the ellipse increasing ex-
ponentially with time. If this is so, then the rectilinear motions 
referred to in the first two portions of this Discussion would be 
particular cases in which the ellipse has one of its principal axes 
zero, thus collapsing into a straight line. 

A final minor point. In the case a = 0, |8 = 0, a nondecaying 

solution X = i£2 exists for the characteristic equation (29) when 

_ 

2(cor' + co/2) 

Fig. 5 

Internal Damping Present 

If |8 it 0, the governing equation (39) does not in general reduce 
to a biquadratic. Instabilities can exist with X having a positive 
real part and nonzero imaginary part. An approach on the lines 
given in the foregoing is still possible, with k now being complex, 
but it is probably simpler in this case to stay with the charac-
teristic equation for X and use the Routh criteria, as the author 
does in the paper. It is suspected that the nature of such un-
stable motions may be as follows: 

If k is complex, then it is possible to find a pair of orthogonal 
axes at some angle 4> to the principal axes of bending such that the 
ratio of displacement along these axes, say ^/JJ^,, is purely 
imaginary. The movements and would then be in quadra-

Thus any forcing term at this frequency produces an unbounded 
particular integral, giving the secondary critical speeds referred to 
in the paper. Where the existing term is due to gravity (as it 
always is in practice), it suffices that there shall be a nonzero 
gravity component at right angles to the shaft axis so that any 
nonvertical shaft may exhibit this kind of instability. 

Summary 

If /3 = 0, the characteristic equations for X are biquadratic in 
(X 4- a / 2 ) . A class of rectilinear instability modes exists 
corresponding to X having a positive real part and no imaginary 
part. This class appears to cover all of the instabilities in free 
motion when internal damping is absent. A Mohr's circle type 
of diagram can then be used to identify the direction of the un-
stable displacement at any shaft speed £2 and the value of X asso-
ciated with it. 

Traveling Force on a 
Timoshenko Beam1 

SING-CHIH TANG.2 At the end of this paper, the author men-
tioned that the discontinuity of velocity at x = x„ except for the 
case V = c„ was constant as the load position changed. He did 
not say what the constant was and how the discontinuity of 
velocity at x, increased indefinitely as the load traveled along the 
beam with V = cs. 

It is very simple to find the discontinuity at x = x, by use of the 
method of characteristics3 to solve this hyperbolic partial dif-
ferential equation. One may also find the discontinuity by ex-
pansion of the Laplace inversion integral (18) immediately after 
the shear wave front. 

Problem 1 in the paper for V = c, is taken as an illustration. 
From equation ( IS) of the paper, one has 

M>T(£, r ) = — 
2tt? J W' J c - i c o 

Since the middle term in the foregoing equation is due to the con-
tribution of the bending wave front, which has greater speeed than 
that of the shear wave, the  integral due to this term is continuous 
at ;r = x„. The discontinuity of wT is only clue to the rests. 
Since c is an arbitrary constant greater than the real part of all 
singularities of the integrand, c may be taken arbitrarily large, 
say A'. Therefore 

Journal of Applied Mechanics 

H ^ n 

One expands Xi, A1, and e - > " { in the power of 1 /p as follows: 

X, = Bp/'\p + N(p2 - n 2 ) , / ! ] 1 / 2 

= ^ f 1 ~ 2 7 ( 7 ^ T ) ' p i + 0 ( 7 ) ] 

+ 7 ( 7 

l,e~x'« + + C,e-»K]pe"Tdp 

= kJ~_ 1 + ay 7 ( 7 ~ 1)P 

2 p(p°- - a2)'/* (p2 - a2)v- p2 

- 1 ) ] = K[7(7 - 1) " j t + 0 ( - £ ) 

v ^ t 1 + 
L 2 7 ( 7 - 1 ) p2 V W - l j 

L 2 7 ^ ( 7 — i ) p 8 7 ( 7 — 1)2 p- \ W J 

Because one wishes to find the jump of wT at x = x, only, the 
integrand is truncated after the term of order 1 /p . Therefore 

-x,{ = exp <. - 7 -

. p ( r - T , / ! « 

1 By A. L. Florence, published in the June, 1965, issue of the 
J O U R N A L OF A P P L I E D M E C H A N I C S , vol. 32, T R A N S . ASME, vol. 8 7 , 

Series E, pp. 351-358. 
2 Research Scientist, Engineering and Research Staff, Ford Motor 

Company, Dearborn, Mich. 
3 Sing-chili Tang, '' A Solution on the Timoshenko Beam Under a 

Moving Force," submitted to AIAA Journal for possible publication. 

L 2 ^ 8 ( 7 - 1 ) V \P2J. 

Finally, the jump of wr at x = x, 

2iri J Br L 2 8 (7 — 1) p J 'Br, 

o(r - 7 / ! § ) + 
2 ' " • 8 (7 - 1) 

where 5 is the Dirac 5-function. By the same procedure, AwT in 

m a r c h 1 9 6 6 / 2 3 3 

D
ow

nloaded from
 http://biom

echanical.asm
edigitalcollection.asm

e.org/appliedm
echanics/article-pdf/33/1/231/5447301/231_1.pdf by guest on 07 June 2023


