Reliability and Validity of the Supplemental Protection and Advocacy Scale of the Supports Intensity Scale

Karrie A. Shogren, James R. Thompson, Michael L. Wehmeyer, Tec Chapman, Marc J. Tassé, and Colleen A. McLaughlin

Abstract

Three separate studies were undertaken to examine the reliability and validity of the Supplemental Protection and Advocacy Scale (P&A Scale) of the Supports Intensity Scale (SIS). In Study 1, the interrater reliability of the P&A Scale was investigated when interviewers were trained in SIS administration and scoring. Pearson’s product moment coefficients were considerably higher than coefficients reported in a previous study conducted with untrained interviewers. In Study 2, the reliability (internal consistency, standard error of measurement, and interrater reliability) and validity (content and construct validity) of the P&A Scale when administered by trained interviewers with a sample of individuals with intellectual disability and related developmental disabilities (ID/DD) receiving services from a state ID/DD agency were examined. Results indicated strong reliability and validity of the P&A Scale, comparable to other domains of the SIS. In Study 3, additional psychometric properties of the P&A Scale were examined in a large sample of trained interviewers from across the United States and Canada using the SIS Online, with findings again showing strong psychometric properties. Collectively, findings from these three investigations suggested that the P&A Scale is a reliable and valid measure of support needs. In future revisions of the SIS, the P&A Scale should be considered for inclusion in the section of the SIS that yields standard scores reflecting an individual’s relative intensity of support need.

Key Words: Supports Intensity Scale, intellectual disability, reliability and validity

The Supports Intensity Scale (SIS) (Thompson et al., 2004a) was developed to provide an objective and standardized method to assess the support needs of people with ID/DD. Since its publication in 2004, the SIS been translated into 13 languages and it is currently being used by researchers and practitioners in 17 countries (American Association on Intellectual and Developmental Disabilities, 2014). The current version of the SIS includes three sections: Section 1, the Supports Needs Scale; Section 2, the Supplemental Protection and Advocacy Scale (P&A Scale); and Section 3, Exceptional Medical and Behavioral Support Needs. Section 1 consists of six subscales (Home Living, Community Living, Lifelong Learning, Employment, Health and Safety, and Social Activities). Each item in Section 1 corresponds to a daily life activity for which people with ID/DD might need extraordinary support; that is, types, intensity, and duration of supports people from the general population would not need to successfully function in the given domain. These six subscales each include eight or nine items that are scored using three 5-point scales that measure the intensity of support a person needs with regard to three dimensions: frequency (how often support needs to be provided), daily support time (how much time is involved in providing support on a day when support is needed), and type of support (what is the nature of
support provided by other people). Scores from the three dimensions are summed for each item. Total raw scores are calculated for each subscale, which are converted into standard scores. The sum of these subscale standards are then converted into a composite score, the overall SIS Support Needs Index (SNI) score.

The items in Section 2 of the SIS, the P&A Scale, are structured and scored the same way as items in Section 1 (i.e., using 5-point scales measuring the three dimensions of support). Items in this section address life activities associated with self-advocacy and self-determination. Instead of generating standard scores, however, the raw scores for each item in Section 2 are ordinally ranked. The ordinal ranking indicates the relative intensity of supports a person needs in relation to the other items that comprise the P&A Scale. For example, a person may have more intense support needs in the life activity of “protecting self from exploitation” than in the life activity of “advocating for self.” However, the ordinal ranking does not provide norm-referenced information. That is, scores on the P&A Scale do not provide any information on an individual’s intensity of support needs in relation to others.

Section 3 of the SIS provides an assessment of a person’s exceptional support needs related to health issues and problem behaviors. The format and structure of items in Section 3 are quite different than the prior sections. Section 3 items are scored using a 3-point scale based on the extent of extra support needed due to the presence of challenging behaviors and medical conditions. Like Section 2, scores on Section 3 items provide descriptive information about a person, but do not produce a standard score that enables meaningful comparisons between people.

Section 3 was conceptualized to be qualitatively different than the other sections of the SIS because the items are not focused on the pattern and intensity of support needed by a person to participate in life activities in culturally valued settings. Rather, Section 3 items are focused on extra support needed due to health issues and/or problem behaviors. Because of the relatively low incidence of specific health conditions and/or specific problem behaviors, there was no reason to include Section 3 scores in the standardized portion of the SIS.

This was, however, not the case with the items in Section 2, the P&A Scale. Section 2 was originally intended to be a subscale in the standardized portion of the SIS (i.e., Section 1). Data collected during the field test of the SIS introduced concerns with regard to the reliability of the P&A Scale (Clay-Adkins, 2004). Specifically, Clay-Adkins (2004) found that the interrater reliability data for the P&A Scale were poor, reporting a correlation coefficient of .29 for a mixed interrater study (i.e., different interviewers who interviewed different respondents about the same person on separate occasions). Due to its poor interrater reliability, the SIS authors made the decision to remove the P&A Scale from the standardized portion of the SIS. Based, however, on the face validity of the eight items comprising this section (i.e., data from field test interviewers and findings from a Q-Sort conducted by experts in the field of ID/DD), the authors elected to include it as a supplemental scale (Section 2) that was not factored into standardized scores. The authors considered the items to be important for interviewers and respondents to reflect upon. Requiring planning teams who used the SIS to rank order the P&A Scale items would encourage the thoughtful consideration of supports needed by a person for self-determination and self-advocacy activities.

The interrater reliability for the other six subscales and the SNI score, although significantly stronger than the reliability of the P&A Scale, still had noncorrected reliability coefficients for three subscales in the “poor range,” two other subscales had coefficients in the “fair” range, and only one subscale had a coefficient that was in the “excellent” range based on Cicchetti and Sparrow’s (1981) guidelines for evaluating reliability coefficients for adaptive behavior (AB) scales. The composite (i.e., SNI score) r was .58 (fair range). These findings were puzzling because other psychometric indicators of the SIS were quite strong (e.g., internal consistency). Subsequent research has suggested that the interrater reliability findings reported by Clay-Adkins (2004) may have resulted from a lack of interviewer training during the initial norming process (Thompson, Tasse’& McLaughlin, 2008). Participants in the initial norming process did not receive specific training regarding how to administer the SIS, but rather were given informal verbal instructions and provided with concise written directions. At the time of data collection there were not any training sessions available nor were there any background materials (e.g., a user’s manual for the SIS) to which the interviewers could refer. Further, Clay-
Adkins noted that a significant number of interviewers and respondents in her study were staff employed at a relatively large residential center serving individuals with multiple disabilities. She speculated that certain items on the P&A Scale in particular (e.g., exercising legal responsibilities; belonging to and participating in self-advocacy organizations; advocating for others) may have been difficult for these staff to score because the people with ID/DD with whom they worked had no (or very limited) experience with such activities.

Thompson et al. (2008) re-examined interrater reliability for Section 1 with trained interviewers and parceled out variance due to using different interviewers and different respondents. They established three conditions: an inter-interviewer reliability condition where the same respondents were interviewed by different interviewers in separate interviews, an interrespondent reliability condition where the same interviewer interviewed two sets of different respondents in separate interviews, and a mixed interrater condition where different interviewers interviewed different respondents in separate interviews. The results were striking. Of the 36 correlation coefficients produced (i.e., both noncorrected and corrected rs for 6 subscales for the 3 interrater conditions), 22 (61%) were in the excellent range, 10 (28%) were in the good range, 4 (11%) were in the fair range, and none were in the poor range based on Cicchetti and Sparrow’s (1981) criteria. Moreover, in regard to the SNI score, noncorrected and corrected rs for all three reliability conditions were in the excellent range. The authors concluded that their findings made a strong case for training interviewers. Because reliability results were similar in all three conditions, it appears that any variation introduced from having different interviewers or different respondents can be mediated as long as interviewers are trained on how to properly administer the scale.

Thompson et al. (2008) only examined reliability for Section 1 of the SIS. Given their findings, however, it is possible that Clay-Adkins’ (2004) findings for the P&A Scale were also influenced by the lack of interviewer training as well as the characteristics of the sample employed to evaluate interrater reliability. Further examination of the psychometric properties of the P&A Scale seemed warranted to determine the degree to which, in future revisions of the SIS, the P&A Scale could be considered for inclusion in Section 1 and therefore used to generate standard scores as well as the overall SNI score. The purpose of this article is to describe three separate studies examining the reliability and validity of the P&A Scale when administered by trained interviewers.

Study 1

As mentioned previously, Thompson et al. (2008) found that intrarater reliability for Section 1 (i.e., six included subscales and the SNI score) of the SIS improved significantly when interviewers were trained, but only examined the effect of training for Section 1 of the scale. Therefore, the purpose of Study 1 was to examine the intrarater reliability of the P&A Scale (Section 2) when interviewers have been trained on how to administer and score the SIS. Further, because completing the SIS requires the involvement of interviewers (who score the scale) as well as respondents (who provide the information), this study separated out error variance attributable to different interviewers and different respondents. This investigation was completed through a secondary analysis of data collected by Thompson et al. (2008). Thompson et al.’s participants completed the full SIS; however, the authors only examined intrarater reliability for Section 1. For this study, the P&A Scale data were analyzed.

Method

Participants. Participants included interviewers, respondents, and people with intellectual disability. Detailed information on the demographic characteristics of each group of participants can be found in Thompson et al. (2008). The interviewers were participants in an SIS training workshop conducted by one of the authors of this study. They were invited to participate in a study of the reliability of the SIS by trained interviewers. Their participation was totally voluntary and did not affect their access to the training. If interested in participating, they were asked to collect data on at least one case, but they were given the option of completing work on more than one case if they desired. In total, 51 different interviewers from four different states within the United States, Australia, and Canada participated. Eighty (80) respondents participated, all of whom reported that they knew the person being evaluated well, with 85% reporting that they had known this individual for at least 1 year.
Finally, the support needs of 40 individuals with an intellectual disability were assessed using the SIS. This was a diverse sample of individuals with intellectual disability in terms of gender, age, ethnicity, IQ and adaptive behavior levels, living arrangements, and employment status.

Procedures. Pairs of interviewers were provided with materials containing detailed instructions on the procedures to collect interrater reliability data for this study (see Thompson et al., 2008). Multiple safeguards were put into place to document and ensure that (a) interviewer dyads collected data on the same person, and (b) data corresponded to a specific interrater reliability condition (i.e., inter-interviewer, interrespondent, mixed interrater). Scores from each item on the P&A Scale were generated by summing the three support ratings (frequency, support time, type of support). Next, raw scores for all 8 items were summed to produce the unit of analysis for this study. The *SIS User’s Manual* (Thompson et al., 2004b) does not provide a standard score conversion for the P&A Scale. Therefore, Pearson’s *r* were computed using total raw scores, which was the same procedure used by Clay-Adkins (2004). The *SIS User’s Manual* does not provide information regarding variance on Section 2, so attenuation effects could not be determined and corrected *r* could not be produced. Data were analyzed using the Statistical Package for the Social Sciences (SPSS 11 for Mac OSX).

Results

Table 1 provides the Pearson’s Product Moment Coefficients (*r*) that were generated to assess *inter-interviewer* reliability (pairs of SIS scores generated from different interviewers who interviewed the same respondent), *interrespondent* reliability (pairs of SIS scores generated from the same interviewer who interviewed different respondents on two different occasions), and *mixed interrater reliability* (pairs of SIS scores generated from the different interviewers who interviewed different respondents), along with mixed inter-rater reliability correlations provided by Clay-Adkins (2004). Data yielded much higher coefficients than were obtained by Clay-Adkins. In two of the three conditions (interrespondent and mixed interrater), the coefficients were in the “good” range and in the inter-interviewer condition the coefficient was in the “excellent” range according to guidelines provided by Cicchetti and Sparrow (1981).

Study 1 Discussion

The findings from this secondary analysis of data collected on the P&A Scale by trained interviewers suggest the importance of using trained interviewers not just for Section 1, but also for the P&A Scale. The reliability coefficients from the current study are much higher than those reported by Clay-Adkins (2004), suggesting that, like Section 1, the initial data collected during the norming of the SIS may have been impacted by a lack of training for interviewers. This also suggests that in terms of interrater reliability, the P&A Scale may be as psychometrically robust as the six subscales included in Section 1 and future work is needed on other reliability and validity properties to inform consideration of the inclusion of the P&A Scale in Section 1 in future revisions of the SIS.

Limitations. The findings from this investigation should be considered in light of at least two limitations. First, interviewers only interviewed one respondent when completing the SIS. This was done to isolate error variance due to having
different respondents. The *SIS User’s Manual* (Thompson et al., 2004b) clearly calls for interviewers to interview at least two respondents when completing the SIS and incorporate the responses of those interviewed into a single assessment form. It is possible that, if interviewers in this study had interviewed multiple respondents instead of a single respondent, the reliability coefficients would have been different.

A second limitation is that the interviewers were volunteers, instead of a random sample of interviewers. It is reasonable to assume that the volunteer interviewers were individuals who, because of their high level of commitment, might be more conscientious in the completion the SIS than a random sample of interviewers. Future studies involving a random selection of interviewers would enable judgments to be made regarding whether selection bias was a confounding factor in this study.

Study 2

Because the P&A Scale was dropped from Section 1 of the SIS, its reliability and validity properties were not reported in the *SIS User’s Manual*. The purpose of Study 2 was to examine multiple aspects of the reliability (internal consistency, standard error of measurement, and interrater reliability) and validity (content and construct validity) of the P&A Scale when administered by trained interviewers with a sample of individuals with intellectual disability receiving services from a state ID/DD agency. These analyses parallel analyses undertaken by the SIS author team, reported in the *SIS User’s Manual* (Thompson et al., 2004b) for Section 1. They also provided additional information on interrater reliability as multiple respondents were included, per recommendations in the *SIS User’s Manual*.

Method

Participants. Study participants were interviewers, respondents, and people with intellectual disability. Interviewers included a doctoral student and three graduate research assistants (GRA) trained by the doctoral student, all of whom were trained to mastery on the administration of the SIS, as described in the *SIS User’s Manual* (Thompson et al., 2004b). Respondent teams, ranging from two to four persons, were configured with the following parameters pertaining to who should participate in the interview: (a) the person served, to the maximum extent possible and based upon the person’s preferences; (b) a direct support professional who had experience working with the person on a daily basis and knew the person served; (c) a representative from the person’s community support provider; and (d) the person’s case manager, guardian, and/or a family member. In all interviews, at least one direct support person served as a respondent. In 16% of interviews (n = 44), a parent or guardian also served as a respondent.

The support needs of 274 adults with intellectual disability receiving funding from a state ID/DD agency were assessed. Participant mean age at time of testing was 41.6 years (range = 19 to 83 years, SD = 14.3). Approximately 61% (n = 167) of participants were male, and 39% (n = 107) were female. The mean age for males was 41.5 (range = 19 to 79 years, SD = 14.4). The mean age for females was 41.8 (range = 19 to 83 years, SD = 14.2). Seven percent of participants were African American (n = 19), 1% were Native American (n = 3), and approximately 90% (n = 246) were White, with all other ethnicities represented at less than 1% of the sample. One hundred and thirty participants (47%) had at least one psychiatric diagnosis identified, 32 (12%) had two psychiatric diagnoses, 11 (4%) had three, and 144 (53%) had no psychiatric diagnoses. Across the sample, 24% of participants had a mild level of intellectual impairment, 23% had moderate, 14% had severe, and 37% had a profound level. Eighty-two percent of the sample had hearing within normal ranges, 8% had a mild hearing loss, 5% a moderate loss, 1.5% a severe loss, and 3% a profound hearing loss. Sixty-five percent of the sample had normal vision, 19% had a moderate vision loss, 7% had a severe vision loss, 6% could only perceive light, and the visual ability of 3% of the sample was undetermined. Twelve percent of the sample lived alone, 24% were living with two or fewer persons with developmental disabilities, 47% were living with three to seven other persons with developmental disabilities, 2% were living with eight or more people with developmental disabilities, 14% were living with relatives, and living arrangement was classified as “other” for the remaining 3%. With regard to current day activities for people in the sample, 5% were receiving special education services in school settings; 2% were competitively employed (either greater or less than 20 hours per week); 7% were
working in congregate settings fewer than 20 hours per week; 23% were working in congregate settings more than 20 hours a week; 7% were involved in agency-based, nonwork activities; and the rest were involved in “generic community activities.”

People with intellectual disability were randomly selected from the population of all people receiving services from the state agency for participation. Participants were restricted to persons 18 years and over because the SIS was normed for use with adults. Informed consent was obtained from all participants and/or their parents or guardians. Using procedures described subsequently, SIS interview data were completed for all participants and demographic data were obtained for all participants with a completed SIS.

Procedures

All data were collected by a doctoral student who had used the SIS in his professional role and three graduate research assistant (GRA) interviewers, all of whom were trained to mastery on administering the SIS. Research staff collaborated with state agency personnel to schedule interview dates, times, and locations. All interviews were conducted at a location convenient to the person with the disability and the respondents, and were arranged in collaboration with the agency providing direct support services. A primary contact at each local direct support agency was designated who served as the primary point of contact for coordinating the location for all SIS interviews. All data were entered and analyzed using SPSS for Windows, version 13.0.

Results

Reliability of the P&A Scale. To examine the reliability of the P&A Scale, we determined internal consistency reliability using Cronbach’s alpha and split-half reliability analyses, calculated standard error of measurement, and examined intrarater reliability on the scale for frequency, daily support time (DST), and type of support for P&A items 1, 2, 3, 4, and 5. For item 6, interviewers had 100% agreement for frequency and type of support scores, and 91% accuracy on DST scores. For item 7, interviewers had 100% agreement for DST and type of support scores, and 97% accuracy on frequency scores. For item 8, interviewers had 100% agreement for types of support scores, 97% agreement for frequency, and 97% agreement on DST scores. All disagreements were within 1 point.

Validity of the P&A Scale. To examine validity, we conducted correlational analyses of the P&A Scale total and item scores, other scales within the SIS, and conceptually related measures. We expected the P&A scores to correlate strongly with other SIS domain scores, and, in fact, there were high intercorrelations between P&A total raw scores and total raw scores for other SIS sections (Home Living $r = .79$; Community Living $r = .80$; Lifelong Learning $r = .88$; Employment $r = .82$; Health and Safety $r = .90$; Social Activities $r = .84$). To examine age differences, we divided the sample by age in decades (in their 20s, 30s, 40s, 50s, 60s, or over 70). Multiple Analysis of Variance for both total P&A score or item score yielded only one significant overall difference for item 1 (advocating for self), but post-hoc analysis for differences between each age group and every other age group did not yield any significant differences. As such, it is fair to say that there were no age-related differences in total or item scores for the P&A Scale. Because we hypothesize that the P&A Scale should perform consistently across ages, we interpreted this finding as supporting the scale’s validity.

For a conceptually related measure, we used findings from the Developmental Disabilities Profile (DDP). The DDP (Brown et al., 1986) was developed by the New York State Office of Mental Retardation and Developmental Disabilities and yields scores for three domains, Adaptive, Maladaptive, and Medical/Health. In the original version of the DDP, an individual’s score in each domain is divided by the highest score obtained by any individual in the sample for that domain, and then these domain factors are totaled to yield
a final score from 50 to 300 (Brown et al., 1986). The state ID/DD system from which the sample was derived in this study used the DDP with a modified scoring system. The DDP has been used as part of the funding determination process in several state systems and for research purposes (Holburn, Jacobson, Schwartz, Flory, & Vietze, 2004; Janicki & Dalton, 1988) and, as Holburn and colleagues observed, the validity and reliability of the DDP are “comparable to those for adaptive behavior scales generally” (p. 66). We hypothesized that the P&A total raw scores would correlate most highly with the Adaptive subscale, which contains a number of support-like items, and least highly with the maladaptive subscale. In fact, the correlation between the P&A Scale and the Health DDP score was $r = .37$, the Maladaptive DDP score was $r = .18$, and the Adaptive DDP was $r = .74$ (all significant at the .05 alpha level).

Study 2 Discussion

The findings from this analysis of the reliability and validity of the P&A Scale suggest that it is a valid and reliable measure of supports needed by people with developmental disabilities in the domain of self-determination and self-advocacy. Like Study 1, it further confirms the importance of using trained interviewers for Section 2, and also suggests that higher levels of interrater reliability can be obtained even with multiple respondents, when training is provided to interviewers. Further, the findings suggest that other forms of reliability for the P&A Scale are consistent with reliability data for Section 1 reported in the SIS User’s Manual (Thompson et al., 2004b). The P&A Scale also appears to have strong content and construct validity–specifically, the P&A Scale has strong correlations with other SIS subscale scores, but there are still clear distinctions in the aspects of support needs captured by the P&A Scale compared to other SIS domains. And, like other SIS domains, there were no age-related differences. Finally, the P&A Scale appears to be measuring a different construct than the DDP, as would be predicted for the other SIS subscales and SNI score. Overall these findings suggest that the P&A Scale is as reliable and valid as the other six subscales that comprise the SIS Support Needs Scale (Section 1). Moreover, the P&A Scale contributes unique information that the six subscales do not provide.

Limitations. The findings from this study should be considered in light of the characteristics of the interviewers and participants with intellectual disability. The interviewers included a doctoral student and trained graduate students, not a sample of interviewers trained by AAIDD to administer the SIS. Further, the individuals with intellectual disability were selected from one state. Further research is needed with interviewers who are actually administering the SIS within states and provider organizations with a range of people with intellectual disability.

Study 3

Since the publication of the SIS in 2004, the American Association on Intellectual and Developmental Disabilities (AAIDD) developed the SIS Online, an online portal used by states, provinces, and large service providers for the completion of SIS protocols. The SIS Online mirrors the paper version of the SIS, except that responses are entered electronically and users have immediate access to a SIS Online Report. Further, the data that is entered into the SIS Online is available to AAIDD for evaluation purposes. All interviewers using the SIS Online are required to participate in AAIDD-recognized SIS training to ensure they are qualified to complete the SIS with individuals with disabilities. The purpose of Study 3 was to use data from the SIS Online to further examine the reliability (internal consistency) and validity (intercorrelation of SIS scores) of the P&A Scale with a large sample of trained interviewers from across the United States and Canada.

Method

Data and sample. For the purposes of the present analyses, we conducted secondary data analysis using raw data from 139,129 completed SIS Online protocols. Given that this was secondary data analysis, we did not have access to identifiable information about target individuals, interviewers, or location. As mentioned previously, however, all interviewers using the SIS Online are required to participate in AAIDD-recognized SIS training to ensure they are qualified to complete the SIS with individuals with disabilities. Currently, 17 states and two Canadian provinces are using the SIS Online. All of the states and provinces are using the SIS for resource allocation and/or supports planning within their developmental disability service system.
Limited demographic information was available on the target individuals (people with ID/DD) for whom the SIS was completed. It can be assumed that all had an intellectual and/or related developmental disability because the SIS Online was being used for resource allocation and/or supports planning within developmental disability service systems. The only demographic information available was age and gender information. Males comprised 59% of the sample, and females 41%. The average age of the target participants was 39.8 years (SD = 14.34, range = 16.0–79.9). Table 2 provides a breakdown of age percentages by decade and by gender.

Analyses. To examine the internal consistency reliability of the Supplemental Protection and Advocacy Scale and the six scales that comprise the SIS SNI, alpha coefficients were calculated using IBM SPSS Statistics 20. Alpha coefficients were calculated for each of the scales, including Protection and Advocacy as well as for the SIS overall (all items included) with and without the Supplemental Protection and Advocacy scale items included.

To examine the validity of the P&A Scale (intercorrelation of SIS Scores) correlations were computed using IBM SPSS Statistics 20. Correlations between the six scales included in the SIS SNI and the Supplemental Protection and Advocacy scale were calculated. In addition, correlations between gender, age, and the seven scales were explored.

Results
Reliability. Table 3 presents the internal consistency reliability values for the seven scales as well as for two SIS Totals, one that includes and one that does not include the P&A Scale items. All alpha values exceeded .90, which several experts have set as the acceptable level for reliability for assessments (Anastasi & Urbaina, 1997; Salvia & Ysseldyke, 2001). Also presented in Table 3 are the average alpha values presented in SIS User’s Manual (Thompson et al., 2004b) for comparison. Alpha values are slightly lower, on average, than for the present sample. However, the differences are minimal and all scales exceeded .90.

Validity. Table 4 provides the correlations between the six scales included in the SIS SNI and the P&A Scale. Correlations with gender and age are also included in Table 4. The P&A Scale has correlations ranging between 0.68 and 0.86 with all of the other scales, similar in magnitude to the pattern of intercorrelations between the six scales that comprise the SIS SNI. Further, the correlation of all of the subscales, including the P&A Scale, with age and gender were below 0.1. This finding indicates a negligible relationship of any of the subscales, including P&A, with age and gender, and is consistent with findings from the original SIS norming sample (Thompson et al., 2004b). Age and gender, therefore, were not included in the internal consistency reliability analyses.

Study 3 Discussion
The results of Study 3 suggest that the internal consistency reliability value for the P&A Scale is high, meets accepted standards, and is consistent.

K. A. Shogren et al.

Table 2
Age and Gender Demographic Information for Target Individuals

<table>
<thead>
<tr>
<th>Overall Sample %</th>
<th>Males %</th>
<th>Females %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16–19</td>
<td>5.5</td>
<td>6.0</td>
</tr>
<tr>
<td>20–29</td>
<td>25.7</td>
<td>25.8</td>
</tr>
<tr>
<td>30–39</td>
<td>20.0</td>
<td>19.7</td>
</tr>
<tr>
<td>40–49</td>
<td>20.2</td>
<td>19.5</td>
</tr>
<tr>
<td>50–59</td>
<td>14.9</td>
<td>14.0</td>
</tr>
<tr>
<td>60–69</td>
<td>9.3</td>
<td>10.9</td>
</tr>
<tr>
<td>70+</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Missing</td>
<td>3.0</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Table 3
Internal Consistency Reliability Coefficients

<table>
<thead>
<tr>
<th>SIS Scales</th>
<th>Original SIS Sample (Thompson et al., 2004b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>.93</td>
</tr>
<tr>
<td>CL</td>
<td>.92</td>
</tr>
<tr>
<td>LL</td>
<td>.94</td>
</tr>
<tr>
<td>EMP</td>
<td>.90</td>
</tr>
<tr>
<td>H&S</td>
<td>.97</td>
</tr>
<tr>
<td>SOC</td>
<td>.94</td>
</tr>
<tr>
<td>P&A</td>
<td>.97</td>
</tr>
<tr>
<td>Total (with P&A)</td>
<td>.99</td>
</tr>
<tr>
<td>Total (without P&A)</td>
<td>.98</td>
</tr>
</tbody>
</table>

Note. HL = Home Living; CL = Community Living; LL = Lifelong Learning; EMP = Employment; H&S = Health and Safety; SOC = Social; P&A = Protection and Advocacy.
with the internal consistency reliability values for the six subscales in Section 1 that contribute to composite measure of support needs (i.e., the SNI score). And, when introducing the P&A Scale to the SIS total, it has no appreciable effect on the internal consistency reliability of the scale as a whole. Further, the P&A Scale has a similar pattern of intercorrelations with six scales included in the SIS SNI as well as with key demographic variables, specifically age and gender. Overall, data from almost 140,000 individuals suggest that the P&A Scale demonstrates strong relations with the other six scales included in the SIS SNI, and has similar internal consistency reliability. This finding—along with the results of Studies 1 and 2—suggests that when revising the SIS, the authors should consider including the P&A Scale in Section 1 as a seventh subscale that provides data that contributes to the SNI score.

Limitations. This was a secondary analysis of data collected through the SIS Online. Secondary data analysis introduces limitations because of the restricted information that is often available to researchers. In our case, limited demographic information was available and detailed descriptions of the interviewers and the target individuals with disabilities cannot be provided for the sample. However, the size of the sample and its geographic diversity provide strong justification for using the data. Further, the consistency between the results of the analyses and the analysis on the original SIS norming sample, comprised of 1,306 individuals, suggests that the SIS, when used with a larger and more diverse sample of interviewers and target participants demonstrates similar technical properties.

Conclusions

The results of the three separate studies reported in this paper clearly suggest that the Supplemental P&A Scale (Section 2) of the SIS has strong reliability and validity, comparable to that reported for the other SIS subscales (Section 1) in Thompson et al. (2004b). As has been suggested by other research, it appears that the role of trained interviewers significantly impacts interrater reliability, and this may be particularly true for the P&A Scale, where some respondents may have less experience in evaluating support needs in domains associated with self-determination and self-advocacy. Unlike assessing adaptive behavior, where respondents are reporting whether a person performs specific skills, assessing support needs requires a different set of skills related to probing and clarifying the frequency, time, and types of support a person needs to participate in complex activities (Thompson et al., 2008). Study 3 included interviewers trained by AAIDD through their SIS training program, developed to ensure consistency of standards and training in administering the SIS. Data were not available from SIS Online on interrater reliability, and further research is needed to examine interrater reliability of interviewers trained through the SIS training program. Such research would supplement the findings of Studies 1 and 2, which examined the interrater reliability of trained interviewers, but not through the formal SIS training program.

In addition to interrater reliability and implications for training of interviewers, these studies also suggest that the P&A Scale has adequate

<table>
<thead>
<tr>
<th>SIS Scales</th>
<th>HL</th>
<th>CL</th>
<th>LL</th>
<th>EMP</th>
<th>H&S</th>
<th>SOC</th>
<th>P&A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>0.80</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>0.69</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>0.71</td>
<td>0.78</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H&S</td>
<td>0.85</td>
<td>0.85</td>
<td>0.83</td>
<td>0.80</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC</td>
<td>0.77</td>
<td>0.82</td>
<td>0.77</td>
<td>0.80</td>
<td>0.85</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>P&A</td>
<td>0.68</td>
<td>0.79</td>
<td>0.86</td>
<td>0.79</td>
<td>0.83</td>
<td>0.80</td>
<td>1.00</td>
</tr>
<tr>
<td>Age</td>
<td>-0.04</td>
<td>-0.08</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.01</td>
<td>-0.08</td>
<td>-0.09</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.03</td>
<td>-0.07</td>
<td>-0.06</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.01</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Note. HL = Home Living; CL = Community Living; LL = Lifelong Learning; EMP = Employment; H&S = Health and Safety; SOC = Social; P&A = Protection and Advocacy
internal consistency and validity. It shows strong relationships with other SIS domains, but the results suggest that it measures a unique domain of support needs. Further, the P&A Scale, as with other SIS domains, does not appear to vary based on age or gender and measures a different construct from other conceptually related measures. Because these items are focused on choice making, decision making, self-advocacy, and excising legal responsibilities, they are integrally related to providing supports that may lead to greater self-determination. Self-determination is a highly valued personal outcome for all people, and the intensity of support that people with ID/DD need to self-advocate, avail themselves of their rights as citizens, protect themselves from exploitation, and act as the causal agent in their lives merits inclusion in any scale that purports to measure support needs. For these reasons, it appears warranted to consider, in future revisions of the SIS, moving the P&A Scale from a supplemental section that does not yield standard scores or contribute to the overall SNI score to a part of the standardized portion of the SIS. Doing so will ensure that the standardized portion of the SIS more fully reflects critical support needs related to full inclusion and participation of people with ID/DD in the community.

References

Authors:

Karrie A. Shogren, Associate Professor, Beach Center on Disability, University of Kansas; James R. Thompson, Professor, Department of Special Education, Illinois State University; Michael L. Wehmeyer, Professor of Special Education, Beach Center on Disability, University of Kansas; Tec Chapman, Executive Director, Services for Independent Living; Marc J. Tassé, Director, Nisonger Center, The Ohio State University; Colleen A. McLaughlin, Community Training & Technical Assistance Coordinator, The Boggs Center, Rutgers University.

Correspondence concerning this article should be addressed to Karrie A. Shogren, Beach Center on Disability, 1200 Haworth Hall, Rm. 3136, Lawrence, KS 66045 (e-mail: shogren@ku.edu).