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Because of the complexity of some optimization problems, evolutionary and meta-heuristic

algorithms are sometimes more applicable than the traditional optimization methods. Some

difficulties in solving design-operation problems in the field of engineering are due to the multi-

modality of the solution region of these problems. Since the design variables usually are

specified as discrete variables and other continuous decision variables have to be set according

to the range of the discrete ones, the possibility of trapping the final solution into some local

optimum increases. In such cases, the capability of both traditional and evolutionary algorithms

decreases. Thus, the development of a strategy to overcome this problem is the subject of this

paper. For water utilities, one of the greatest potential areas for energy cost-savings is the

effective scheduling of daily pump operations. Optimum design operation of pumping stations is

a potential problem in this area that performs a wide background of solutions to this problem

with different methods. Computation in all methods is driven by an objective function that

includes operating and capital costs subject to various performances and hydraulic constraints.

This paper achieves the optimal control and operation of an irrigation pumping station system by

one of the latest tools used in optimization problems, which is the honey-bees mating

optimization (HBMO) algorithm and is tested with a practical design. The HBMO algorithm with

dynamic penalty function is presented and compared with two other well-known optimization

tools which are the Lagrange multipliers (LM) method and genetic algorithms (GA) as well as with

the previous results of the HBMO algorithm with constant penalty function for the same problem.

The LM, GA and HBMO approaches simultaneously determine the least total annual cost of the

pumping station and its operation. The solution includes the selection of pump type, capacity

and the number of units, as well as scheduling the operation of irrigation pumps that results in

minimum design and operating cost for a set of water demand curves. In this paper, the HBMO

algorithm is applied and the dynamic penalty function is tested to demonstrate the efficiency of

this combination simultaneously. The results are very promising and prove the ability of

combining the dynamic penalty function with the HBMO algorithm for solving combinatorial

design–operation optimization problems. Application of all these models to a real-world project

shows not only considerable savings in cost and energy but also highlights the efficiency and

capability of the dynamic penalty function in the HBMO algorithm for solving complex problems

of this type.
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NOTATION

ai, bi, ci efficiency curve coefficients of ith pump

CE unit energy price

Ci cost of ith pump

C0
i equivalent cost of ith pump after construction

time

Di delivery pipe diameter of ith pump

ET total annual consumed energy

e efficiency

ei,j efficiency of ith pump at jth month

g number of current generation

Gen total number of generations

H pumping head

Hi,j pumping head of ith pump at jth month

HSi,j static head of ith pump at jth month

Hmaxi maximum allowable pumping head of ith pump

Hmini
minimum allowable pumping head of ith pump

i, j ith pump at jth month

LPDFi penalty allocated to the variable i at generation g

(QN)j total demand at jth month

Qi,j discharge of ith pump i at jth month

Qmaxi maximum allowable discharge of ith pump

TC construction length of project

Vioi violation of variable i from the feasible region

a constant variable

b constant variable

Dt time step of pumping

INTRODUCTION

Evolutionary andmeta-heuristic algorithms (EAs) have been

extensively used as search and optimization tools in various

problem domains. Ease of use and broad applicability are

some of the promising and basic reasons for their popularity.

Complexity in the nature of engineering optimization

problems, such as discretization of the search domain, non-

linearity and non-convexity, are among the facts that

decrease the capability of traditional methods (linear

programming (LP), non-linear programming (NLP) and

dynamic programming (DP)), paving the way for the use of

evolutionary and meta-heuristic algorithms. Water utilities

have begun using a new analysis technique – genetic

algorithm (GA) optimization – to help them identify

superior, low-cost system expansion and operating alterna-

tives. GA has also been applied in optimization of water

supply pumping systems, as in all sub-disciplines within civil

engineering. Furthermore GA has been used to improve the

design ofwater distribution systems (Simpson et al. 1994;Reis

et al. 1997; Savic & Walters 1997; Boulos et al. 2000;

Moradi-Jalal et al. 2004).

Evolutionary Algorithms (EAs) are most directly suited

to unconstrained optimization. Applying EAs to con-

strained optimization problems is often a challenging effort.

Several methods have been proposed for handling

constraints. The most common method to handle con-

straints is to use penalty functions. They have been applied

to a wide range of problems in diverse fields such as

engineering, mathematics, operations research, etc. Most of

the problems in these fields are stated as constrained

optimization problems. Since EAs are directly applicable

only to unconstrained optimization, it is necessary to use

some additional methods that will keep solutions in the

feasible region.

Real-world optimization problems have constraints that

must be satisfied by the solution of the problem. A variety of

constraint handling methods has been suggested by many

researchers. Each method has its own advantages and

disadvantages. Themost popular constraint-handlingmethod

among users is the penalty functionmethod. It is impossible to

say which one is the best specific penalty method for every

problem. The main problem associated with most methods is

the selection of appropriate values of the penalty parameters.

Consequently, users have to experiment with different values

of penalty parameters. In this paper, we use dynamic penalty

function (DPF) and discuss its advantages for solving

combinatorial optimization problems compared with the

static penalty function approach.

The objective of optimal design and operation of

pumping stations, which is a large-scale NLP problem, is

to minimize annual design and operational costs over a

planning horizon subject to a set of hydraulic constraints,

bounding values on the decision variables and constraints

reflecting operator preferences and system limitations.

The energy required for operating pumping stations to

supply water for irrigation is often significant. The large
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costs of establishing, maintaining and operating pumping

stations, particularly at a time of increasing energy costs,

have motivated a search for the optimal design and

operation of pumping stations through existing approaches

(Ashofteh 1999; Boulos et al. 2001; Moradi-Jalal et al. 2003).

There have been several recent attempts to develop

optimal design and control algorithms to assist in the

operation of complex water distribution systems. The

various algorithms were oriented towards determining the

least-cost pump scheduling policies (typically proper on–off

pump operation) and were based on the use of optimization

tools including LP, NLP, DP, enumeration techniques,

general heuristics and GAs. The success of these procedures

has been limited and few have been applied to real water

distribution systems. Limited acceptance of optimal control

models in engineering practice stems from several possible

factors: (1) such techniques are generally quite complex

involving a considerable amount of mathematical sophisti-

cation (e.g. requiring extensive expertise in systems analysis

and careful setting up and fine-tuning of parameters); (2)

they are generally highly dependent upon the number of

pumps and storage tanks being considered along with the

duration of the operating period; (3) they are generally

subject to oversimplification of the model and its com-

ponents along with several simplifying assumptions to

accommodate the nonlinear hydraulic constraints that

require, for example, demands to be known with certainty;

(4) they tend to be extremely time-consuming to run,

leading to additional costs and inefficient computer use; and

(5) they may be easily trapped at a local optimum and may

not lead to a global optimal solution. Another important

reason for their lack of acceptance, implied by point (4), is

the unavailability of suitable and user-friendly pump

optimization packages. As a result, most optimal control

models have only been used to support research, and have

not been practically used for real system decision-making

Bozorg Haddad et al. (2007).

Honey-bee mating may also be considered as a typical

swarm-based approach to optimization in which the search

algorithm is inspired by the process of mating in real honey-

bees. Bozorg Haddad et al. (2006) demonstrated the

efficiency and applicability of the HBMO algorithm by

applying it to well-known mathematical optimization

problems and compared the final solutions with those

from analytical methods and GA. Also, Afshar et al. (2007)

tested the applicability of the algorithm in the field of water

resources. These authors applied the HBMO algorithm to

the optimum operation of a single-reservoir problem in a

continuous solution domain. In a recent work, Bozorg

Haddad et al. (2007) applied the HBMO algorithm to solve

a design–operation of pumping stations. The obtained

results were more cost-effective than those by GA reported

by Moradi-Jalal et al. (2004) for the same problem.

In this paper, the dynamic penalty function in evol-

utionary algorithms is presented and tested with the HBMO

algorithm in solving a design–operation optimization of a

real case pump station to demonstrate the proficiency of

this combination in solving combinatorial optimization

problems.

MATHEMATICAL MODEL DEVELOPMENT AND

MODEL SIMPLIFICATION

The mathematical model has been completely presented in

Bozorg Haddad et al. (2007). The goal is to minimize total

annual cost which includes both annual energy consump-

tion of each candidate pumping system, based on the

increment discharge time of duration curves and the annual

depreciation cost of associated capital investments. Thus,

the objective function may be expressed as

MinðATC Þ ¼
Xn
i¼1

CRF :C
0
i þ CE:ET ð1Þ

in which

C0
i ¼ 1þ

r £ TC

2

� �
Ci ð2Þ

where ATC ¼ annual total cost, n ¼ number of turbines,

CRF ¼ capital recovery factor; Ci, C0
i ¼ cost of the ith

pump and equivalent cost of ith pump after construction

time, respectively, CE ¼ unit energy cost, ET ¼ total

annual consumed energy, r ¼ rate of interest and TC

¼ length of construction. The project’s useful life, rates of

interest and depreciation, capital cost and length of

construction are all considered in this determination.
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The annual consumed energy ET is determined as

ET ¼ rg
Xn
i¼1

Xm
j¼1

Hi;jðQi;jÞ
Qi;j

ei;jðQi;jÞ
Dti;j

i ¼ 1; … ;n and j ¼ 1; … ;m

ð3Þ

in which Qi,j ¼ discharge from the ith pump at jth time

step, ei,j ¼ efficiency of ith pump at jth time step, Dti,j

¼ associated time step of pump operation, r ¼ density of

water and g ¼ gravitational acceleration. Note that pump

efficiency is a function of pump discharge, which is related

to the total discharge at the jth time step.

The objective function (1) and Equation (3) are

constrained by

0 # Qi;j # Qmaxi ð4Þ

Xn
i¼1

Qi;j ¼ ðQNÞj ð5Þ

Hmini
# Hi;j # Hmaxi ð6Þ

where (QN)j ¼ total demand discharge required to be

supplied at the jth time step, Qmaxi ¼ maximum allowable

discharge of ith pump, Hi,j ¼ pumping head of ith pump at

jth month, Hmini
¼ minimum allowable pumping head of

ith pump and Hmaxi ¼ maximum allowable pumping head

of ith pump. These constraints are valid for all pumps at all

times (i ¼ 1,… ,n and j ¼ 1,… ,m). The net pumping head

Hi,j(Qi,j) is also related to the static head and the total head

losses. The Darcy–Weisbach equation has been applied in

this paper. The fact that the HW coefficient is assumed to be

independent of pipe diameter, velocity of flow and viscosity

requires extreme caution when applying this formula to the

optimization of water distribution systems.

It is assumed that the pump efficiency curve is a

function of discharge as follows:

ei;jðQi;jÞ ¼ aiQ
2
i;j þ biQi;j þ ci

i ¼ 1; … ;n and j ¼ 1; … ;m
ð7Þ

where ai, bi and ci are performance coefficients found for

the ith pump. By substituting Equation (7) into Equation

(3), the annual consumed energy reduces to

ET ¼ rg
Xn
i¼1

Xm
j¼1

Hi;jðQi;jÞ
Qi;j

aiQ
2
i;j þ biQi;j þ ci

� �Dti;j

i ¼ 1; … ;n and j ¼ 1; … ;m:

ð8Þ

The final step in the optimal design is to select an

appropriate pumping station system based on the

minimum cost, number and type of pumps, demand curve

characteristics, feasibility and personal preferences based

on experience.

HONEY-BEE MATING OPTIMIZATION (HBMO)

ALGORITHM

A detailed mapping between real phenomena and

mathematical representation of HBMO algorithm is

shown in Table 1. By realizing the natural mating process

and biological statements and their translation into

algorithmic statements, the optimization algorithm is

developed. A detailed flowchart of the proposed algorithm

is presented in Figure 1, where the mapping between the

real mating process and the computational steps are

noted. The mating process itself is translated into a

simulated annealing (SA) process which is presented

in Figure 2. Although a detailed description of the

proposed algorithm can be gathered from Bozorg Haddad

et al. (2006), Afshar et al. (2007) and Bozorg Haddad et al.

(2007), an overview of the HBMO algorithm is presented

here.

The algorithm receives two sets of model input

parameters: (a) model structure parameters that are

mainly problem-dependent, such as number of decision

variables, upper and lower bounds on decision variables,

penalty coefficients, etc., and (b) algorithm parameters

that may be used as tuning parameters, such as number of

mating flights, size of hive and spermatheca, number of

solutions in the simulated annealing process, queen’s

initial speed and energy, as well as type and number of

heuristic functions defined by different workers.

The algorithm begins with the random generation of a

set of initial solutions. The generated solutions may or

may not belong to the feasible region. In fact, most of the
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generated solutions may be non-feasible. Randomly

generated solutions are then ranked using a penalized

objective function. The fittest solution is named the

queen, whereas the remaining solutions are categorized

as drones (i.e. trial solutions). By defining the queen,

drones, broods, and workers (predefined functions), the

hive is completely formed and mating may now be

started.

The queens play the most important role in the mating

process in nature as well as in the HBMO algorithm. Each

Table 1 | Mapping between real phenomena and mathematical representation of HBMO algorithm (Bozorg Haddad et al. 2007)

Mapped components

Row Real Honey-Bees Mathematical representation

1 Gene Decision variable

2 Queen Best solution

3 Queen goodness Objective (fitness) function value

4 Drones Trial solutions

5 Broods New solutions

6 Workers (nurse bees) Heuristic functions

7 Spermatheca (mating pool) Pool of nominated trial solutions

8 Hive Search space containing feasible/non-feasible solutions

9 Number of mating flights Number of iterations

10 Queen’s energy Parameter defining number of generated simulated
annealing trial solutions

11 Queen’s speed Temperature in simulated annealing

12 Number of drones queen encounters to
mate with her

Set of simulated annealing solutions

Mapped procedures

Row Real process Mathematical operators

1 Mating flight Simulated annealing

2 Breeding Generating new solutions (using heuristic crossover
operators)

3 Brood feeding Improving new solutions (using heuristic mutation
operators)

4 Queen feeding Improving best solution (using heuristic mutation
operators)

5 Updating workers Updating heuristic functions (allocating specified domain
size to each function)
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queen is characterized with a genotype, speed, energy and a

spermatheca with defined capacity.

In the mating flight, drones must be nominated to mate

with the queen probabilistically as mentioned earlier.

Therefore, the simulated annealing (SA) process is

employed to map the real mating flight into a mathematical

representation in the algorithm development. Using SA, a

set of solutions from the search space is selected to form a

mating pool for possible information exchange between the

best preset solution and the selected trial solutions (Bozorg

Haddad et al. 2007)

The mating flight may be considered as a set of

transitions in a state-space (the environment) where the

queen moves between the different states with some speed

Figure 1 | Algorithm and computational flowchart with translation of natural processes into algorithmic statements (Bozorg Haddad et al. 2006).
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and mates with the drone encountered at each state

probabilistically. At the start of the flight, the queen is

initialized with some energy content and returns to her nest

when the energy is within some threshold from zero or

when her spermatheca is full.

A drone mates with a queen probabilistically using an

annealing function as follows (Abbass 2001):

ProbðQ;DÞ ¼ exp½2DðfÞ=SðtÞ� ð9Þ

where Prob (Q, D) is the probability of adding the sperm of

drone D to the spermatheca of queen Q (that is, the

probability of a successful mating), D( f) is the absolute

difference between the fitness of D (i.e. f(D)) and the fitness

of Q (i.e. f(Q)) and S(t) is the speed of the queen at time t. A

successful mating is when the Prob (Q, D) is greater than a

uniform random number [ [0, 1]. It is apparent that this

function acts as an annealing function, where the prob-

ability of mating is high either when the queen is still at the

Figure 2 | Simulated annealing flowchart (Bozorg Haddad et al. 2007).
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beginning of her mating flight and therefore her speed is

high, or when the fitness of the drone is as good as the

queen’s. After each successful mating, the queen’s speed

decreases and after each transition in space, the queen’s

energy decays according to the following equations:

Sðtþ 1Þ ¼ aðtÞ £ SðtÞ ð10Þ

Eðtþ 1Þ ¼ EðtÞ2 g ð11Þ

aðtÞ ¼ ½M2mðtÞ�=M ð12Þ

where a(t) is a factor [ [0,1], M is the spermatheca size,

m(t) is the number of drones selected for mating at time t

and g is the amount of energy reduction after each

transition. In each mating flight some preset allowable

number for the queen’s transitions have been considered. In

each transition, the queen will lose one of her chances for

trying new drones. In this process, it is considered that E(t)

is equal to the preset allowable number of transitions in

space and g ¼ 1 (Bozorg Haddad et al. 2006).

Real breeding takes place when the queen returns to the

hive. This real process is mapped into the developed

algorithm to generate a new set of solutions using different

predefined crossover operators and heuristic functions

between the best current solution and the trial solutions.

The rate of contribution of crossover operators and

heuristic functions on the information exchange between

the solutions is made proportional to their fitness value at

the previous cycle. It has been found that the type and

number of crossover operators has a significant effect on the

quality of the generated new solution (i.e. brood). Therefore,

in the present algorithm, four different crossover operators

are employed. A fitness value is assigned to each operator

which is updated by considering its contribution to solution

improvement at each computational step. For example, the

fitness value (effectiveness weight) assigned to each cross-

over operator either increases or decreases at the next

generation and eventually its contribution in generating the

next generation decreases. In this study, four operators are

used in the breeding process (i.e. new solution generation):

(1) one-point crossover in which the queen’s genotype has

been put in the left side of the generated brood’s genotype,

(2) one-point crossover in which the queen’s genotype has

been put in the right side of the generated brood’s genotype,

(3) two-point crossover in which the queen’s genotype has

been put in the middle of the generated brood’s genotype

and (4) two-point crossover in which the queen’s genotype

has been put in both ends of the generated brood’s

genotype. In general, for further studies, more than four

crossover operators can be considered. It will not cause any

increase in computational effort, because even in the case

that there are so many operators contributing in the

breeding and new solution generation, the better functions

will almost find a chance to come to the next generation,

though the chance of the others will not be eliminated, even

without making any improvement.

The feeding process of broods and the queen with royal

jelly which is performed by workers, as a very determinant

stage in the real honey-bees life cycle, is mapped into the

algorithm to improve the new generalized set of solutions.

In this stage, by employing different heuristic functions and

mutation operators, the best solution is improved. Again,

the contribution rate of the operators for solution improve-

ment is made proportional to their fitness value in the

previous cycle. For example, in this study two different

operators for mutation have been considered: (1) random

cut–random value and (2) random cut–random boundary

value. In the second case, an assigned value to the genotype

will be chosen as a random value towards the feasible

boundary region by increasing the number of generations.

The ranking process and selection of the best heuristic

functions for the next generation is the same as that

described for crossover operators. However, in its present

form, the algorithm benefits from a combination of four

different crossover operators acting as breeding processes as

well as two mutation operators (heuristic functions) acting

as different feeding performance.

As life in the hive continues, the proposed algorithm

continues until the termination criteria (meeting the

predefined number of mating flights) are satisfied, and the

best solution from the set of current best solutions and

improved solutions are selected. If the termination criteria

are not satisfied, all trial solutions are discarded and a new

set of trial solutions are generated to make the search

process more extensive.

Drones are either killed or die after mating is complete.

This real process is alsomapped into theHBMOalgorithmby

killing all drones after a cycle and new drones (i.e. trial

solutions) are generated. To generate a new set of trial
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solutions, remaining broods with desirable fitness are

partially used along with the random generation of new

(trial) solutions needed to fill the spermatheca (mating pool).

Usageof remainingbroodswithdesirable fitness aswell as the

random generation of new solutions is considered in this

study. These new drones are constructed by copying some of

thequeen’s genes into thedrone genotype andcompleting the

reminder of the genes from a random production process.

Thepercentage of copied genes increases from0at the start to

100 at the end of the algorithm.

DYNAMIC PENALTY FUNCTION

During the past few years, several methods have been

proposed for handling constraints by GAs (Michalewicz

1995a; Smith & Coit 1997; Coello 1999, 2002). Most of these

methods have serious drawbacks. While some of them may

give infeasible solution or require many additional par-

ameters, others are problem-dependent (i.e. an specific

algorithm has to be designed for each particular problem).

The most popular approach in the EA community to handle

constraints is to use penalty functions that penalize

infeasible solutions by reducing their fitness values

in proportion to their degrees of constraint violation

(Michalewicz et al. 1996; Smith & Coit 1997).

There are several approaches proposed in EAs to

handle constrained optimization problems. These

approaches can be grouped into four major categories

(Michalewicz & Schouenauer 1996): (1) methods based on

penalty functions, (2) methods based on a search of feasible

solutions, (3) methods based on preserving feasibility of

solutions and (4) hybrid methods.

The penalty method transforms a constrained problem

to an unconstrained one using two approaches: additive

approach and multiplicative approach. The additive penalty

type has received much more attention than the multi-

plicative type in the EA community.

In classical optimization, two types of penalty function

are commonly used: interior and exterior penalty functions.

In EAs, exterior penalty functions are used more than

interior penalty functions mainly because there is no need

to start with a feasible solution in exterior penalty functions.

Also, finding a feasible solution in many problems is

NP-hard itself. If either the penalty is too large or too

small, the problem could be very hard for EAs. A big penalty

prevents us from searching unfeasible regions. In this case,

EA will converge to a feasible solution very quickly even if it

is far from the optimal. A very small penalty will cause it to

spend so much time in searching an unfeasible region; thus

EA would converge to an infeasible solution (Michalewicz

& Fogel 2000).

In static penalty methods, penalty parameters do not

depend on the current generation number and a constant

penalty is applied to infeasible solutions. Homaifar et al.

(1994) proposed a static penalty approach in which users

describe some levels of violation. The disadvantage of this

method is the large number of parameters that must be set.

Michalewicz (1995b) showed that the quality of solutions is

very sensitive to the values of these parameters. Kuri

Morales & Quezada (1998) suggested a static penalty

approach that uses information about the number of

violated constraints, not the amount of constraint violation.

In dynamic penalty functions, penalty parameters are

usually dependent on the current generation number. The

dynamic method increases the penalty as the generation

grows. The quality of a possible solution is very sensitive to

changes of used parameters.Michalewicz (1995b) gave some

examples to state that these parameter values cause

premature convergence. He also showed that the method

converges to an unfeasible solution or a solution that is far

from an optimal solution.

In this paper, a linear dynamic penalty function (LDPF)

has been considered as below:

LDPFi ¼ ðg=GenÞðaÞðVioiÞ
b ð13Þ

where LDPFi is the penalty allocated to the variable i at

generation g,Gen is the ultimate number of generations, Vioi

is the violation of variable i from the feasible region and

a ¼ 1 £ 106 and b ¼ 2 are constant variables. Thus, the

objective function will be converted to the form

MinðATCÞ ¼
Xn
i¼1

CRF :C
0
i þ CE:ET þ

Xn
i¼1

LDPFi ð14Þ

in which the amount of violation assigned for each infeasible

solution increases with a linear pattern as the generation

increases. It means that the objective function at first will
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receive a very small penalty at the start of the algorithm for a

certain amount of violation compared to the penalty due to

the same violation at later generations. This will let the

algorithm test the other areas of the solution region to find a

more suitable solution for the problem. During this

procedure, which is similar to an annealing process, the

algorithm will search more local optima compared with the

case using a static penalty function. Although the compu-

tational time will increase, there is a chance to find the better

solution at the end of the process because of the wide search

space domain. One of the potential cases for testing the

proficiency of this strategy is in the case of design–operation

problems in the field of engineering. In such cases, due to

setting the operational decision variables according to

design decision variables, there are so many local optima

in the problem. Thus, the applicability of the proposed linear

dynamic penalty function will be tested in the following

design–operation problem.

CASE STUDY

Iran is located in a semiarid region of the Middle East.

Distribution of precipitation is uneven, with an average

precipitation of less than one-third of the world average

(Alizadeh & Keshavarz 2005). In the year 2000, about 43

billion m3 of surface water resources, including regulated

flows, were used by reservoir dams, pumping stations,

small-scale water supply projects or traditional stream

systems. (Jamab 1999).

As a case study, the main pumping station of Iran’s

Farabi Agricultural and Industrial Complex is considered. It

consists of 20,000ha agricultural land, which is located in

the Khoozestan province in southwestern Iran. Irrigated

water in this project is used for sugar cane and other crops.

In this station, demanded water is supplied for agricultural

use from the Karoon River to the main lot. The Karoon

River, 890 km in length with a catchment area of

66,930km2, is the longest river in the country which flows

through many industrial and agricultural areas. Karoon

water is also used for the water supply of Ahvaz city, the

capital city of Khoozestan province.

A demand duration curve is discretized in monthly

segments that must be supplied by the main pumping

station. For illustration purposes, a problem with one

discharge monthly duration curve and four different types

of pumps from 10 proposed unit pumps was considered.

These sets consist of four different pump types with their

cost and characteristics given in Table 2. Note that in the

optimization models ‘relative discharge’ (which is the ratio

of discharge to maximum allowable discharge) is selected so

as to simplify the calculations. Coefficients of efficiency–

relative discharge curves for specified pump types are listed

in Table 3 and are used both in the design example and in

the optimized designs.

It is clear that optimum discharges for the pumps were

greater than half of theirmaximum allowable discharge. Thus,

in a real case, in order to avoid division by zero in the

calculation of Equation (8), two different curves were

considered for efficiency–relative discharge curves. The

main curve, which is related to 0:5Qmaxi , Qij , Qmaxi ; is the

original curve and the additional curve, which is related to

Table 2 | Specification of pre-selected pumps (Bozorg Haddad et al. 2007)

Cost

(106 Rial) Leq(m)

Diameter

(m)

Hmax

(m)

Qopt

(m3/s)

Qmax

(m3/s) Pump type

224.37 265.36 1.35 25 5.70 7.41 1

89.14 214.70 0.90 20 2.26 2.94 2

82.93 183.80 0.80 18 2.06 2.68 3

59.04 169.02 0.70 14 1.50 1.95 4

Table 3 | Efficiency-discharge relations for specified pump types (Bozorg Haddad et al.

2007)

Pump type 4 Pump type 3 Pump type 2 Pump type 1

Q (m3/s) e (%) Q (m3/s) e (%) Q (m3/s) e (%) Q (m3/s) e (%)

1.50 86.0 2.06 86.0 2.26 86.0 5.70 86.0

1.35 81.7 1.85 81.7 2.03 81.7 5.13 81.7

1.65 83.2 2.27 83.2 2.49 83.2 6.27 83.2

1.20 75.2 1.65 75.2 1.81 75.2 4.56 75.2

1.80 79.1 2.47 79.1 2.71 79.1 6.84 79.1
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0 , Qij , 0:5Qmaxi ; is a supplemental curve that is used to

prevent the reporting of infeasible and incorrect discharge

results. Thus, by applying two curves (the main curve and the

additional curve, as illustrated in Table 4), losing the final

optimal results and diversion of the algorithm to infeasible

results is removed during the computational process.

The results of the optimization model are for an

optimum set which consists of: (1) the number of pumps

and pump types of the set, (2) a value for output discharge

for every time step and for each pump, (3) the initial

investment and its depreciation cost, (4) the operational

cost and (5) the total annual cost of the optimum set, which

is the main parameter of the optimization model.

In the existing design of the Farabi main pumping station,

only three different pre-sets are selected and cost analysis is

limited to the comparison of the results of these three sets. The

final set, which is selected in the practical design, is the first

pre-set. It consists of 16 Type 1 pumps, for ease of operation

and minimum annual cost among the other presets.

ALGORITHM APPLICATION

Once the optimization process and the method of solution

are identified, a Lagrange Multipliers (LM) method is used

to find the Optimal Design of the Irrigation Pumping

Station (ODIPS). Further information about LM formu-

lation can be found in Moradi-Jalal et al. (2003). The

optimum set, which is obtained through the LM method,

consists of 10 pumps with different pump types: three

pumps of Type 1, four pumps of Type 2 and three pumps of

Type 5. By using various pump types, the pumping station’s

operation flexibility increases and the system can find more

suitable pump types to operate more effectively.

Table 4 | Coefficients of efficiency-relative discharge curves for specified pump types

(Bozorg Haddad et al. 2007)

Coefficient Additional Curve qi < 0.5 Main Curve qi $ 0.5

ai 1.84 24.870

bi 20.06 7.603

ci 0.05 22.107

eðqiÞ ¼ aiq
2
i þ biqþ ci and qi ¼

Qi
Qmaxi

for i ¼ 1, … ,n Main ¼ {q $ 0.5) Additional ¼ {q , 0.5}.

Table 5 | Specification of pre-selected sets and optimum sets of pumps

DPF pp

-HBMO

SPF p

-HBMO GA LM

Third pre-

selected

set

Second pre-

selected

set

First pre-

selected

set

Pump

type

3 3 4 3 5 0 0 1

4 3 2 4 0 14 0 2

0 3 0 0 0 0 16 3

3 1 3 3 3 0 0 4

10 10 9 10 8 14 16 Total

pStatic Penalty Function.
pp Dynamic Penalty Function.

Table 6 | Cost specification of pre-selected and optimum sets of pumps

DPF pp -HBMO SPF p -HBMO GA LM

Third

pre-selected set

Second

pre-selected set

First

pre-selected set Cost specification (106 Rial)

1207 1248 1253 1224 1299 1248 1327 Initial investment

114.7 118.6 119.1 114.7 123.5 118.6 126.1 Annual depreciation

72.4 71.0 71.5 67.7 105.6 114.6 102.2 Annual operation

187.1 189.7 190.6 182.4 229.1 233.2 228.3 Annual total

102.6 104.0 104.5 100.0 125.6 127.8 125.2 Optimum (%)

pStatic Penalty Function.
pp Dynamic Penalty Function.
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Table 7 | Monthly discharges of HBMO optimum set of pumps

Monthly discharge in different months (m3/s)

Pump no. Pump type Qmax Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Min. Ave. Max. Sum.

1 1 7.41 0.00 4.76 4.76 4.98 5.25 6.94 7.40 7.40 5.77 5.99 5.78 4.76 0.00 5.32 7.40 63.79

2 1 7.41 4.74 0.00 4.76 0.00 5.23 5.70 7.24 6.74 6.12 5.52 4.97 4.76 0.00 4.65 7.24 55.78

3 1 7.41 0.00 0.00 0.00 5.38 5.05 6.20 7.40 7.40 6.23 5.97 0.00 0.00 0.00 3.64 7.40 43.63

4 2 2.94 0.00 1.88 1.88 1.96 2.12 2.49 2.91 2.77 2.47 2.66 1.98 0.00 0.00 1.93 2.91 23.12

5 2 2.94 1.88 1.88 1.88 1.96 2.11 2.25 2.93 2.93 2.09 2.15 0.00 0.00 0.00 1.84 2.93 22.06

6 2 2.94 1.88 0.00 0.00 1.89 1.95 2.54 2.91 2.93 2.05 2.36 2.42 0.00 0.00 1.74 2.93 20.93

7 2 2.94 0.00 0.00 0.00 2.00 2.04 2.46 2.93 2.93 2.31 2.36 0.00 1.88 0.00 1.58 2.93 18.91

8 4 1.95 0.00 1.23 1.23 1.31 1.27 1.76 1.94 1.80 1.57 1.73 1.32 0.00 0.00 1.26 1.94 15.16

9 4 1.95 1.23 0.00 1.23 1.41 0.00 1.69 1.90 1.62 1.54 1.38 1.23 0.00 0.00 1.10 1.90 13.23

10 4 1.95 0.00 1.23 0.00 1.41 1.38 1.77 1.94 1.88 1.55 1.48 0.00 0.00 0.00 1.05 1.94 12.64

Min. 0.00 0.00 0.00 0.00 0.00 1.69 1.90 1.62 1.54 1.38 0.00 0.00

Ave. 0.97 1.10 1.57 2.23 2.64 3.38 3.95 3.84 3.17 3.16 1.77 1.14

Max. 4.74 4.76 4.76 5.38 5.25 6.94 7.40 7.40 6.23 5.99 5.78 4.76

Sum. 9.73 10.98 15.74 22.30 26.40 33.80 39.50 38.40 31.70 31.60 17.70 11.40

Demand 9.3 10.5 15.2 22.3 26.4 33.8 39.5 38.4 31.7 31.6 17.7 11
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The same mathematical model can be solved by the GA

algorithm. The GA approach is a probabilistic global optim-

ization technique based on themechanics of natural selection

and genetics and optimizes the aforementioned model.

Numerically the process uses reproduction, crossover and

mutation to evolve encoded variables. The algorithm is

designed to produce ‘populations’ of solutions whose ‘off-

spring’ display increasing levels of optimality. Using a GA

algorithm to optimize the design and operation of a pumping

station involves the following steps: (i) randomlygeneratingan

initial set of pump combinations for given demand values, (ii)

minimizing the total annual cost, which includes operation,

maintenance and depreciation costs, by changing the set and

dischargeof thepumpsbasedontheperformanceevaluatedby

theGAprocess and (iii) achieving thefinal criterion to stop the

optimization process and reporting the number of pumps and

pump types, values for output discharge on every time step for

the optimum set of pumps, the initial investment and the

annual costs of depreciation and operation, and the total costs

for the optimum set. Further information about the GA

formulation can be found inMoradi-Jalal et al. (2004).

Another approach to solve this problem is presented by

Bozorg Haddad et al. (2007) using the static penalty

function (SPF) technique. In this paper, a new approach

Figure 3 | Monthly discharge values of the optimum set by the HBMO algorithm and

its composition in each monthly demand.

Figure 4 | Monthly operational and maintenance costs of the optimum HBMO set.
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Figure 5 | Monthly pumping head of selected pumps in the optimum HBMO set.

Figure 6 | Monthly pumping efficiency of selected pumps in the optimum HBMO set.
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is considered based on the use of a dynamic penalty

function (DPF) in the HBMO algorithm and its results are

compared with other previous approaches.

Table 5 shows the specification of three pre-sets in the

practical design as well as the mathematically determined

sets of other programs (LM, GA, SPF-HBMO and DPF-

HBMO optimum sets). Table 6 shows the main output of

the optimum set selected by LM, GA, and both SPF and

DPF of the HBMO algorithm simultaneously compared

with three pre-sets of practical design. As stated earlier, the

main purpose of the optimization model is to minimize the

total annual cost of feasible sets, which comprises both

annual depreciation and operation costs. More precision in

Table 6 would help to show that the amount of savings in

annual depreciation cost between the optimum set and the

pre-sets is quite small. The main savings occurred in the

annual operation cost, with nearly 32% savings in energy

cost. It is clear that, by using these optimization algorithms,

a decrease of about 20% is obtained in annual operating and

depreciation costs. The comparison of total cost of the

optimization algorithms shows that the least cost ever

reported by evolutionary algorithms is that reported by the

DPF-HBMO. This cost is a 1.4% improvement over that

reported by the SPF-HBMO, though it still has a 2.6%

violation from the global result reported by LM. Results

show that DPF can be a useful and capable tool to

overcome the premature convergence in evolutionary

algorithms and especially the HBMO algorithm.

A preliminary operation rule (POR) schedule, which is

the optimum discharge distribution of the demand dis-

charge, is derived from the HBMO program and listed in

Table 7. The operator must then turn on and off the pumps

during the irrigation period according to the POR schedule.

Monthly discharge values of the optimum set by the HBMO

program and their composition in each monthly demand is

shown in Figure 3. While monthly operational and

maintenance costs of the optimum DPF-HBMO set is

depicted in Figure 4, the monthly pumping head values and

the efficiencies of the optimum HBMO set are shown in

Figures 5 and 6, respectively.

Finally, at the end of the optimization process, basic

information about the DPF-HBMO and SPF-HBMO results,

which includes number of program runs, values of objective

function for each run and their statistical measures, are T
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obtained and listed in Table 8. This shows that, in almost all of

the10runs resulting fromDPF, thealgorithmhasconverged to

better results compared with those of SPF. Convergence

curves for the number of function evaluations via the objective

function values in the HBMO algorithm for the best and the

averageof 10 runs in bothDPFandSPFare shown inFigures 7

and 8. It is shown that, after a while, the objective function

value of SPF converges to a near-optimal value (new

evaluations continue without any considerable improvement

in the final result) while the convergence of DPF continues

toward the better solution.

CONCLUDING REMARKS

The consumed energy required for operating pumping

stations in an irrigation district may be more significant

than the energy needed for other water facilities. Thus,

serious consideration must be taken to improve the design

and operation efficiency of existing or newly developed

pumping stations. Optimal design and operation of pumping

stations is a large-scale, nonlinear combinatorial optimiz-

ation problem. Developing a large-scale, discrete and non-

linear optimization model provides the designer, as well as

Figure 7 | Average rate of convergence over 10 different runs for both static and dynamic penalty functions.

Figure 8 | Best rate of convergence over 10 different runs for both static and dynamic penalty functions.
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the operator, with the best possible combination of

design variables and operational parameters. The compu-

tational complexity of determining optimal designs for

pumping stations is extremely high. This is true even without

considering annual costs or other legitimate objectives.

Minimizing the total annual design and operation cost

over a given planning horizon based on a DPF-HBMO

approach was taken as the objective of the paper. To test the

efficacy and robustness of the proposed strategy, a test

problem from the literature has been chosen. This problem

has been studied using other optimization methods by

several researchers. It was shown that using the proposed

algorithm with its attached DPF strategy might significantly

reduce the total annual cost. The main portion of the cost

reduction resulted from energy savings as a consequence of

applying better operational rules. Developing the best

operation rule and linking it to the optimum design model

showed much promise.

Interactive characteristics of the DPF-HBMO are

designed to assist irrigation pumping station operators and

the training of new operators in selecting and scheduling

efficient and cost-effective pump combinations to plan and

operate better systems. The proposed model was tested and

verified on an actual large-scale water system. Results

indicated that the model can effectively reduce the cost of

energy consumed by pumping in a complex water system

while maintaining satisfactory service levels. Water utility

managers now have a tool to help them produce the best

possible pumping schedules with minimum effort and

significant cost savings.

Although the HBMO is only applied for research

purposes at present, it is not complicated to use and is not

mathematically sophisticated, making it capable to be used

in real world problems. In expanded network problems, it is

hoped that its inherent simplicity will help the HBMO gain

acceptance by practitioners familiar with basic network

simulation skills. The authors feel strongly that an algorithm

such as the HBMO should not be considered as a decision-

making tool, but as a technique able to provide alternative

solutions from which designers/decision-makers may

choose from. Also, the new DPF strategy attached to the

HBMO increases its capability in handling combinatorial

design–operation optimization problems. The results indi-

cate that, although the best results ever reported for the

considered problem is by SPF-HBMO, using the DPF-

HBMO presents a better solution, showing a more

economical cost of design. So, applying the DPF in such

cases is highly recommended to overcome trapping in local

optima in the case of design–operation problems.
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