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connectors for different operating frequencies. While model 

II has the lowest parasitic inductance among the proposed 

connector architectures, there is not a notable difference 

between model I, model II and model V. However, 

comparing this results with the parasitic inductance of the 

primary design, a substantial improvement is expected using 

symmetric drain connector. For instance, parasitic 

inductance of the primary drain connector was calculated to 

be 200pH for 100 KHz operation frequency [15], while it is 

reduced to around 20-23 pH for symmetric connectors.   

 
Fig. 5 Parasitic inductance of proposed symmetric 

connectors  

FEA simulation of the packaging with Mo and Mo-Cu drain 

connector prove that by inducing lower plastic work density 

to the solders, copper is a better material from thermo-

mechanical reliability point of view, since in this particular 

packaging architecture, the critical solder interface under the 

SiC device for thermally induced stresses is driven by the 

behavior of the drain connector which sits atop the device. 

Also, the negative magnetic susceptibility (-9.63×10-6) of 

copper means it can produce lower parasitic inductance 

compared to Mo and Mo-Cu. 

By comparing the results of thermo-mechanical analysis and 

parasitic inductance measurement, it can be concluded that 

the model V demonstrates the best combination of electrical 

and thermomechanical performance. To estimate the fatigue 

life cycle of the packaging, Darveaux method has been 

utilized. For a thermal cycling test with -50°C and +150°C 

minimum and maximum temperature and 15 min ramping 

and dwell time, the estimated fatigue life of the solders is 870 

cycle. Based on AEC-Q100-REV-G standard [25] for 

automotive electronic devices, this new packaging method 

can be categorized as Grade 2, and important rating in many 

automotive components, since a likely application for such a 

device may appear in electric vehicle power inversion 

systems.  

To experimentally validate the switching performance of the 

optimized device, the down-selected drain connector was 

fabricated from copper sheet, using shaping methods (Fig. 

6). After applying solder mask to die and substrate and 

opening the solder pads, solder paste is applied into the pad 

openings to make a solder pillar. The solder balls are placed 

on top of the die side pillar using a Sikama zone reflow oven. 

A Finetech Fineplacer was used to flip-chip bond the die and 

the substrate. Then the drain connector is attached using 

silver epoxy. After verifying connectivity of the package 

interconnects, the device was characterized in a double pulse 

test. The double pulse testing of the new packaging was 

compared with a discrete 1200 V-rated SiC power MOSFET 

from Wolfspeed with the part number C2M0080120, using a 

DC-bus voltage of 300V and 15A inductor current for both 

modules. The results showed significant improvement of the 

switch performance, as provided in Table 1. The waveform 

of the turn-off event demonstrates 16V reduction in VDS 

overshoot and a significant decrease in ringing of ID was 

observed. The turn-on event waveform exhibit 30V 

overshoot reduction for VDS and also a substantial ringing 

reduction in ID.  

 
Fig. 6 The tested SiC MOSFET packaging  

  

Table 1. Electrical Characteristics Comparisons 

Performance 

Criteria 

VDS Overshoot ID oscillation 

amplitude 

Discrete module 

(turn-off) 

55V 1.125A 

New packaging 

module (turn-off) 

35V 0.25A 

Discrete module 

(turn-on) 

22V 2A 

New packaging 

module (turn-on) 

0V 0.68A 

Improvement in 

turn-off event 

36% 77% 

Improvement in 

turn-on event 

- 66% 

 

While previous studies on the primary design showed 

reliability and switching improvements compared to the 

conventional wire-bonded modules [15,16], this new 

packaging would be a superior substitute for the future 

packaging techniques for sic MOSFETs. However, the 

reliability as determined by conventional ATC testing is 

limited to device temperatures which do not exceed 150°C, 

while SiC dies are capable of operating with high efficiency 

at 500°C ambient temperature [26]. While flip-chip 

packaging can also be used for higher temperature operation 

using high melting point solders with high melting point, 

such as Nano-sliver paste, one important concern is the 
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development of models that can accommodate these new 

materials and operating ranges. 

IV. Conclusion and Future Work 

In this work, the optimization of a new flip-chip packaging 

of SiC MOSFET was developed and demonstrated. FEA 

simulation was used to find the optimized packaging 

configuration under ATC test.  It has been shown that the 

new drain connector architecture significantly increases the 

reliability of the device compared to its initial design. Also, 

the appropriate solder diameter and pitch size was introduced 

to reduce the thermo-mechanical stress. Simulation of Cu, 

Mo and Mo-Cu drain connector proved that copper is the best 

material for the thermo-mechanical reliability as well as 

parasitic inductance measurement. To study the switching 

performance of the device, parasitic inductance of the drain 

connectors was calculated using Q3D simulation. The 

optimized design showed a 97% reduction in parasitic 

inductance compare to the connector used in primary flip-

chip packaging design. Considering 55% reduction in plastic 

work density of the new design, the new packaging 

configuration significantly improve the reliability and 

switching performance of the device. After developing this 

design, the device was fabricated and tested, showing 

significant improvements over prior state of the art.  

This initial demonstration illustrates the power of novel 

package architectures in delivering high performance and 

reliability in power electronics where switching speeds and 

temperatures may exceed the capabilities of Si-based 

designs. In future work, we will look to evaluate assembly 

using higher temperature solders, which in turn will reduce 

plastic work in lower temperature operation in exchange for 

higher interfacial stresses. Design optimization protocols 

such as this effort will be important in developing the next 

generation of electronic components for extreme 

performance operation.  
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