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ABSTRACT

A step that should be considered when developing artificial neural network (ANN) models for water

resources applications is the selection of an appropriate transformation of the data. In general, the

primary motivations for data transformation are: (1) to scale the data so as to be commensurate

with the transfer function in the output layer; (2) to standardise each of the variables; (3) to provide a

suitable initialization of the ANN; and (4) to modify the distribution of the input variables to provide a

better mapping to the outputs. In this paper, five different transformations are investigated in an

attempt to improve the ANN’s forecasting ability. These are: linear transformation, logarithmic

transformation, histogram equalization, seasonal transformation and a transformation to normality.

A case study is presented in which each of the ANN models developed using the different

transformation techniques is used to forecast salinity in the River Murray at Murray Bridge (South

Australia) 14 days in advance. When tested on a validation set from July 1992 to March 1998, the

model developed using the linear transformation resulted in the lowest root mean squared

forecasting error. This finding further strengthens the claim that the probability distribution of the

data does not need to be known to develop effective ANN models. No improvement in the ANN

model’s forecasting ability was made using the logarithmic, seasonal and normality transformations.

The model developed using histogram equalization produced good results for data within the

training domain but was not robust on new patterns outside of the calibration range.

Key words | artificial neural networks, data transformation, forecasting, salinity modelling, water

quality

INTRODUCTION

In recent times, there has been a rapid increase in the

number of applications of artificial neural networks

(ANNs) to the prediction/forecasting of water resources

variables. In a review of 43 papers on the use of ANNs for

the modeling of water resources variables, Maier & Dandy

(2000) found that data transformations were rarely

performed. In only 18 of the 43 papers were the data

scaled to a range commensurate with the transfer function

in the output layer using a linear transformation. In

addition to this, the probability distribution of the data

was not considered in any of the papers.

In the past, it has commonly been perceived in the

literature that data used by ANN models do not need to be

transformed. However, more recently it has been sug-

gested that certain transformations may improve the

performance of ANN models. Shi (2000) described

three broad classes of data transformation. These include:

(1) linear transformation; (2) statistical standardization;

and (3) mathematical functions. Linear transformation is

by far the most widely employed data transformation

technique in ANN applications. The dataset is usually

scaled to the range [0,1] or [ − 1,1] by using the original

data range as a scalar. The objective of linear transforma-

tion is to ensure that all variables receive equal attention

during the training process and that the variables are

scaled in a way so as to be commensurate with the limits of
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the transfer functions used in the output layer. For a

multilayer perceptron (MLP), it is more useful to scale the

data to the range [ − 1,1] rather than [0,1]. This is because

the hidden nodes in a MLP each define a hyperplane and

the connection weights from the input layer to the hidden

layer determine the orientation of the hyperplane and the

bias determines the distance of the hyperplane from the

origin. When the network is initialised, it is usual to set

the bias terms as small random numbers and hence, the

hyperplanes pass close to the origin. Therefore, if the data

are not centered around the origin, the hyperplanes may

fail to pass through the data cloud and, with such a poor

initialization, local minima are likely to occur (Sarle 1997).

In statistical standardization, the computation

involves subtracting a measure of location, such as the

mean and then dividing by a measure of scale, such as the

standard deviation. As mentioned previously, any scaling

that sets the measure of central tendency to zero will be

beneficial during the initialization of a MLP.

Mathematical function transformation applies a

mathematical function to the data, for example, taking the

logarithm of the data to stabilize the seasonality and

variance (Faraway & Chatfield 1998). In statistical models,

non-linear mathematical transforms, such as taking the

square root or logarithm of the data, are widely used to

transform the data to approximate a Gaussian distribution

to minimize the effect of extreme values.

Recently, Shi (2000) proposed a new type of transfor-

mation, called distribution transformation, for transform-

ing the inputs to an ANN model. This method transforms

a stream of random data distributed on any range to

uniformly distributed data points on [0,1]. Since ANNs

are only useful for interpolation purposes, by transforming

the input data to uniformity, a continuous and smooth

mapping of the input variables to the output can be

achieved. Distribution transformation requires that a

distribution be fitted to each of the input variables. By

using the relationship between the probability distribution

function (PDF) and the cumulative distribution function

(CDF), any distribution in the range can be transformed to

a uniform distribution on [0,1] (Shi 2000).

In general, the primary motivations for data transfor-

mation in ANN models are to scale the data in order to be

commensurate with the transfer function in the output

layer, to standardize each of the variables, to provide a

suitable initialization of the ANN and to modify the dis-

tribution of the input variables to provide a better map-

ping to the outputs. Most traditional statistical models also

require that the data are normally distributed before the

model coefficients can be estimated efficiently and, if this

is not the case, suitable transformations to normality need

to be found (Maier & Dandy 2000). Burke (1991) suggested

that ANNs overcome this problem, as the probability

distribution of the input data does not need to be known.

However, there has been some confusion in the literature

over this issue. For example, as pointed out by Fortin et al.

(1997), if the Mean Squared Error (MSE) is used as the

objective function in training the ANN, this corresponds

to a maximum likelihood estimation only under the

hypothesis of normal (or at least symmetrical) random

shocks. In linear time series models, such as the mixed

autoregressive–moving average (ARMA) model of order

(p,q) (Equation 1), it is apparent that the data must be

transformed to normality if the random shock component,

et, is to be normally distributed:

(1)
p

k=1
∑

q

m=1
∑x̂t = akxt—k + bmet—m + et

where x̂t is the time series data, ak and bm are the autore-

gressive and moving average coefficients, respectively, and

et is a random noise process with a mean of zero and

variance s2. However, in non-linear models such as

ANNs, it is not apparent that the data need to be trans-

formed to normality if the random shock component, et, is

to be normally distributed. For example, consider an ANN

model with input variables xt − 1, xt − 2, . . ., xt − p, one

hidden layer consisting of H hidden layer nodes and one

output node:

(2)
H

h=1
∑

p

j=1
∑x̂t = oo + etv0 + b0 + bjhxt—j& /˜ ·vhoh

where v0 and b0 denote the bias weights from the constant

input to the output and hidden layers respectively, vh

denotes the weights from the hidden layer to the output

layer, bjh denotes the weights from the input layer to the

hidden layer and the errors et have a mean zero, variance
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s2 and are independent across training cases. The two

functions h and o denote the transfer functions used at

the hidden and output layers, respectively. It is apparent

from Equation (2) that transforming the input and output

variables to normality will not necessarily guarantee a

random shock component that is normally distributed. To

the authors’ knowledge, the effect of transforming the

ANN’s inputs and outputs to normality has not been

investigated in the literature.

In the statistical literature, transformations or differ-

encing is often used to transform a non-stationary process

into a stationary process. It is not clear whether such a

transformation would improve the results of an ANN

model when the data are non-stationary. In their review

paper, Maier & Dandy (2000) found that the issue of

stationarity is largely ignored in papers on the application

of ANNs to water resources variables.

Faraway & Chatfield (1998) developed ANN models

for the well-known set of airline data and considered the

effect of removing the seasonal component on the ANN’s

forecasting ability. Two alternative approaches were con-

sidered. In the first approach, the linear trend was

removed from the data and the seasonal trend was

removed by subtracting the monthly averages (model 2).

In the second approach, first-order and seasonal differ-

encing were applied to the logarithms of the data (model

3). Neither model 2 nor 3 were able to improve upon the

forecasting ability of the ANN model developed using the

raw data (model 1). Furthermore, the use of differencing to

remove the seasonality may not be desirable as it can

produce a forecast variance that increases without bound

as the forecasting period increases (Stedinger 1996

personal communication).

The aim of this paper is to investigate the effect of

different transformations on the performance of an ANN

model for forecasting salinity within a river system. The

transformations that will be investigated include:

1. Linear transformation. This is by far the most

commonly employed data transformation. The

distribution of the raw data is not altered but, rather,

the data are rescaled to a range that is

commensurate with the output layer transfer

function.

2. Logarithmic transformation. This transformation is

commonly used for hydrological data that are

truncated at zero and have positive skewness.

Taking the logarithm of the data also converts a

multiplicative seasonal relationship to additive.

3. Histogram equalization transformation. The method

of distribution transformation (Shi 2000) is

dependent on fitting a PDF to each of the input

variables at an acceptable level of significance. If the

fit is poor, the transformed series will not be

uniformly distributed when the CDF is used to

transform the data. In many cases it is not possible

to fit a distribution to the random input data at an

acceptable level of significance. Therefore in this

paper it is proposed to use a discrete version of

distribution transformation that utilizes the

histogram. This transformation is known as

histogram equalization (Looney 1997) and is

outlined below.

4. Seasonal standardization. In this transformation, the

deterministic seasonality is removed by subtracting a

seasonally varying mean and dividing by a seasonally

varying standard deviation. The ANN model is then

developed on the seasonally standardized data.

5. Transformation to normality. It is unclear whether

transforming the input and output data to normality

will improve the forecasting ability of an ANN

model. Therefore, to determine the effect on the

model’s generalization ability, a normalizing

transformation of the inputs and outputs has also

been investigated.

CASE STUDY: FORECASTING SALINITY AT
MURRAY BRIDGE

The real-world case study used to demonstrate the effect of

different data transformation techniques is that of fore-

casting salinity in the River Murray at Murray Bridge,

South Australia, 14 days in advance. Maier & Dandy

(1996) have previously developed ANN models for this

case study: hence it provides a good benchmark for testing

the data transformation techniques. As input variables,
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Maier & Dandy (1996) used daily salinity, flow and river

level data at various locations in the river for the period

1 December 1986 to 30 June 1992. Data from this period

and at the same locations were also used in this study.

MODEL DEVELOPMENT

In this study, feedforward MLPs trained with the back-

propagation algorithm were developed using the com-

mercially available software package NeuralWorks

Professional II/Plus (NeuralWare 1998). Unless stated

otherwise, the default software parameters were used

since the focus is on evaluating the data transformation

techniques rather than studying the effect of varying the

network’s parameters. The default values were determined

using the experience gained from developing back-

propagation networks for a variety of applications

(NeuralWare 1998).

Data division

In this paper, the main objective is to compare different

data transformation techniques. To provide a fair com-

parison between the different models, it is important

that all other modeling factors are held constant and that

the models are tested and validated on data that are

statistically representative of the data used in the training

process. This provides the most rigorous test of a model’s

performance based on the data transformation method,

since other sources of poor performance, such as attempt-

ing to validate the model on data outside the range used in

training, are effectively eliminated.

A genetic algorithm (GA) was used to divide the data

so as to minimize the statistical difference (as measured by

the mean and standard deviation) between training, test-

ing and validation data sets. Since the GA data division

technique allows training, testing and validation sets to be

selected that are statistically representative of the same

population, a fair comparison of the data transformation

techniques can be made whilst providing the most

rigorous test of each method. Of the 2,005 data samples

available in this case study, 1604 records (80%) were used

for calibration and 401 records (20%) were used for

validation. The 1604 records in the calibration set were

further divided into 1283 training records (80%) and 321

testing records (20%).

The GA used for data division sorts the samples into

training, testing and validation sets by using a set of

random numbers. The decision variable governing the

arrangement of the data samples is a random number seed,

chosen to be in the range [1, 100,000]. This range was

selected to provide a reasonable size search space. The GA

string therefore consists of a single integer between 1 and

100,000. The random number seed controls the generation

of a random sequence of numbers. The random number

sequence is placed alongside the data samples and the

contiguous block of data is sorted using these random

numbers. In so doing, the data samples are arranged into

subsets and the objective function is evaluated. The first

1283 samples are placed in the training set, the next 321

samples in the test set and the next 401 samples in the

validation set. Penalty constraints are added to ensure that

the maximum and minimum values of each input and

output variable are included in the training set, rather than

in the testing or validation sets. Training the ANN model

on the extreme range of values available removes the need

for the network to extrapolate and helps to ensure the best

possible ANN model, given the available data.

To determine the ‘fitness’ of each solution an objective

function is required. In this application, a suitable objec-

tive function to minimize is the sum of the absolute

difference in mean and standard deviation values between

each pair of the three subsets. A full description of the use

of the GA for dividing data into statistically similar subsets

is provided in Bowden et al. (2002).

Data transformation

Linear transformation

A linear transformation is simple and widely used and is

typically performed by using the original data range to

rescale the series to a range that is commensurate with the

output transfer function (Equation 3). It should be noted

that the inputs and outputs are scaled individually:
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XT(n,i) = x(n,i) +

(3)

& /xmax — xmin

xT
high — xT

low

& /xmax — xmin

xmaxx
T
low — xminxT

high

fi ^

where XT (n,i) is the ith data point of the nth transformed

data series, x(n,i) is the ith data point of the nth original

data series, xmax and xmin are the maximum and minimum

values of the original data range and xT
high and xT

low are the

new maximum and minimum values for the transformed

data series and are dependent on the transfer function in

the output layer. For example, as the outputs for the

hyperbolic tangent transfer function are between − 1 and

1, the data are generally scaled in the range − 0.9 to 0.9 or

− 0.8 to 0.8. For MLPs, the values are not usually scaled to

the extreme limits of the transfer function, as the size of

the weight updates may become extremely small with

flatspots occurring during training (Maier & Dandy 2000).

Logarithmic transformation

Logarithmic transformations are commonly used in appli-

cations of hydrological modeling and are useful for time

series data that are characterized by a distribution with an

extended right hand tail. In such instances, a logarithmic

transformation is commonly used to compress the distri-

bution of the variable (Masters 1993). A logarithmic trans-

formation converts multiplicative relationships to

additive, which is believed to simplify and improve

network training (Masters 1995).

Histogram equalization (Looney 1997)

This transformation is applicable when the original data

series contain spacings that are disproportionate and do

not increase or decrease monotonically across the inter-

val. Histogram equalization transformation is non-

monotonically non-linear and approximately equalizes

the number of data points in each subinterval of equal

length.

The first step in this procedure is to perform a linear

transformation on each of the n inputs such that they are

all scaled to fall into [0,1]. For each input, the range [0,1]

is then partitioned into P subintervals {I1, . . ., IP} of equal

length and the function h(p) is assigned to the proportion

of values in the pth interval. This process yields a

histogram, defined by

h(p) = (4)
Q

Np

where NP is the number of x(n,i) values that belong to the

pth interval IP and Q is the total number of data points in

the series. To then approximately equalize the number of

values in each subinterval, a histogram equalization trans-

formation Hn is performed on each of the n component

values. The histogram equalization transformation is given

by

Hn(x) =

(5)

Q

1
{Nk :k ≤ p and x ∈ Ip} =

(r=1,p;x∈Ip)h(r)

∑

∑

& /

Each value of x between 0 and 1 is remapped into the sum

of histogram values for all subintervals up to and including

the one in which x lies. The resulting transformed series is

uniformly distributed and will also be between 0 and 1

since

+ . . . + = 1 (6)
Q

N1

Q

Np

Linear transformations are then applied to the inputs and

outputs, in order to scale each series to a range that is

commensurate with the output layer transfer function. It is

important to point out that the aim of this transformation

is to allow the ANN to perform a better mapping of the

inputs to the output. Consequently, only the inputs are

transformed. In addition, the output cannot be trans-

formed using this method as it is not possible to back-

transform the data into their original values since the

transformation discretizes the data.

Seasonal standardization

Given that the case study investigated in this paper

represents a real-world hydrological process, it is intuitive
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to treat the non-stationarity resulting from the seasonality

in the data as a deterministic, rather than a statistical,

phenomenon. Therefore, transformation rather than dif-

ferencing is to be used to produce a stationary time series

in the application investigated.

The first step in removing the seasonal component of

the data is to fit a separate Fourier series to the mean and

standard deviation of each time series. Using the season-

ally varying mean and standard deviation, each time series

can then be standardized by using the following equation:

XT (t)= (7)
ss(t)

x(t) — ms(t)

where XT(t) is the deseasonalized transformed variable,

x(t) is the raw data at time t, ms(t) is the function for the

seasonally varying mean and ss(t) is the function for

the seasonally varying standard deviation. Both ms(t) and

ss(t) are fitted by functions of the form

(8)
M

j=1
∑f(t) = a0 + aj sin(jw0t + oj)

where the coefficients a0, aj, w0 and j are found using the

MS Excel Solver add-in and the number of sine curves M

needed to accurately approximate f(t) is found by adding

sine curves until a significant percentage (>99%) of the

variance is captured by the fitted function. The resulting

deseasonalized data set can then be used to develop ANN

models. To convert the transformed output from the ANN

model back into real-world values, the inverse of (7) is used.

Transformation to normality

Inverse transformation is commonly used in Monte Carlo

Simulation to generate random distributions from the

uniform distribution on [0,1]. In this paper, a new two-

step transformation to normality is proposed which com-

bines the histogram equalization transformation with the

inverse transformation. The first step is to use histogram

equalization to transform each of the inputs and outputs

to uniformity on [0,1]. The second step is to then use a

functional approximation of the inverse transformation to

transform each input and output series to normality. In

this paper we have used the functional approximation of

the inverse transformation proposed by Beasley &

Springer (1977). Finally, a linear transformation is applied

to ensure that the data are scaled to a range suitable for the

transfer function in the output layer.

This two-step numerical procedure has the disadvan-

tage that the data are discretized in the histogram

equalization step and therefore the ANN model’s output

cannot be transformed back to the exact real-world values.

However, by using the raw and transformed values in the

training set, it is possible to back-transform the ANN

model’s output via linear interpolation. An analytical

transformation to normality would have been better if a

successful one could have been found, but analytical trans-

formations were found to be unsuccessful for the data used

in this case study.

Determination of model inputs

Maier & Dandy (1996) found that the ANN models trained

on the input set shown in Table 1 performed the best for

this case study. The inputs used include forecast values of

flow at Overland Corner and water level at Lock 1 Lower

(i.e. the inputs with negative lags). Consequently, these 51

inputs were used for the ANN modeling. Maier & Dandy

(1996) provide a detailed description of how these inputs

were determined.

Determination of network architecture

Only one hidden layer is required to approximate any

continuous function, given that sufficient degrees of free-

dom (i.e. connection weights) are provided (Cybenko

1989). Therefore, one hidden layer was utilised in this

study. Empirical trials conducted by Maier & Dandy

(1998) determined that 30 hidden layer nodes provided

optimal performance for this case study. Consequently, a

network with 51 nodes in the input layer, 30 hidden layer

nodes and 1 node in the output layer was used for each of

the models developed in this study.

Model validation and performance measures

To ensure that overtraining did not occur (i.e. when the

network performs well on the training data, but poorly on
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independent test data), cross-validation was used as the

stopping criterion. In this approach, a test set is used to

determine the ANN’s generalization ability. The test set

root mean squared error (RMSE) is calculated every 1,000

iterations and the network with the best test results is

saved during the run. After 200,000 iterations with no

further improvement in the test set results, training is

stopped and the network that performed best on the test

set is used as the final model. Since this procedure uses the

test data in the calibration phase, an independent vali-

dation set was used for all of the data transformation

methods investigated in order to assess the true general-

ization ability of the model. The RMSE was used as the

performance measure as it places greater emphasis on

larger forecasting errors.

The ANN models developed using each transforma-

tion technique could be deployed in a real-world forecast-

ing scenario. In such a case, it is likely that, in time, the

models would encounter data outside of the calibration

range. The model’s robustness would directly depend on

how accurately it could produce forecasts for such

uncharacteristic data. To investigate the robustness of the

ANN models developed using each transformation, a

second independent validation set was used, consisting

of daily data from the period 15 July 1992 to 13 March

1998. This second validation set is the same set used in

Bowden et al. (2002) and was shown to contain regions

of data outside of the calibration range. The models

developed using the five transformation techniques

were used to obtain 14-day forecasts for this second

validation set.

RESULTS AND DISCUSSION

The RMSEs for the linear, logarithmic, histogram

equalization seasonal and normality transformations are

summarised in Table 2. It can be seen that the models

developed using the linear and histogram equalization

transformations performed significantly better than those

developed using the logarithmic, seasonal and normality

transformations for the training, testing and validation

sets. These results are consistent with Faraway &

Chatfield (1998) whose results indicated no improvement

when a logarithmic transformation was used, and that

predictive ability deteriorated when the seasonality was

removed from the data. To investigate why the loga-

rithmic, seasonal and normality transformations produced

larger forecasting errors, sensitivity analyses were con-

ducted. As part of the sensitivity analyses, each of the

inputs is increased by 5% in turn and the change in

the output caused by the change in the input is calculated.

The sensitivity of each input is given by

Table 1 | Summary of model inputs

Variable Location Acronym Lags (days) Total no.

Salinity Murray Bridge MBS 1, 3, . . ., 11 6

Salinity Mannum MAS 1, 3, . . ., 15 8

Salinity Morgan MOS 1, 3, . . ., 15 8

Salinity Waikerie WAS 1, 2, . . ., 5 5

Salinity Loxton LOS 1, 2, . . ., 5 5

Flow Overland Corner OCF 1 19, 1 17, . . ., 7 14

Level Lock 1 Lower L1LL 1 3, 1 1, . . ., 5 5

Total number of inputs 51
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Sensitivity = »100 (10)
% change in input

% change in output

The sensitivity analyses were performed for the models

developed using the logarithmic, seasonal and normality

transformations (Figures 1a–c) in order to determine the

strength of the relationship between the output variable

and the input variables. For comparison, a sensitivity

analysis was performed for the model developed using

linear transformation (Figure 1d).

In the sensitivity plots it is apparent that the most

significant input for all four models is Waikerie salinity at

lag 1. The second most significant variable for the logarith-

mic, seasonal and normality transformations is the salinity

at Mannum at lag 1. For the linear transformation, the

second most significant variable is the level at Lock 1

Lower forecast 3 days ahead. The most notable difference

in the sensitivity plots is that the model developed using

linear transformation assigned a much greater significance

to the flow and river level input variables. The inability of

the models developed using the logarithmic, seasonal and

normality transformations to make use of the information

contained in the flow and river level data may have

resulted in the higher forecasting errors. One reason this

may have occured for the model developed using a loga-

rithmic transformation arises from the compressing nature

of this transform. Table 3 shows the training set maximum

and minimum values and the ratio of max/min for each of

the variables used in this case study. It is evident that the

ratio of max/min is relatively low for the salinity variables,

ranging from 4.0–5.8. However, the ratio of max/min for

the flow and river level data is 62.5 and 10.6, respectively.

Consequently, when the logarithmic transformation is

applied to these latter variables, they undergo a much

greater compression and this could have distorted the

information originally contained in the flow and level

data.

Figure 2(a) shows the actual values of the flow at

Overland Corner used in the training, testing and valida-

tion sets and the seasonal cycle fitted to the mean of these

data. It can be seen that the effect of flow is largely

accounted for by the seasonal cycle in its mean. So the

flow itself may not be significant for a seasonal model.

The best result on the independent validation set came

from the model developed using the histogram equaliz-

ation transformation. This result is in accordance with Shi

(2000) who found that transforming the input data to

uniformity provided a smooth and continuous mapping

of the input variables to the output variable and

performed better than the model developed using linear

transformation.

Diagnostic checks were performed on each of the

five ANN models developed by examining the error

residuals (êt). In general, these errors are caused by the

random shock (noise) component in the data (et) and the

inability of the model to perfectly predict the deterministic

Table 2 | RMSEs of five different transformations for the 14-day salinity forecasts at Murray Bridge

Data set

Linear
transformation
RMSE
(EC units)

Logarithmic
transformation
RMSE
(EC units)

Histogram
equalization
RMSE
(EC units)

Seasonal
transformation
RMSE
(EC units)

Transformation
to normality
RMSE
(EC units)

Training set 32.5 54.0 24.8 54.1 54.6

Testing set 31.2 55.8 32.6 54.3 56.4

Validation set 36.5 54.2 28.3 53.4 56.6

Second validation set 54.7 74.6 61.1 115.7 89.5

Second validation set with uncharacteristic data removed 32.7 52.3 45.9 59.2 60.4
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components of the data. Consequently, êt is only an esti-

mate of the true random error et. If the model fits the data

well, then these residuals should satisfy the following

assumptions:

1. the expected value of êt is zero,

2. the variance of êt is a constant s2,

3. the errors are statistically independent of each other,

and

4. the errors are normally distributed.

For each of the five transformations, the assumptions

were tested by plotting histograms of the residuals

(Figures 3a–e), by plotting the standardized residual

Figure 1 | Sensitivity of salinity forecasts to the 51 input variables for the model developed using (a) logarithmic transformation, (b) seasonal transformation, (c) transformation to

normality and (d) linear transformation. Input variable abbreviations are given in Table 1.
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versus the predicted response (Figures 4a–e) and by

plotting the autocorrelation function of the residuals

(Figures 5a–e). The model residuals were obtained by

concatenating the training, testing and validation data sets

and then chronologically ordering these data to obtain the

original multivariate time series data. Each of the five

models were then used to obtain forecasts for these data

and the residuals were calculated.

From the histogram plots (Figures 3a–e) it can be seen

that the residuals for all models were approximately

normally distributed, satisfying assumption 4, with a

mean of approximately zero, satisfying assumption 1.

Figures 4(a–e) show that, for each of the five models, the

2,005 data points appear to be scattered randomly and

largely contained within a parallel band with approxi-

mately 95% falling between − 2 and 2, thereby satisfying

assumption 2. In Figures 5(a–e) the 95% confidence limits

for the autocorrelations are shown as estimated from

statistically independent residuals. If most of the auto-

correlation plot falls inside of the 95% limits, then the

assumption that the residuals are statistically independent

is not inconsistent with the data (assumption 2). This

appears to approximately hold true for the linear and

histogram equalization transformations (Figures 5a, c).

However, the residuals from the models developed using

Table 3 | Maximum, minimum and ratio of max/min for each variable

Variable Maximum Minimum
Ratio
(max/min)

MBS 1,116 261 4.3

MAS 1,075 253 4.2

MOS 1,061 183 5.8

WAS 1,021 247 4.1

LOS 907 225 4.0

OCF 110,618 1769 62.5

L1LL 5.3 0.5 10.6

Figure 2 | Flow at Overland Corner and Fourier series seasonal mean (OCF) for (a) training, testing and validation data (December 1986–June 1992) and (b) second validation data (July

1992–March 1998).
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the normal, log and seasonal transformations appear to

violate the statistical independence assumption.

It is interesting to note that the residuals from the

model developed using the linear transformation satisfy

assumptions 1–4 above. Therefore, the objective function

used to calibrate the ANN model (mean square error) is

justified as it maximizes the likelihood of the model

under the hypothesis of normal random shocks. If the

random shock component were known to be skewed,

Figure 3 | Histograms of ANN residuals. (a) Linear transformation, (b) logarithmic

transformation, (c) histogram equalization transformation, (d) seasonal

transformation and (e) transformation to normality.
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Figure 4 | Standardized residual versus predicted response (2,005 data points).

(a) Linear transformation, (b) logarithmic transformation, (c) histogram

equalization transformation, (d) seasonal transformation and (e)

transformation to normality.
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then the objective function would need to be adjusted

accordingly in order to obtain maximum likelihood

estimates of the model parameters (Fortin et al.

1997).

In Table 2, the RMSEs for the second validation set

are shown, and it is apparent that these are significantly

higher than the training set RMSEs for all models. This is

expected due to the presence of uncharacteristic data, i.e.

new patterns that the models have not been trained on.

The model developed using linear transformation appears

to be the most robust, as indicated by the lowest forecast-

ing error on the second validation set. It is surprising that

the model developed using histogram equalization per-

formed significantly worse on this set. This indicates that,

although this model was able to learn the relationships in

the training, testing and validation data, it was not robust

when dealing with uncharacteristic data in the second

validation set.

The model that gave the highest RMSE on the second

validation set was the ANN developed using the season-

ally transformed data. The second validation set forecasts

for this model and the Fourier series for the seasonally

varying mean (MBS) are shown in Figure 6. It is important

to note that the Fourier function for the seasonally varying

mean was developed using the training data. However, it is

apparent that the seasonality in the second validation set

does not follow the same fluctuations and this is high-

lighted by the seasonal mean moving out of phase with the

actual salinity time series. This is especially noticeable in

Regions 1 and 2 indicated in Figure 6. In both of these

regions, the actual time series did not follow the typical

seasonal cycle and, consequently, the resulting forecasts

underestimated the true values. Figure 2(b) shows a plot of

flow at Overland Corner and the Fourier series for the

seasonally varying mean (OCF) for the second validation

set data. It is evident that the high salinity events in

Regions 1 and 2 of Figure 6 correspond to uncharacteristic

low flow events in Figure 2(b). This highlights the need for

periodic refitting of the Fourier series and retraining of the

ANN model.

To diagnose regions of poor performance resulting

from uncharacteristic data, Bowden et al. (2002) proposed

a Self-Organizing Map (SOM) diagnosis procedure. In this

procedure, the calibration data are clustered with the

validation set using a SOM. By inspecting the resulting

clusters of data, it is possible to discern uncharacteristic

data, i.e. the validation data that form clusters on the

Kohonen grid that contain no patterns from the training
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Figure 5 | Autocorrelation plots of ANN residuals. (a) Linear transformation,

(b) logarithmic transformation, (c) histogram equalization transformation,

(d) seasonal transformation and (e) transformation to normality.
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set. The data in such clusters can be considered to lie

outside of the training domain and, since ANNs are unable

to extrapolate beyond the training range (Flood & Kartam

1994), poor generalization ability can be expected on these

data. The SOM diagnosis procedure was conducted using

the second validation set data in this study and the

uncharacteristic data points were removed from the set.

The models developed using the five transformations were

then used to obtain forecasts for this truncated data set.

The results of this experiment are shown in Table 2 and, as

expected, the RMSEs were reduced quite considerably for

all models. The models developed using the linear, loga-

rithmic, seasonal and normality transformations all pro-

duced forecast errors that were very similar to their errors

on the training set. The model developed using the histo-

gram equalization data produced a forecast error that was

still higher than its training error. However, in general,

these results show the effectiveness of the SOM diagnosis

procedure in determining the range of applicability of the

ANN models.

CONCLUSIONS

In this paper, the effect of five methods for transforming

data for use with ANNs in water resources applications

was investigated. As ANN models are data-driven, an

‘optimal’ transformation can—if at all—only be defined

relative to the specific application for which the ANN

model is being developed. However, some general findings

have come out of this study and it is hoped that, in time,

results from similar studies will begin to define when such

transformations may or may not be useful in water

Figure 6 | Second validation set 14-day forecasts for the model developed using seasonally transformed data (July 1992–March 1998). The Fourier series seasonal mean (MBS) is also

shown for the salinity at Murray Bridge.
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resources applications of ANN models. Taking a logarith-

mic transformation of the data, removing the seasonality

from the data and transforming the inputs and outputs to

normality were all found to give significantly larger fore-

casting errors than a simple linear transformation of the

data. It is believed that these transformations distorted the

original relationships between variables in a way that was

not beneficial to the ANN learning. The model developed

using data transformed by the histogram equalization

method was found to perform well on data within the

training domain but was not robust when applied to new

data patterns. The model developed using a linear trans-

formation gave the best results overall as this model

proved the most robust on new data patterns whilst still

giving a relatively low RMSE on the training, testing and

validation data sets. These findings reinforce the popular

belief that, when using ANNs (particularly backpropaga-

tion ANNs, which fit the data without assuming any

functional form), one does not have to say that the data

should be distributed in any particular way for the

approach to be used. Furthermore, an analysis of the

residuals produced by the linear transformation ANN

model showed that the hypothesis of normal (or at least

symmetrical) random shocks was valid. Consequently, the

use of the mean squared error as the objective function

to calibrate this model is justified as it maximizes the

likelihood of the model under this assumption.

A second, independent validation set was used to test

the models developed using the five transformations. This

set contained data that were different to the training

patterns. When these uncharacteristic data were removed

from the second validation set, the RMSEs were reduced

to a value similar to the training RMSE for all

models except the model developed using the histogram

equalization transformation.
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