Detection and sizing of extended partial blockages in pipelines by means of a stochastic successive linear estimator

Christian Massari, Tian Chyi J. Yeh, Marco Ferrante, Bruno Brunone and Silvia Meniconi

ABSTRACT

Effective water system management depends upon knowledge of the current state of a water pipeline system network. For example, in many cases, partial blockages in a water pipeline system are a source of inefficiencies, and result in an increase of pumping costs. These anomalies must be detected and corrected as early as possible. In this study, an algorithm is developed for detecting blockages by means of pressure transient measurements and estimating the diameter distribution resulting from their formation. The algorithm is a stochastic successive linear estimator that provides statistically the best unbiased estimate of diameter distribution due to partial blockages and quantifies the uncertainty associated with these estimates. We first present the theoretical formulation of the algorithm and then test it with a numerical case study.

Key words | inverse problem, partial extended blockages, pipe systems, primary information, stochastic linear estimator, transient tests

INTRODUCTION

Partial blockages in pipelines – due to, for example, deposition of sediments, fouling processes and corrosion – cause a reduction of pipe area. A first distinction of partial blockages is based on their length. The literature distinguishes between discrete blockages – where the part of the pipe with a reduced area is much smaller than its total length – and extended blockages, which may occur along a large part of the pipeline. Partial blockages in water pipe networks may contribute to large energy dissipation throughout the system and reduce the service effectiveness for the customers. As a result, they have to be detected and removed as soon as possible.

Conventional methods for locating and sizing partial blockages are based on direct measurements made throughout the pipe system by inspection or intrusive procedures (Gooch et al. 1996; Scott & Satterwhite 1998; Scott & Yi 1999). In addition, new techniques based on the use of pipe scanning by radio-isotope technology (www.tracerco.com) or gamma ray emission (Sharma et al. 2010) are available. These methods provide useful information about the state of the pipe, but they are highly time-consuming and costly techniques. Low-cost and quick techniques are of paramount importance in detecting partial blockages because, in addition to cost reduction, they also help to diminish service interruption times. An impetus for research activity in this field has resulted from the use of transient tests as a tool of diagnosis (e.g. Liggett & Chen 1994; Brunone 1999; Vítkovský et al. 2000; Brunone & Ferrante 2001; Ferrante & Brunone 2003a, b; Kapelan et al. 2005; Mohapatra et al. 2006; Lee et al. 2008; Ferrante et al. 2009; Meniconi et al. 2011a, b, c, d, 2012; Duan et al. 2012). In particular, in partial blockage detection, Wang et al. (2005) examined the effect of discrete blockages on the transient pressure signal. By expressing the analytical solution in terms of a Fourier series, the authors showed that the magnitude and
position of the partial blockage determine a damping on fluid transients that can be used to estimate its size and location. Mohapatra et al. (2006) used a systematic procedure to size and locate the partial blockage using a frequency response method for steady oscillatory flow, while Lee et al. (2008) proposed to locate and size discrete blockages by extracting the behavior of the system in the form of a frequency response diagram. In all these papers, the partial blockage was considered as a localized occlusion and was modeled by a partially closed in-line valve.

Brunone et al. (2008a) numerically showed that the length of an extended reduction of the pipe has a significantly different impact on the system response in contrast to the presence of an in-line valve. Experiments conducted on smaller diameter trunk mains of different lengths to simulate the extended blockage behavior confirmed these results (Meniconi et al. 2011a, 2012). The pressure signal response is different for an in-line valve compared to that of an extended diameter reduction. In Duan et al. (2012), the detection of extended blockages was carried out by analyzing the shifting of the resonant peaks of the frequency of the system in transient conditions.

During the formation of a partial blockage, the pipe is characterized by different pipe areas (Figure 1) at different locations due to the complex interaction between the flow and the water chemistry (Hunt 1996). In these conditions, the area reductions can occur over a large part of the pipe length and may appear as being randomly distributed along the pipe. To properly simulate this feature, in this paper, partial extended blockages are modeled by assigning an equivalent diameter distribution, \(D(x) \), able to describe the spatial variations of the area reductions (Massari et al. 2012). This approach significantly differs with respect to others in the cited literature, where the problem unknowns are the blockage diameter, \(D_b \), length, \(L_b \), and location, \(x_b \) (Figure 2).

The algorithm presented in this paper is based on a geostatistical technique. Geostatistical techniques have been widely used in groundwater hydrology to estimate random fields, i.e. transmissivity, head, velocity, concentration of...
pollutants in aquifers and water content in the vadose zone (Kitanidis & Vomvoris 1983; Hoeksema & Kitanidis 1984; Yeh & Zhang 1996; Zhang & Yeh 1997). Such inverse approaches rely on the use of the co-kriging estimation technique, which is based on the assumption of (i) a linear relationship between the involved quantities and (ii) a Gaussian stochastic process (Kitanidis & Vomvoris 1983). However, the assumption of linearity when dealing with non-linear systems is an important limitation of the method (Yeh et al. 1996). Such limitations have been overcome by Yeh et al. (1996), Zhang & Yeh (1997), Vargas-Guzmán & Yeh (2002), and Zhu & Yeh (2005) by introducing a stochastic successive linear estimator (SLE) approach that considers successive improvements of the estimates by solving the governing flow equations and updating the covariance and cross-covariance matrices of the parameters and hydraulic head fields in an iterative manner. The algorithm has been successfully used in the framework of the hydraulic tomography technique for the estimation of hydrologic parameters of the soil (Yeh & Liu 2000), and tested in many numerical and laboratory case studies (Illman & Liu 2007; Illman et al. 2010).

The aim of this paper is to apply the SLE to predict the diameter distribution of partial blockages by casting the inverse problem of the diagnosis in a probabilistic framework. The algorithm takes advantage of diameter measurements along the pipe (primary information) and pressure signals recorded in transient conditions (secondary information) to (i) estimate the diameter distribution resulting from the formation of a partial blockage and (ii) provide the uncertainty associated with these estimates. This feature, i.e. the capability of the parameter uncertainty estimate, is receiving an increasing amount of interest in the analysis of water distribution systems (e.g. Pasha & Lansey 2010; Sun et al. 2011; Haghiighi & Keramat 2012).

MATHEMATICAL FORMULATION

Governing equations

One-dimensional water hammer flows are governed by the following system of hyperbolic partial differential equations (Wylie & Streeter 1993):

\[
\begin{align*}
\frac{\partial h}{\partial t} + \frac{c^2}{gA} \frac{\partial Q}{\partial x} &= 0 \\
\frac{\partial Q}{\partial t} + gA \frac{\partial h}{\partial x} + \lambda \frac{Q^2}{2DA} &= 0
\end{align*}
\]

where \(t \) is the time, \(x \) is the location, \(g \) is the acceleration due to gravity, \(h \) is the head, \(Q \) is the discharge, \(\lambda \) is the Darcy–Weisbach friction factor, \(c \) is the pressure wave speed, \(D \) is the pipe diameter, and \(A \) is the pipe area. The system of Equation (1) is subjected to appropriate boundary conditions. At the pipe system locations, \(x_i \), where \(h \) is assigned (e.g. reservoirs with known head), it is \(h(x_i) = h^* (t) \), while at the valve, it is \(\delta(x_v) = \chi Q^2 / 2gA^2 \), where \(\delta \) is the head minor loss due to the valve, \(x_v \) is the valve location and \(\chi \) is the minor loss coefficient as a function of the valve opening. In order to solve problem (1), appropriate initial conditions (e.g. steady-state conditions) are needed in the domain of analysis.

The head and discharge values are calculated by discretizing and solving the problem by the method of characteristics, leading to the following matrix form (Liggett & Chen 1994):

\[
\{u\} = [M]^{-1} \{R\} \tag{2}
\]

where \([M]\) is the coefficient matrix,

\[
\{u\} = \begin{bmatrix} h \\ Q \end{bmatrix}
\]

is the solution vector of the head and discharge, and \([R]\) is the vector associated with the boundary conditions. Equation (2) defines a non-linear system of equations and must be solved at each time step.

Inverse algorithm

In the framework of statistics, an extended partial blockage is modeled as a discrete distribution of diameters along the pipe – can be considered as a stationary stochastic process and the actual distribution of diameters, a single realization among an infinite population of realizations (the ensemble). If the value of the diameter at some locations is known, a variogram analysis can yield a first estimate of the diameter
at unsampled locations. Then, head measurements coming from transient tests at different sections of the pipe system may be used iteratively to improve the first estimate. By means of this procedure, the prediction of the diameter field at unsampled locations is carried out by means of fusing prior information (known diameters at sampled locations) and the secondary one (heads) by means of the SLE. Thus, when prior information is available, it can be embedded in the estimation procedure helping to speed up the inverse algorithm and to improve its accuracy; if not, only head measurements are used.

Let us assume that the pipe diameter, D, is a stationary stochastic process with a constant unconditional mean $Y_d = E[\ln D]$ and unconditional log-perturbation $d(x)$, i.e. $\ln D(x) = Y_d + d(x)$ ($E[\bullet]$ denotes the expected value operator). The corresponding hydraulic head h is given by $h(x) = \Phi(x) + \phi(x)$ where $\Phi(x) = E[h(x)]$ and $\phi(x)$ is the unconditional head perturbation. Since all variables are treated as stochastic processes, an infinite number of possible realizations of $\ln D(x)$ exist in the ensemble. As a result, a solution of the inverse problem is to use the head and pipe diameter values that preserve the observed heads and diameters at sampled locations and satisfy the governing flow equations, as well as the underlying statistical properties associated with the parameters. Such random fields are conditioned realizations of $h(x)$ and $\ln D(x)$ in the ensemble. The goal of the inverse algorithm is to derive the expected value of all these possible conditioned realizations.

By assuming that d and ϕ are jointly normal, their conditional mean estimates at unsampled locations, x_0, can be expressed by a linear combination of the weighted observed values of d and ϕ. That is,

$$d(x_0) = \sum_{j=1}^{N_d} \lambda_{dj} d(x_j) + \sum_{k=1}^{N_{\phi}} \beta_{\phi k} \phi(x_k)$$ \hspace{1cm} (3)

where $d(x_0)$ is the co-kriged value at location x_0, N_d is the number of observed diameters and N_{ϕ} is the number of observed heads. The weights λ_{dj} and $\beta_{\phi k}$ are evaluated by requiring that the estimation expressed by Equation (3) will have a minimum variance:

$$E\left[(\hat{d} - d)^2 \right] = \min$$ \hspace{1cm} (4)

By substituting Equation (3) into Equation (4), and taking the derivative with respect to λ and β, a linear system of equations is obtained in terms of the covariance matrices, $[C_{dd}]$ and $[C_{\phi\phi}]$, and the cross-covariance matrix, $[C_{dd\phi}]$, between ϕ and d:

$$\sum_{j=1}^{N_d} \lambda_{dj} C_{dd}(x_j, x_{pj}) + \sum_{k=1}^{N_{\phi}} \beta_{\phi k} C_{d\phi}(x_{pk}, x_{pj}) = C_{dd}(x_j, x_0)$$ \hspace{1cm} (5)

The covariance $[C_{\phi\phi}]$ and the cross-covariance $[C_{dd\phi}]$ in Equation (5) are derived from a first-order numerical approximation (described below) for its flexibility for cases with bounded domain and non-stationary problems.

The values of the diameter are then obtained by:

$$D(x_0) = \exp[\hat{d}(x_0) + Y_d(x_0)]$$ \hspace{1cm} (6)

The uncertainties associated with the estimates are calculated by evaluating the conditional covariance:

$$\epsilon_{dd} = E\left[(d - \hat{d}) (d - \hat{d}) \right]$$ \hspace{1cm} (7)

which leads to:

$$\epsilon_{dd}^{(1)}(x_0, x_0) = C_{dd}(x_0, x_0) - \sum_{j=1}^{N_d} \lambda_{dj} C_{dd}(x_j, x_0)$$

$$- \sum_{k=1}^{N_{\phi}} \beta_{\phi k} C_{d\phi}(x_k, x_0)$$ \hspace{1cm} (8)

To account for the non-linear relationship between d and h not embedded in the co-kriging, an SLE is used. That is,

$$Y_d^{(r+1)}(x_0) = \hat{Y}_d^{(r)}(x_0) + \sum_{j=1}^{N_d} \omega_{d0}^j \left[h_j^{(r)}(x_j) - h_j^{\phi}(x_j) \right]$$ \hspace{1cm} (9)

where ω_{d0}^j are the weighting coefficients for the estimate at x_0 with respect to the head measurements at locations x_j and r is the iteration index. $\hat{Y}_d(x_0)$ is the estimate of the conditional mean of $\ln D(x_0)$, h_j^{ϕ} is the observed head at
location \(x_i\), while \(h_j^{(r)}\) is the simulated head at the same location based on the estimates at the \(r\)th step. In order for the estimator to have a minimal variance, the optimal weights must be selected according to the mean square error criterion:

\[
E \left\{ \left[\ln D - \hat{Y}_d^{(r)} \right] - \sum_{j=1}^{N_x} \omega_j^{(r)} (h_j^{(r)} - \hat{h}_j^{(r)}) \right\}^2
\]

\[
= E \left\{ \left(y_d^{(r)} - \sum_{j=1}^{N_x} \omega_j^{(r)} \phi_j^{(r)} \right)^2 \right\}
\]

\[
= E \left\{ \left(y_d^{(r)} - 2 \sum_{j=1}^{N_x} \omega_j^{(r)} y_d^{(r)} \phi_j^{(r)} + \sum_{j=1}^{N_x} \sum_{j=1}^{N_x} \omega_j^{(r)} \omega_k^{(r)} \phi_j^{(r)} \phi_k^{(r)} \right) \right\}
\]

\[
= \varepsilon_{yy}^{(r)} - \sum_{k=1}^{N_x} \omega_k^{(r)} \varepsilon_{yy}^{(r)} + \sum_{j=1}^{N_x} \sum_{j=1}^{N_x} \omega_j^{(r)} \varepsilon_{d0}^{(r)} \varepsilon_{d0}^{(r)} \varepsilon_{d0}^{(r)}
\]

where \(y_d^{(r)}\) is the residual about the mean estimate, while \(\varepsilon_{yy}^{(r)}\), \(\varepsilon_{d0}^{(r)}\) and \(\varepsilon_{d0}^{(r)}\) are error covariances and cross-covariances at iteration \(r\). The weights are determined by taking the derivative of Equation (10) with respect to \(\omega\) and set the resultant equal to zero. The following system of equations is obtained:

\[
N_x \sum_{j=1}^{N_x} \omega_j^{(r)} \varepsilon_{yy}^{(r)} (x_j, x_j) + \Theta \delta_{i,j} = \varepsilon_{yy}^{(r)} (x_0, x_1)
\]

(11)

where \(\varepsilon_{yy}^{(r)}\) and \(\varepsilon_{yy}^{(r)}\) are the conditional covariance and the conditional cross-covariance matrices, respectively, at each iteration and \(\delta_{i,j}\) is the identity matrix. During each iteration, a term, \(\Theta\), is added to the diagonal terms of \(\varepsilon_{yy}^{(r)}\) to ensure a stable solution. The value of \(\Theta\) is determined as the product of a constant weighting factor and the maximum value of \(\varepsilon_{yy}^{(r)}\) at each iteration (Yeh & Zhang 1996). The approach is analogous to the pseudo transient technique employed for non-linear numerical problems described by Fletcher (1988).

The matrices \(\varepsilon_{yy}^{(r)}\) and \(\varepsilon_{yy}^{(r)}\) are approximated at each iteration on the basis of the first-order analysis (Dettinger & Wilson 1986) in which the heads at the \(r\)th iteration can be written as a first-order Taylor series expansion:

\[
\{ \phi \} = \{ \Phi \} + \{ \varepsilon \} \approx \mathbf{G} \{ Y_d \} + \{ J d \} \{ \ln D - Y_d \}
\]

(12)

where \(\mathbf{G}\) is the vector function describing Equation (2) and \([Jd]\) is the sensitivity matrix of the head with respect to the log-diameter:

\[
[Jd] = \frac{\partial \mathbf{G}(\{ Y_d \})}{\partial \{ \ln D \}}
\]

Equation (12) can be rewritten as:

\[
\{ \phi \} \approx [Jd] \{ d \}
\]

(14)

and is used to calculate the approximate covariance of the heads and the cross-covariance between the heads and the diameters:

\[
\begin{align*}
\varepsilon_{yy}^{(r-1)}(x_0, x_k) &= \varepsilon_{yy}^{(r)}(x_0, x_k) - \sum_{i=1}^{N_x} \omega_k^{(r)} \varepsilon_{d0}^{(r)}(x_i, x_k)
\end{align*}
\]

(16)

The accuracies of the estimates at each iteration are calculated by evaluating their conditional variances \(\varepsilon_{dd}(x_0, x_0)\). The smaller the variances, the more accurate the estimates. If the value of the estimate at a location is known exactly, the conditional variance at that location is zero.

After obtaining the value of \(Y_d(x_0)\), the governing equations are solved again with the new value of \(Y_d(x_0)\) leading to new head data \(h\); then, appropriate norms of the parameters and of the heads are evaluated. If the norms are smaller than the prescribed tolerances, the iteration stops. If not, new \(\varepsilon_{yy}^{(r)}\) and \(\varepsilon_{yy}^{(r)}\) values are obtained by Equation (15), and Equation (9) is solved again with the new weights given by Equation (11) and the new head data.
NUMERICAL CASE STUDY

To test the SLE algorithm to detect the diameter distribution of an extended partial blockage, the geometry of the pipe system in Figure 2(b) was used. A reservoir was present at node R with a hydraulic constant head of 80 m, while at node V, there was a partially open valve discharging 0.04 m³/s into the atmosphere under steady-state conditions.

The pipe was L = 2,000 m long, with a diameter equal to \(D_i = 0.2 \) m. The roughness of the pipe was 3.5 mm. For the transient simulation, the friction head losses were evaluated by means of the Darcy–Weisbach formula considering the flow as completely turbulent; the pressure wave speed was assumed equal to 1,000 m/s.

The diameter distribution resulting from the formation of the blockage was simulated by 500 random diameters (the pipe was divided into 500 blocks, of length 4 m each), and was obtained by assigning a random reduction \(r(x) \) to each block by means of a stochastic random field generator (Gutjahr 1989). Eventually, the diameters were obtained by \(D(x) = D_i - r(x) \). The mean \(\mu_r \) and the variance of the reduction \(r(x) \) were set to \(\mu_r = 0.03 \) m and \(\sigma_r = 0.0006 \) m² respectively; the spatial correlation scale of \(r(x) \) was \(\gamma = 160 \) m.

For the estimation, the following information was used:

1. Twenty diameter measurements along the pipe (primary information), shown in Table 1 and Figure 5.
2. Transient head data acquired for 5 s at a rate of 250 Hz at valve V (hereinafter referred to as the pressure signal) used as secondary information (Figure 4). The pressure signal was obtained by means of a fast closure maneuver of the valve V, which was simulated by Equation (6). The procedure to properly execute fast maneuvers and to generate sharp pressure waves is widely discussed in Brunone et al. (2008b) and Meniconi et al. (2011b).

In the following, the results of the estimation obtained by means of the SLE are compared with those achieved by kriging and co-kriging. Kriging used only measured diameters, co-kriging linearly included the pressure signal as well as the measured diameters, while, as discussed above, the SLE considered the measured diameters and the successive inclusion of the pressure signal.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Measured diameter along the pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) [m]</td>
<td>Measured diameter [m]</td>
</tr>
<tr>
<td>251</td>
<td>0.179</td>
</tr>
<tr>
<td>304</td>
<td>0.170</td>
</tr>
<tr>
<td>428</td>
<td>0.179</td>
</tr>
<tr>
<td>432</td>
<td>0.170</td>
</tr>
<tr>
<td>565</td>
<td>0.167</td>
</tr>
<tr>
<td>567</td>
<td>0.172</td>
</tr>
<tr>
<td>572</td>
<td>0.182</td>
</tr>
<tr>
<td>672</td>
<td>0.166</td>
</tr>
<tr>
<td>708</td>
<td>0.175</td>
</tr>
<tr>
<td>747</td>
<td>0.174</td>
</tr>
<tr>
<td>836</td>
<td>0.166</td>
</tr>
<tr>
<td>1,064</td>
<td>0.174</td>
</tr>
<tr>
<td>1,147</td>
<td>0.175</td>
</tr>
<tr>
<td>1,348</td>
<td>0.174</td>
</tr>
<tr>
<td>1,411</td>
<td>0.171</td>
</tr>
<tr>
<td>1,489</td>
<td>0.155</td>
</tr>
<tr>
<td>1,492</td>
<td>0.166</td>
</tr>
<tr>
<td>1,563</td>
<td>0.179</td>
</tr>
<tr>
<td>1,816</td>
<td>0.163</td>
</tr>
<tr>
<td>1,887</td>
<td>0.174</td>
</tr>
</tbody>
</table>

By taking advantage of the primary information (i.e. the 20 diameter measurements) a variogram analysis was carried out, giving the experimental variogram in Figure 5. It was then fitted with an exponential model obtaining a range of 480 m, a sill of 0.003 m² and a nugget of \(5.13 \times 10^{-5} \) m².

Because of the available computational resources, in the estimation procedure, the pipe was parametrized into \(N_{Dest} \) blocks. After some simulations \(N_{Dest} \) was chosen equal to
100, allowing a reasonable compromise between the description of the diameter variability and the computational times. The parametrization led to a spatial resolution \(\Delta x = 20 \text{ m} \). Since \(\Delta x \) is directly related to the time step \(\Delta t \) of the forward simulation through the Courant conditions \(\frac{c \Delta t}{\Delta x} \leq 1 \); \(N_h = 252 \) head values were extracted from the pressure signal in Figure 4.

The SLE converged in five iterations with a computational time of 1,469 s (CPU Intel Core Duo 2.16 Ghz, RAM 4 Gb). To stop the iterative procedure, one of the following criteria had to be satisfied.

1. The mean squared differences between true and modeled heads:

\[
L_{2h} = \frac{1}{N_h} \left(\sum_{i=1}^{N_h} (h_{\text{est}}^i - h_{\text{true}}^i)^2 \right) \leq 10^{-3} \text{ m} \quad (17)
\]

2. The change between two successive iterations of the average absolute error of the diameters:

\[
L_{1d} = \frac{1}{N_{D_{\text{est}}}} \sum_{i=1}^{N_{D_{\text{est}}}} |D_{\text{est}}^{i+1} - D_{\text{est}}^i| \leq 10^{-5} \text{ m} \quad (18)
\]

3. The number of iterations is less than 40.

Figure 6 compares the true and the estimated diameters along the location \(x \) of the pipe obtained for kriging, co-kriging and SLE techniques. It can be clearly seen that the best estimate is obtained by means of the SLE. Note that co-kriging improves the estimation close to \(x = 0 \) m with respect to the kriging case due to the inclusion of the pressure signal at valve \(V \). In Figure 7, the relative percentage errors \(\Delta_d = \frac{D_{\text{true}} - D_{\text{est}}}{D_{\text{true}}} \times 100 \) obtained for kriging, co-kriging and the SLE are plotted (\(D_{\text{true}} = \) true diameter, \(D_{\text{est}} = \) estimated diameter). Again, the smallest values of the relative errors are provided by the SLE (\(|\Delta_d| \leq 2\% \)).

Table 2 shows a statistical analysis of the relative errors of Figure 7. The mean and the variance of \(\Delta_d \) for the SLE are
about an order of magnitude smaller with respect to the kriging and co-kriging. Also, in terms of the mean squared error (MSE), the SLE behaves much better than the other two techniques providing a value of 0.591×10^{-3} m with respect to 0.181×10^{-2} m and 0.151×10^{-2} m for kriging and co-kriging, respectively.

Figure 8 compares the scatter plots between true and estimated diameters obtained by the co-kriging and the SLE, respectively. While estimated diameters for the SLE are very close to the 45° line, for kriging and co-kriging, they spread out around it. To quantify the agreement between the true and estimated diameters, a linear fitting of the data in Figure 8 has been carried out for the three techniques. The results are shown in Table 2. The goodness of fit is measured using the correlation coefficient:

$$\rho = \frac{\text{Cov}(D_{\text{true}}, D_{\text{est}})}{\sqrt{\text{Var}(D_{\text{true}})\text{Var}(D_{\text{est}})}}$$

and D_{y_0} and σ. These latter two parameters describe the fitting line function. For such a line, the closer the slope coefficient and the y-intercept are to 1 and 0, respectively, the better the diameters are estimated. Table 3 clearly confirms the good results obtained with the use the SLE with respect to the two classic geostatistic techniques.

CONCLUSIONS

In this paper, a stochastic linear estimator, previously used in groundwater inverse problems by Yeh et al. (1996), has been applied to detect size and position of the extended partial blockages by estimating their diameter distribution. With such an estimator, the diagnosis of pipe systems is cast in the probabilistic framework by treating the parameters as a stochastic process. The SLE allows embedding of the primary information of the parameters in the estimation procedure and the use of transient pressure signals to improve the accuracy of the estimates. The availability of the primary information is not a limitation since the SLE can even use head measurements only to estimate the diameter...
The algorithm is able to assess the uncertainty associated with the estimates by the evaluation of the conditional variance of the parameters.

In the numerical example presented in this paper, it is shown that the SLE performs much better than classical geostatistical techniques such as kriging and co-kriging, allowing the non-linearity associated with the information provided by the transient tests to be taken into account. For these reasons,

Table 3 | Results of the linear fitting between true and estimated diameters for kriging, co-kriging and the SLE

<table>
<thead>
<tr>
<th>Technique</th>
<th>y-intercept D_0 [m]</th>
<th>Slope coefficient s</th>
<th>Correlation coefficient ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriging</td>
<td>0.0418</td>
<td>0.7573</td>
<td>0.9357</td>
</tr>
<tr>
<td>Co-kriging</td>
<td>0.0345</td>
<td>0.7990</td>
<td>0.9581</td>
</tr>
<tr>
<td>SLE</td>
<td>-0.0011</td>
<td>1.0069</td>
<td>0.9922</td>
</tr>
</tbody>
</table>

Figure 8 | Scatter plots between true and estimated diameters for (a) kriging, (b) co-kriging and (c) the SLE.
the SLE appears to be a promising technique that can be applied to pipe system diagnosis. Indeed, further studies and extensive experimental testing are required to assess the reliability and the potential of this technique.

ACKNOWLEDGEMENTS

This research was supported by Fondazione Cassa Risparmio Perugia under the project ‘Leaks and blockages detection techniques for reducing energy and natural resources wastage’.

REFERENCES

First received 30 October 2012; accepted in revised form 4 March 2013. Available online 4 April 2013