His mention of the risks of performing autopsies on patients with undiagnosed tuberculosis is also important. The findings in these reports point out that the greatest risk to the health care worker is not wearing the wrong mask but rather exposure to the unsuspected case of tuberculosis.

Kent A. Sepkowitz
Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York Hospital-Cornell Medical Center, New York, New York

References

Reprints or correspondence: Dr. Kent A. Sepkowitz, Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 288, New York, New York 10021.
Clinical Infectious Diseases 1997;25:1274–5 © 1997 by The University of Chicago. All rights reserved. 1058-4838/97/2505-0075$03.00

The Role of Glucose-6-Phosphate Dehydrogenase Deficiency in Blackwater Fever

Sir.—The article by Chau et al. [1] sheds some light on the syndrome, or syndromes, of blackwater fever. The occurrence of acute intravascular hemolysis in areas where malaria is endemic has been recognized for many years, and there has been considerable speculation about the etiology of the hemolysis. The factor most often associated with hemolysis in the study by Chau et al. was glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, because of the way in which G6PD deficiency was assessed, the authors may have substantially underestimated its role in the cases they describe. Depending on the specific G6PD variant involved, enzyme deficiency may be apparent only in older cells. G6PD deficiency may be overlooked, therefore, in the young cell population present following acute hemolysis. There is no indication that the patients in this study were examined 2–4 months after the hemolytic event, as is currently recommended [2].

In a teaching hospital in Zimbabwe, where a particular effort was made to bring patients back for G6PD testing at a substantial interval after the acute event, G6PD deficiency was also found to be the single factor most often associated with acute intravascular hemolysis [3].

Stan Houston
Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada

References

Reprints or correspondence: Dr. Stan Houston, Division of Infectious Diseases, University of Alberta, WMC 2E4.12, Edmonton, Alberta, Canada T6G 2B7.
Clinical Infectious Diseases 1997;25:1275 © 1997 by The University of Chicago. All rights reserved. 1058-4838/97/2505-0075$03.00

Reply

Sir.—Dr. Houston is correct in stating that glucose-6-phosphate dehydrogenase (G6PD) deficiency can be missed if blood is taken for assay during an acute hemolytic event, as the enzyme deficiency is underestimated if the RBC population is very young. However, we do not think we have “substantially underestimated” the incidence of G6PD deficiency as a cause of blackwater fever in Vietnam. We are now conducting a long-term follow-up study subsequent to our initial report to characterize further the pathophysiological mechanisms responsible for blackwater fever. Of the 23 patients with blackwater fever for whom we have long-term follow-up data, 12 were G6PD deficient on admission and at follow-up, 7 had G6PD activity in the normal range on both occasions, 2 were G6PD deficient initially but had values in the normal range at follow-up, and 2 had G6PD values that were normal on admission but were below the normal range at follow-up. These data confirm that G6PD deficiency is not the only cause of blackwater fever.

Tran Thi Hong Chau, Nicholas P. J. Day, Ly Van Chuong, Nguyen Thi Hoang Mai, Pham Phu Loc, Nguyen Hoan Phu, Delia B. Bethell, Dinh Xuan Sinh, Tran Tinh Hien, and Nicholas J. White
Centre for Tropical Diseases, Cho Quan Hospital, Ho Chi Minh City, Vietnam

Reprints or correspondence: Dr. Nicholas J. White, Wellcome Trust Clinical Research Unit, Centre for Tropical Diseases, Cho Quan Hospital, Ho Chi Minh City, Vietnam.
Clinical Infectious Diseases 1997;25:1275 © 1997 by The University of Chicago. All rights reserved. 1058-4838/97/2505-0076$03.00

High Levels of Adenosine Deaminase in Patients with Aseptic Meningitis

Sir.—Levels of adenosine deaminase (ADA) of >0.15 μkat/L (10 IU/L) in the CSF of patients with meningitis are strong evidence for a diagnosis of tuberculous meningitis (sensitivity and specificity: 0.99) [1], although high levels of ADA have also been found