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kground: B-vitamins are essential for one-carbon metabolism and have been linked to colorectal cancer.
gh associations with folate have frequently been studied, studies on other plasma vitamins B2, B6, and
d colorectal cancer are scarce or inconclusive.
thods: We carried out a nested case-control study within the European Prospective Investigation into
r and Nutrition, including 1,365 incident colorectal cancer cases and 2,319 controls matched for study
, age, and sex. We measured the sum of B2 species riboflavin and flavin mononucleotide, and the sum of
cies pyridoxal 5′-phosphate, pyridoxal, and 4-pyridoxic acid as indicators for vitamin B2 and B6 status,
l as vitamin B12 in plasma samples collected at baseline. In addition, we determined eight polymorph-
elated to one-carbon metabolism. Relative risks for colorectal cancer were estimated using conditional
c regression, adjusted for smoking, education, physical activity, body mass index, alcohol consumption,
takes of fiber and red and processed meat.
ults: The relative risks comparing highest to lowest quintile were 0.71 [95% confidence interval
CI), 0.56-0.91; Ptrend = 0.02] for vitamin B2, 0.68 (95% CI, 0.53-0.87; Ptrend <0.001) for vitamin B6,
.02 (95% CI, 0.80-1.29; Ptrend = 0.19) for vitamin B12. The associations for vitamin B6 were stronger
les who consumed ≥30 g alcohol/day. The polymorphisms were not associated with colorectal
.
clusions: Higher plasma concentrations of vitamins B2 and B6 are associated with a lower colorectal
risk.
act: This European population-based study is the first to indicate that vitamin B2 is inversely associated
eptem
ber
Imp
with colorectal cancer, and is in agreement with previously suggested inverse associations of vitamin B6 with
colorectal cancer. Cancer Epidemiol Biomarkers Prev; 19(10); 2549–61. ©2010 AACR.
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mins and related genetic polymorphisms are essen-
r the one-carbon metabolism, and may therefore be
iated with colorectal cancer (1). Among the B-
ins, folate has been studied most extensively in rela-
colorectal cancer. The majority of studies on folate
indicate a 20% to 40% colorectal cancer risk reduc-

n individuals with the highest compared with the
t intake, whereas associations between plasma
ntrations of folate and colorectal cancer risk are in-
tent (1). Other B-vitamins, such as vitamins B2, B6,
12, are also involved in the one-carbon metabolism.
mins B2 and B6 are related because the interconver-
f some vitamin B6 species require the vitamin B2
flavin mononucleotide (FMN) and flavin dinucleo-
AD) as cofactors (2). Moreover, vitamin B2 serves as
ctor for the methyl-metabolizing enzymes methyle-
ahydrofolate reductase (MTHFR), which regener-
-methyltetrahydrofolate from tetrahydrofolate, and
onine synthase reductase (MTRR), which activates
onine synthase (MS). Vitamin B6 is a cofactor for
zyme cystathionine β-synthase (CBS), which is
ed in the transsulfuration pathway where homo-
ne is converted into cystathionine. Vitamin B12 acts
ofactor for MTRR and MS, the latter catalyzing the
hylation of homocysteine to methionine. Transco-
in II (TCN2) is essential for the uptake of vitamin
om the intestine (Fig. 1). Suboptimal concentrations
B-vitamin cofactors as well as related genetic poly-
hisms may affect the activity of these enzymes.
majority of studies on associations of B2 (3–9) and vita-
12 (4–14) with colorectal cancer have reported null find-
recent meta-analysis of nine studies on vitamin B6

and four studies on plasma vitamin B6 concentrations
ed inverse associations with colorectal cancer risk (15).
us research on associations between genetic variants
lorectal cancer risk has focused mainly on theMTHFR
T and 1298C→A polymorphisms, which were gener-

versely associatedwith colorectal cancer (1). In contrast,
c variants of MTR (14, 16, 17), MTRR (4, 18, 19), CBS
–23), and TCN2 (18, 19) have been less studied in
n to colorectal cancer, and show inconsistent associa-
In addition to potential interactions between B-vitamins
ingle Nucleotide Polymorphisms (SNPs; refs. 24, 25),

is also some evidence for an interaction between
vitamin B6 and alcohol consumption (26).

to Cancer and Nutrition (EPIC), which is sufficiently
large to address these questions.
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dies on plasma vitamin B2 (9), vitamin B6 (15),
lasma vitamin B12 (9, 10) concentrations and colo-
cancer risk are sparse. In addition, associations
en B-vitamins and colorectal cancer risk may be
fied by SNPs related to one-carbon metabolism
lcohol consumption (24, 26). Therefore, we con-
d a large nested case-control study (including
colorectal cancer cases and 2,319 matched con-
within the European Prospective Investigation in-

balamin-II (vitamin B12 transport).
1. One-carbon metabolism and related enzymes and genetic
rphisms. CBS, cystathionine β-synthase; CH2THF,
netetrahydrofolate; CH3THF, methyltetrahydrofolate; MTHFR,
netetrahydrofolate reductase (provision of 5-methylfolate for
ysteine remethylation); MTR, methionine synthase (remethylation
ocysteine to methionine); MTRR, methionine synthase reductase
05. E-mail: Simone.Eussen@farm.uib.no

.1158/1055-9965.EPI-10-0407

American Association for Cancer Research.
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rials and Methods

population and collection of blood samples
design and methods of EPIC have previously been
ibed (27). Briefly, the EPIC cohort included par-
nts from 23 centers in 10 European countries
ark, France, Greece, Germany, Italy, Netherlands,
ay, Spain, Sweden, and the United Kingdom). Be-
1992 and 1998, country-specific dietary question-

s, standardized lifestyle and personal history
onnaires, and anthropometric data were collected
all participants, and a blood sample were taken
80% of the cohort members. Follow-up is based on
ation cancer registries (Denmark, Italy, Netherlands,
ay, Spain, Sweden, and the United Kingdom) or
gh health insurance records, pathology registries,
ctive contact with study subjects or next of kin
e, Germany, and Greece). The follow-up period for
esent study was for cases included in reports re-
at the International Agency for Research on Cancer
; Lyon, France) until June 2003 representing centers
cancer registry data, and until March 2004 for

e, Germany, and Greece.
ting (46%) or nonfasting (54%) blood samples of≥30
ere drawn. B-vitamins and related metabolites did
gnificantly differ across fasting and nonfasting par-
nts. Blood samples were stored at 5°C to 10°C while
ted from light and transported to local laboratories
ocessing and aliquoting (27). Exceptions from this
dure were the EPIC-Oxford and EPIC-Norway cen-
here whole blood samples were collected through a
rk of general practitioners (Oxford and Norway)
ealth-conscious people (Oxford) and transported
ntral laboratory via mail. The whole blood samples
protected from light, but were exposed to ambient
ratures for up to 48 hours. As B-vitamins are partly
ded by such handling, all EPIC-Oxford (55 cases,
ntrols) and EPIC-Norway (5 cases, 9 controls) sam-
ere excluded from the present analyses.
ll countries, exceptDenmark andSweden, bloodwas
ted into 0.5 mL fractions (serum, plasma, red cells
uffy coat for DNA extraction). Each fraction was
into straws, which were heat sealed and stored in
nitrogen (−196°C). One half of all aliquots were
at local study centers and the other half in the central
biorepository at the IARC. In Denmark, blood frac-
liquots of 1.0 mLwere stored locally at −150°C under
en vapor. In Sweden, erythrocyte, plasma, and buffy
amples were fractioned prior to freezing, and stored
in −80°C freezers. This study was approved by the
l Review Board of the IARC and those of all EPIC
s. All EPIC participants have provided written con-
r the use of their blood samples and all data.

d case-control study design and selection of
subjects

on cancer was defined as tumors in the cecum,
dix, ascending colon, hepatic flexure, transverse

by m
flight

acrjournals.org
, splenic flexure, and descending and sigmoid colon
-C18.7 as per the 10th revision of the International
tical Classification of Diseases, Injury and Causes of
), as well as tumors that are overlapping or unspec-
(C18.8 and C18.9). Colorectal cancer was defined
ombination of colon and rectal cancer. Cancers of
ctum were defined as tumors occurring at the recto-
id junction (C19) or rectum (C20). The present study
ed 1,365 incident colorectal cancer cases (colon, n =
ectal, n = 519). The distribution of colon/rectal cases
untry was 204/174 in Denmark, 100/84 in Sweden,
in France, 14/13 in Greece, 98/61 in Germany, 106/
Italy, 102/49 in the Netherlands, 78/43 in Spain, and
9 in the United Kingdom.
trols with available blood samples were randomly
ed from cohort members still alive and free of can-
the time of diagnosis of the cases. Controls were
ed to cases by gender, age (±2.5 years), and study
(to account of center-specific differences in ques-

aire design, blood collection procedures, etc.). An
tion were Danish cases (n = 378) and controls (n =
who were posthoc matched using the “greedy” al-
m, a macro (gmatch) provided by the Mayo Clinic
e of Medicine (28, 29) to be run in SAS. The greedy
ithm sorts cases and controls randomly and the
matches the first case with the closest available
l according to specified matching criteria, which
eated until all cases are matched. The mean (range)
ence in age between cases and controls in the over-
dy, except for the Danish population, and between
h cases and controls within each caseset, was 0
to 1.8) and −1.03 (−5.0 to 4.9) years, respectively.

ratory measurements
min B2measures included plasma concentrations of
avin and FMN, and pyridoxal' 5-phosphate (PLP),
oxal (PL), and 4-pyridoxic acid (PA) were measured
tamin B6 status. All B2 and B6 vitamers were deter-
by liquid chromatography-tandemmass spectrom-

n the same laboratory (30). For PLP, PL, PA, and
avin, the within- and between-day coefficients of
ion (CV) were <11%,whereas for FMN the CVswere
o 22%. Within- and between-day CVs for total-B2
7% to 11% and for total B6 they were 3% to 7%.
a vitamin B12wasdetermined by aLactobacillus leich-
i microbiological assay (31), and plasma methylma-
acid (MMA; inverse marker for vitamin B12 status)
easured with a method based on methylchlorofor-
derivatization and gas chromatography-mass spec-
try (32). Vitamin B12 and MMA concentrations
analyzed in the same laboratory, with within- and
en-day CVs of <5% (32). Unspiked and spiked plas-
mples with unknown endogenous concentrations
used for these experiments.
ht polymorphisms of genes encoding enzymes in-
d in the one-carbon metabolism were determined

atrix-assisted laser desorption/ionization time-of-
mass spectrometry (33, 34). These included

Cancer Epidemiol Biomarkers Prev; 19(10) October 2010 2551
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hionine β-synthase (CBS 699C→T; rs234706, and
S 844ins68 insertion), methylenetetrahydrofolate re-
se (MTHFR 677C→T; rs1801133 and MTHFR
→C; rs1801131), methionine synthase (MTR
→G; rs1805087), methionine synthase reductase
R 66A→G; rs1801394), and transcobalamin II
67A→G; rs RsaI and 776C→G; rs1801198).

tical methods
ause riboflavin and FMN are interconvertable (35),
PLP and PL (36), and PA is formed from PL, we
ered the sum of riboflavin and FMN as a measure
tamin B2 status, and the sum of PLP, PL, and PA as
sure of vitamin B6 status. Both the summary vari-
as well as individual vitamin B2 and B6 species
esented. Differences in concentrations of vitamins
6, and B12, and MMA between different groups
assessed by Mann-Whitney U tests or χ2 tests
appropriate.

ative risks [risk ratios (RR)] and 95% confidence
als (95% CI) for colorectal cancer risk in relation
sma B-vitamins were estimated by conditional lo-
regression using the SAS LOGISTIC procedure,
ied by the case-control set. Relative risks for colo-
cancer were examined across quintiles with cutoff
based on the distribution of the B-vitamins in all
controls combined. Potential confounders includ-
oking status (never, former, current, missing), al-
l consumption (continuous), dietary fiber
nuous), intake of red and processed meat (contin-
, physical activity (inactive, moderately inactive,
rately active, active), educational level (none, pri-
school completed, technical/professional school,
dary school, university degree, not specified),
ody mass index (kg/m2). Although none of these
les substantially altered the crude risk estimates,
esent results of both the univariate and adjusted
ls. The adjusted models were additionally adjust-
r mutual B-vitamins and folate. Likelihood ratio
ere used to assess linear trends across categories
values for quintile categories as the quantitative
of exposure. We also tested for effect modification
ropean region [north (Denmark, Sweden) versus
l (France, United Kingdom, the Netherlands, Ger-
) versus south (Italy, Spain, Greece)], time from
donation to cancer diagnosis (median follow-up
3.6 years versus >3.6 years), age (≤60 years versus

ears), sex, alcohol intake (0-30 g/day versus ≥30 g/
and plasma folate concentrations (≤11.3 nmol/L
s >11.3 nmol/L; based on median concentrations
s cohort). Effect modification was tested by adding
roduct term of the B-vitamins (as categorical vari-
and potential effect modifiers in the model. To in-
ate whether potential effect modification by alcohol
was different for males and females, analyses were
by adding the product term of the B-vitamins, alco-

take, and sex in the model (while retaining lower-
terms).

accord
not sh

r Epidemiol Biomarkers Prev; 19(10) October 2010
ociations between the polymorphisms and colo-
cancer risk were studied with conditional logistic
sion. The risk estimates were calculated with the
types (the most common genotypes in the natural
lation) as the reference categories. A trend test
equally spaced integer weights (0, 1, 2) for the
ypes was used to summarize the effect of each
orphism. Effect modification of the SNP-colorectal
r risk associations by B-vitamin concentrations and
ol consumption were studied with conditional
ic regression, but by stratifying on country instead
matched sets and with age and sex as covariates.
statistical tests were done with SAS statistical soft-
as considered statistically significant.

lts

acteristics of cases and controls
distribution of sex, and mean age at recruitment
omparable among the 1,365 cases and 2,319 con-
Table 1). The median follow-up time between blood
ion and the diagnosis of colorectal cancer was 3.6
(range, 0.0-10.3). Apart from the concentration of
vitamer PLP, which was higher in cases compared
heir matched controls (P = 0.02), the sum variables
mins B2 and B6, vitamin B12 and MMA concentra-
were similar between cases and controls. The distri-
of vitamin B2 and B6 among controls was skewed,

a longer tail at higher concentrations. Concentra-
of the vitamin B6 species correlated strongly with
ther after adjustment for age, sex, and study center
rman correlation coefficients ranged from 0.64 to
all correlations P < 0.01; data not shown). In addi-
iboflavin correlated with FMN (0.34; P < 0.01), and
rrelation between vitamin B12 and MMAwas −0.24
.01).
pared with women, among men concentrations
vitamin B2 sum and vitamin B12 were lower,

as the vitamin B6 sum concentration was higher
2). Participants <60 years had lower vitamin B2

and MMA concentrations, and higher vitamin
oncentrations, as compared with older individuals.
g current smokers, the vitamin B2 sum, vitamin
m, and B12 concentrations were lower compared
former and never smokers. The sum variables of
in B2 and B6 were also lower among participants
southern European countries compared with those
central and northern European countries. Indivi-
consuming alcohol of ≥30 g/day had lower con-
ations of the vitamin B2 sum and vitamin B12
ared with those drinking less, except for vitamin
inally, vitamin B12 concentrations were slightly
r in those with the variant TCN2 677GG genotype,
as concentrations of other vitamins did not differ

ing to genotype (P for all differences >0.05; data
own).

Cancer Epidemiology, Biomarkers & Prevention
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Table 1. Characteristics of incident colore ses and the

C Pdiffere

Numb 1
Sex, fe 697 (5 0.54
Mean

At r 58.9 (3 0.40
At b 59.1 (3 0.44
At d 62.8 (3
Lag 3.6 (0

Smoki 0.02
Nev 559 (4
Form 447 (3
Cur 344 (2

Alcoho <0.0
Abs 93 (7
1-30 983 (7
≥30 281 (2

Media
Vita 20.6 (9 0.36
Ribo 14.8 (6 0.37
FMN 5.4 (2 0.20
Vita 63 (3 0.20
PLP 33.2 (1 <0.01
PL, 13.4 (6 0.16
P
C
M

NOT
test
Abbreviation: N.a., not applicable.
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iations between B-vitamins and
ectal cancer
tched analyses revealed that vitamins B2 and B6
inversely associated with colorectal cancer, with
er quintile of 0.94 (95% CI, 0.89-0.99; Ptrend =
for the sum of vitamin B2, and 0.94 (95% CI, 0.89-
Ptrend = 0.01) for the sum of vitamin B6 (Table 3).
associations were similar after further adjustment.
ding the individual vitamers, risk reductions were
est for FMN (5th versus 1st quintile, 35%; Ptrend <
and for PLP (41%; Ptrend < 0.01). When stratifying
atomic site, these associations were observed for co-
ncer risk, but not for rectal cancer risk with an ex-
n for PLP. Vitamin B12 was not associated with
ctal cancer risk (Table 3), nor was plasma folate,
sented elsewhere (37). All the models as presented
le 3 were also additionally adjusted for mutual B-
ins and folate. However, these analyses did not ma-
y change associations (data not shown).
also assessed potential effect modification of the

in-colorectal cancer associations by sex, age, European
, time between blood donation and cancer diagnoses,

0.41-0
the fir

acrjournals.org
lasma folate concentrations. The association between
in B2 and colorectal cancer was modified by folate
(Pinteraction = 0.03), whereby an inverse association
sum of vitamin B2 and colorectal cancer was ob-

d among individuals with folate concentrations
nmol/L (51% risk reduction for the 5th versus 1st
le; Ptrend<0.01), and a 7% risk increase among subjects
olate concentrations <11.3 nmol/L (Ptrend = 0.71). Al-
h none of the other interaction terms were statistically
cant, we also observed significant trends for the asso-
s between vitamin B2 sum and vitamin B6 sum with
ctal cancer risk among females, individuals <60 years,
hose living in central European countries. Further-
the association of vitamin B6 with colorectal cancer
as stronger in individuals diagnosed within the first
ars after enrollment compared with associations in in-
als diagnosed later. Relative risks of 5th versus 1st
le observed within the first 3.6 years were 0.61 (95%
3-0.86; Ptrend < 0.01) for the sum of vitamin B6, 0.55
CI, 0.39-0.77; Ptrend <0.01) for PLP, and 0.59 (95% CI,
ctal cancer ca
.83; Ptrend
st 3.6 year
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 58.7 (30.0-76.6)

lood donation
 6.8-77.0)
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time
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ng status, n (%)
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 1)
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l drinking, n (%)
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tainers
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g/day
 2)
 1784 (77)

g/day
 1)
 372 (16)
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min B2 sum, nmol/L
 .4-65.7)
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, nmol/L
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obalamin, pmol/L 288 (162-498) 288 (161-501) 0.97
MA, μmol/L 0.17 (0.12-0.32) 0.17 (0.12-0.30) 0.32

E: Differences in plasma concentrations of the vitamins B2, B6, and B12, and MMA were assessed by Wilcoxon signed rank
, whereas categorical variable differences were assessed by McNemar's tests.
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e sum of vitamin B6, 0.67 (95% CI, 0.48-0.94; Ptrend =
or PLP, and 0.88 (95% CI, 0.63-1.25; Ptrend = 0.86) for
owever, lag time did not significantly modify the
ll association between the sum of vitamin B6,
and PL with colorectal cancer risk, as indicated
teraction of 0.48, 0.57, and 0.29, respectively.
ddition, we explored the associations between the
ins and colorectal cancer risk by subgroups of alco-
take, and observed stronger inverse associations of
tamin B2 sum and the vitamin B6 sum with colorec-
cer risk in individuals drinking alcohol of ≥30 g/day
4). Further stratification of these alcohol analyses by
vealed even stronger inverse associations for the vita-
6 sum in males consuming alcohol ≥30 g/day com-
with males who drink less alcohol (Ptrend < 0.01;

ction = 0.01). Associations between individual vita-
2 and B6 species with colorectal cancer risk in
oups of alcohol intake did not differ materially
those associations observed for sum scores. Fur-
ore, stratified analyses using a cutoff point of 15
of alcohol did not materially alter associations

en any of the B-vitamins and colorectal cancer
data not shown).
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ectal cancer risk
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type distributions of the CBS 699C→T, CBS

concen
data n
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68, TCN2 67A→G, and TCN2 776C→G polymorph-
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hisms associated with cancer risk. Stratification by
ean region yielded similar associations between the
d genotypes and colorectal cancer risk (data not
n).
st of the associations between the SNPs and
ctal cancer were not modified by quintiles of
min status (Pinteraction > 0.19 for all relevant in-
ions; data not shown). A previous report (37) in-
d MTHFR 677C→T, MTHFR 1298A→C, MTR
→G, and MTRR 66A→G polymorphisms, which
not independently associated with colorectal
r risk. However, among these SNPs, we ob-
d effect modification of the association between

66A→G and colorectal cancer risk by vitamin
tus as measured in the current study (Pinteraction =
The variant MTRR 66GG genotype conferred a sta-
lly significantly lower colorectal cancer risk in indi-
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ith RR of 0.57 (95% CI, 0.35-0.93; Ptrend = 0.02),
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ssion

his large European cohort, we investigated the as-
ions of plasma vitamins B2, B6, and B12, and ge-
variants of the one-carbon metabolism with
ctal cancer risk. Overall, plasma vitamin B2 and
tus was inversely associated with colorectal can-
addition, we observed that the inverse association
en vitamin B6 and colorectal cancer was more pro-
ed among males who consumed >30 g/day of al-
None of the SNPs were associated with colorectal

r risk, and generally the vitamins did not modify
associations.
present study is the largest prospective study on
a B-vitamins and colorectal cancer risk published
, allowing for well-powered subgroup analyses.
sive information on lifestyle factors enabled us to
ol for potential confounders and assessment of
ble effect modifications. Another important
th of this study is the collection of blood samples
to cancer diagnosis. Moreover, the study centers
ted and stored blood samples according to a stan-
zed protocol (27), and all biochemical analyses
done in one laboratory, thereby optimizing sample

nd (two-sided) calculated by regression models.
ent and avoiding between-laboratory method
ility. The overall observed associations between

follow
with

acrjournals.org
itamins and age, sex, and smoking status (23, 33,
e in line with previous findings, supporting the
ity of biochemical data. Furthermore, the range
asma concentrations observed for vitamin B12
nd vitamin B6 (9) were comparable with those
er European studies, whereas vitamin B6 concen-
ns were slightly lower compared with those ob-
d in American studies (39–41), which may be
ined by widespread supplement use in the United
. Data on supplement use, and specifically use of
mins, in the EPIC cohort are sparse. However, in a
mple of the EPIC population, single 24-hour re-
revealed a clear north-south gradient in supple-
use, with higher consumption in northern than
thern European countries, and higher consump-
or women than for men (42). Moreover, none of
uropean countries applied mandatory fortification
y of the B-vitamins. As national fortification poli-
ary considerably throughout the European Union,
ropean Commission aims to harmonize voluntary
fortification across European countries in the near
(43).

o of four studies on the associations between vita-
6 and colorectal cancer (9, 39–41) reported median
2. Median concentrations (5th-95th percentile) of indices for v
graphic and lifestyle characteristics in control cohort members (n
-up time of 6 year
the present study

Cancer Epidemiol B
min B2, B6, and B12 by
= 2,319) (Cont'd)
s (9) and 10 years (41),
with a median follow-

iomarkers Prev; 19(10) O
Vi

in B6 sum (nmol/L) PL
min B6 indices

(nmol/L) PL
 mol/L) PA
 mol/L) Cob
Vitamin B12 indice

amin (pmol/L) MM
 (μmol/L)
.5 (33.5-190.5) 35.6
 5.1-97.4) 13.8
 .8-36.1) 18.4
 .5-56.5) 2
 (154-467) 0.17
 .12-0.32)
.5 (31.1-288.5) 31.2
 3.4-130.0) 13.1
 .6-58.1) 15.2
 .3-106) 3
 (170-517) 0.17
 .11-0.31)

<0.001
 0.001
 .10
 .001
 <0.001
 .49
.9 (32.1-217.8) 33.9
 4.7-115.0) 12.8
 .5-41.9) 15.6
 .5-67.0) 2
 (167-488) 0.16
 .11-0.27)
.2 (32.1-228.2) 32.8
 3.8-105.0) 13.9
 .9-45.9) 17.7
 .3-81.8) 2
 (153-506) 0.18
 .12-0.35)

0.21
 0.02
 .005
 .001
 <0.005
 .001
.0 (34.0-328.6) 36.9
 4.3-141.5) 16.2
 .5-76.0) 21.1
 .9-125) 2
 (166-478) 0.17
 .12-0.31)
.4 (32.4-211.3) 33.0
 4.8-110.0) 13.6
 .3-37.1) 16.3
 .1-64.8) 2
 (161-481) 0.18
 .12-0.32)
.2 (28.6-115.4) 29.9
 3.3-73.2) 11.0
 .2-22.9) 13.5
 .5-29.6) 3
 (160-550) 0.16
 .11-0.31)

<0.001
 0.001
 .001
 .001
 <0.001
 .001
.4 (33.3-225.9) 34.2
 5.5-109.0) 13.7
 .2-47.0) 16.5
 .1-75.9) 2
 (166-503) 0.17
 .12-0.30)
.1 (34.0-216.1) 35.1
 5.5-120.0) 14.2
 .1-40.1) 18.2
 .5-71.0) 2
 (161-498) 0.17
 .12-0.32)

7 (26.5-220.6) 28.9
 1.8-105.0) 11.9
 .4-41.6) 14.7
 .6-64.9) 2
 (147-482) 0.16
 .11-0.33)
0.91
 0.05
 .76
 .78
 <0.005
 .91

.4 (25.7-228.2) 29.5
 2.2-120.0) 13.2
 .2-54.8) 16.7
 .8-83.5) 3
 (183-527) 0.16
 .11-0.32)

.4 (32.0-227.9) 32.2
 4.3-109.0) 13.2
 .6-44.7) 16.3
 .8-74.3) 2
 (161-496)0 0.17
 .12-0.32)
63 (1 (6 (7 87 (0

75.5 (35.2-207.7) 41.7 (16.4-116.0) 14.8 (7.7-38.4) 19.2 (8.1-57.3) 280 (162-481) 0.16 (0.11-0.28)
<0.001 <0.001 <0.001 0.001 <0.005 <0.005

fference (two-sided) calculated by Mann Whitney U test; abstainers were excluded from statistical analyses on alcohol consumption.
rth: Sweden and Denmark; Central: United Kingdom.

fference (two-sided) calculated by Kruskall Wallis test.
compared
up time of
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Table 3. Relative risks (95% CI) for colorectal, colon, and rectal cancer by quintiles of indices for vitamins B2, B6, and B12 status

Site Matched analyses Matched + covariate adjusted analyses

Cases/Controls RR/quintile Ptrend* Cases/Controls RR/quintile Ptrend
† Q1 Q2 Q3 Q4 Q5

Colorectal cancer
Vitamin B2 sum 1,336/2,254 0.94 (0.89-0.99) 0.02 1,296/2,175 0.94 (0.88-0.99) 0.02 1 0.73 (0.58-0.92) 0.83 (0.65-1.05) 0.73 (0.57-0.93) 0.71 (0.56-0.91)

Riboflavin 1,358/2,315 0.97 (0.92-1.02) 0.21 1,318/2,236 0.97 (0.92-1.02) 0.27 1 0.88 (0.70-1.10) 0.84 (0.66-1.07) 0.84 (0.66-1.07) 0.87 (0.68-1.11)
FMN 1,337/2,254 0.89 (0.85-0.95) <0.001 1,297/2,175 0.89 (0.84-0.94) <0.001 1 0.77 (0.61-0.97) 0.81 (0.64-1.02) 0.54 (0.42-0.69) 0.65 (0.50-0.83)

Vitamin B6 sum 1,338/2,276 0.94 (0.89-0.99) 0.01 1,298/2,197 0.93 (0.88-0.98) 0.02 1 0.91 (0.72-1.13) 0.83 (0.66-1.05) 0.92 (0.73-1.17) 0.68 (0.53-0.87)
PLP 1,359/2,316 0.90 (0.85-0.95) <0.001 1,319/2,237 0.89 (0.84-0.94) <0.001 1 0.80 (0.64-1.00) 0.73 (0.58-0.91) 0.73 (0.57-0.92) 0.59 (0.47-0.76)
PL 1,355/2,302 0.95 (0.90-1.00) 0.06 1,315/2,223 0.90 (0.85-0.95) 0.03 1 0.79 (0.63-0.99) 0.73 (0.57-0.93) 0.84 (0.66-1.07) 0.70 (0.54-0.90)
PA 1,346/2,288 1.00 (0.95-1.06) 0.90 1,306/2,209 0.94 (0.89-0.99) 0.83 1 1.04 (0.82-1.31) 1.24 (0.98-1.56) 1.07 (0.84-1.37) 1.01 (0.78-1.30)

Cobalamin 1,362/2,303 1.02 (0.96-1.07) 0.58 1,322/2,225 1.03 (0.97-1.08) 0.19 1 0.86 (0.69-1.08) 1.02 (0.81-1.28) 1.08 (0.85-1.35) 1.02 (0.80-1.29)
MMA 1,365/2,313 0.99 (0.94-1.04) 0.72 1,325/2,234 1.02 (0.96-1.08) 0.97 1 1.09 (0.87-1.36) 1.16 (0.92-1.46) 1.18 (0.94-1.49) 0.94 (0.74-1.21)
Colon
Vitamin B2 sum 630/1,436 0.91 (0.85-0.97) <0.005 805/1,392 0.91 (0.85-0.97) 0.01 1 0.74 (0.56-1.00) 0.72 (0.54-0.97) 0.66 (0.49-0.89) 0.66 (0.48-0.90)

Riboflavin 842/1,467 0.95 (0.89-1.02) 0.15 817/1,423 0.96 (0.89-1.02) 0.19 1 0.88 (0.66-1.16) 0.81 (0.60-1.09) 0.74 (0.55-1.00) 0.86 (0.63-1.15)
FMN 831/1,436 0.86 (0.80-0.92) <0.001 806/1,392 0.87 (0.81-0.93) <0.001 1 0.76 (0.58-1.01) 0.76 (0.57-1.01) 0.53 (0.39-0.73) 0.59 (0.43-0.81)

Vitamin B6 sum 829/1,446 0.93 (0.87-1.00) 0.05 804/1,402 0.93 (0.86-1.00) 0.01 1 0.93 (0.70-1.23) 0.75 (0.56-1.01) 0.89 (0.67-1.20) 0.69 (0.50-0.96)
PLP 843/1,468 0.90 (0.85-0.97) <0.005 818/1,424 0.90 (0.84-0.97) <0.005 1 0.79 (0.60-1.04) 0.62 (0.47-0.83) 0.74 (0.55-0.99) 0.63 (0.46-0.86)
PL 839/1,460 0.95 (0.88-1.02) 0.13 814/1,416 0.94 (0.87-1.01) 0.08 1 0.73 (0.54-0.97) 0.67 (0.49-0.91) 0.80 (0.59-1.08) 0.68 (0.49-0.94)
PA 834/1,454 1.02 (0.95-1.09) 0.58 809/1,410 1.02 (0.95-1.09) 0.63 1 1.11 (0.83-1.50) 1.28 (0.96-1.72) 1.13 (0.83-1.54) 1.07 (0.78-1.48)

Cobalamin 844/1,461 1.00 (0.94-1.07) 0.97 819/1,,418 1.01 (0.94-1.08) 0.05 1 0.76 (0.57-1.01) 1.03 (0.77-1.36) 0.90 (0.67-1.22) 0.95 (0.70-1.28)
MMA 846/1,467 0.97 (0.90-1.04) 0.34 821/1,423 0.99 (0.92-1.06) 0.67 1 1.32 (0.99-1.76) 1.08 (0.81-1.46) 1.24 (0.93-1.67) 0.95 (0.69-1.30)
Rectal
Vitamin B2 sum 506/818 1.00 (0.92-1.09) 0.96 491/783 0.99 (0.90-1.09) 0.81 1 0.73 (0.48-1.09) 1.14 (0.75-1.73) 0.94 (0.61-1.43) 0.84 (0.55-1.28)

Riboflavin 516/848 1.00 (0.91-1.09) 0.95 501/813 1.00 (0.91-1.10) 0.93 1 0.88 (0.59-1.32) 0.95 (0.63-1.45) 1.06 (0.69-1.62) 0.92 (0.60-1.40)
FMN 506/818 0.95 (0.87-1.04) 0.27 491/783 0.91 (0.83-1.01) 0.06 1 0.80 (0.53-1.20) 0.91 (0.60-1.37) 0.55 (0.36-0.85) 0.74 (0.48-1.15)

Vitamin B6 sum 509/830 0.95 (0.87-1.03) 0.19 494/795 0.94 (0.86-1.03) 0.20 1 0.85 (0.57-1.25) 1.06 (0.71-1.57) 1.01 (0.67-1.51) 0.69 (0.46-1.04)
PLP 516/848 0.90 (0.83-0.98) 0.01 501/813 0.89 (0.81-0.97) 0.01 1 0.84 (0.57-1.23) 1.01 (0.68-1.49) 0.74 (0.49-1.11) 0.58 (0.39-0.87)
PL 516/842 0.96 (0.88-1.04) 0.31 501/807 0.95 (0.87-1.04) 0.28 1 0.93 (0.63-1.37) 0.86 (0.58-1.27) 0.96 (0.64-1.45) 0.77 (0.51-1.17)
PA 512/834 0.98 (0.90-1.08) 0.72 497/799 1.00 (0.91-1.10) 0.98 1 0.93 (0.63-1.38) 1.20 (0.82-1.76) 1.02 (0.68-1.53) 0.95 (0.63-1.45)

Cobalamin 518/842 1.04 (0.96-1.13) 0.31 503/807 1.06 (0.97-1.15) 0.23 1 1.15 (0.78-1.70) 1.00 (0.68-1.46) 1.42 (0.97-2.07) 1.17 (0.80-1.73)
MMA 519/846 1.03 (0.95-1.12) 0.50 504/811 1.03 (0.94-1.12) 0.54 1 0.82 (0.56-1.20) 1.33 (0.91-1.93) 1.15 (0.79-1.69) 0.96 (0.64-1.43)

NOTE: Counts do not necessarily add to the total sum due to missing data.
The lower quintile is the reference category. All analyses arematched for age, sex, study center, and date of blood collection. Thematched + covariate adjusted analyses are further
adjusted for smoking status, education level, physical activity, fiber intake, intake of red and processed meat, alcohol consumption, and body mass index (BMI).
The cutoff values for the quintiles of the vitamin B2 sumwere 14.2, 18.1, 23.5, and 33.4 μmol/L; for riboflavin they were 9.4, 12.8, 17.2, and 25.4 μmol/L; for FMN they were 3.3, 4.6,
6.3, and 8.8 μmol/L; for the vitamin B6 sum they were 45.4, 57.7, 72.6, and 105.3 μmol/L; for PLP they were 21.7, 29.1, 38.4, and 56.6 μmol/L; for PL they were 9.4, 11.8, 15.0, and
20.6 μmol/L; for PA they were 11.1, 14.6, 19.2, and 29.0 μmol/L; for vitamin B12 they were 220, 266, 312, and 380 pmol/L; and for MMA they were 0.14, 0.16, 0.18, and 0.22 μmol/L.
*Ptrend (two-sided) in risk calculatedwith conditional logistic regressionmodelswithout any covariates in themodel using values for quintile categories as the quantitative score of exposure.
†Ptrend (two-sided) in risk calculated with conditional logistic regression models with the covariates in the model using values for quintile categories as the quantitative score of exposure.
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Table4.Adjusted relative risks (95%CI) for colorectal cancerbyquintilesof indices for vitaminsB2,B6, andB12statusbyalcohol consumptionandsex
Alcohol Cases/Controls Q1 Q2 Q3 Q4 Q5 Ptrend* Pinteraction

† Pinteraction
‡

Vitamin B2 sum
Overall Abstainer1-15s 83/144 1 0.88 (0.30-2.54) 1.51 (0.48-4.72) 1.01 (0.31-3.23) 1.06 (0.31-3.72) 0.82

1-30 g/d 939/1671 1 0.83 (0.63-1.09) 0.92 (0.70-1.20) 0.85 (0.65-1.12) 0.83 (0.63-1.09) 0.27
≥30 g/d 274/360 1 0.55 (0.33-0.92) 0.65 (0.39-1.10) 0.60 (0.34-1.04) 0.56 (0.32-0.98) 0.07 0.21

Males 1-30 g/d 386/700 1 0.80 (0.53-1.22) 1.23 (0.82-1.85) 1.16 (0.76-1.76) 0.87 (0.56-1.35) 0.82
≥30 g/d 220/285 1 0.50 (0.28-0.89) 0.66 (0.37-1.19) 0.76 (0.41-1.40) 0.50 (0.26-0.96) 0.15 0.14

Females 1-30 g/d 553/971 1 0.84 (0.58-1.20) 0.75 (0.52-1.08) 0.69 (0.48-0.99) 0.80 (0.57-1.14) 0.17 0.27
≥30 g/d 54/75 1 0.58 (0.14-2.40) 0.53 (0.14-1.94) 0.20 (0.04-0.99) 0.52 (0.15-1.80) 0.22 0.55 0.91

Vitamin B6 sum
Overall Abstainer1-15s 86/149 1 0.53 (0.20 1.41) 0.73 (0.27-1.96) 1.04 (0.39-2.80) 0.39 (0.11-1.39) 0.54

1-30 g/d 940/1691 1 0.92 (0.71-1.18) 0.78 (0.60-1.02) 0.91 (0.70- 1.19) 0.76 (0.58-1.01) 0.09
≥30 g/d 272/357 1 0.94 (0.49-1.80) 0.91 (0.47-1.76) 0.70 (0.37-1.35) 0.55 (0.28-1.07) 0.03 0.12

Males 1-30 g/d 392/718 1 1.18 (0.77-1.80) 0.80 (0.52-1.23) 1.17 (0.77-1.77) 0.80 (0.51-1.26) 0.44
≥30 g/d 218/282 1 0.56 (0.25-1.25) 0.50 (0.22-1.13) 0.41 (0.19-0.91) 0.34 (0.15-0.76) 0.01 0.01

Females 1-30 g/d 548/973 1 0.79 (0.58-1.08) 0.80 (0.57-1.12) 0.77 (0.54-1.10) 0.76 (0.53-1.09) 0.14 0.50
≥30 g/d 54/75 1 2.21 (0.52-9.36) 1.79 (0.40-8.07) 3.19 (0.67-15.20) 0.92 (0.19-4.49) 0.86 0.34 0.03

Cobalamin
Overall Abstainer1-15s 88/154 1 0.36 (0.12-1.11) 0.77 (0.27-2.26) 0.75 (0.28-2.01) 0.56 (0.21-1.53) 0.66

1-30 g/d 959/1708 1 0.94 (0.73-1.22) 1.10 (0.86-1.42) 1.06 (0.82-1.38) 1.05 (0.80-1.37) 0.49
≥30 g/d 275/363 1 0.76 (0.46-1.26) 0.68 (0.41-1.15) 1.00 (0.60-1.68) 0.93 (0.54-1.60) 0.91 0.76

Males 1-30 g/d 401/722 1 0.97 (0.67-1.41) 1.27 (0.88-1.83) 1.11 (0.75-1.66) 1.07 (0.69-1.65) 0.48
≥30 g/d 221/289 1 0.93 (0.53-1.64) 0.73 (0.41-1.31) 1.07 (0.59-1.96) 0.99 (0.53-1.84) 0.93 0.66

Females 1-30 g/d 558/986 1 0.89 (0.62-1.29) 0.96 (0.68-1.37) 1.03 (0.73-1.45) 1.00 (0.71-1.41) 0.72 0.76
≥30 g/d 54/74 1 0.45 (0.11-1.76) 0.58 (0.14-2.31) 0.73 (0.22-2.45) 0.71 (0.19-2.59) 0.80 0.90 0.78

MMA
Overall Abstainer1-15s 88/155 1 1.16 (0.45-2.96) 1.97 (0.68-5.73) 0.92 (0.33-2.59) 1.20 (0.43-3.36) 0.93

1-30 g/d 961/1714 1 1.07 (0.82-1.40) 1.10 (0.85-1.43) 1.17 (0.90-1.53) 0.91 (0.69-1.21) 0.80
≥30 g/d 276/365 1 1.45 (0.88-2.39) 1.28 (0.75-2.17) 1.28 (0.76-2.17) 1.28 (0.73-2.27) 0.53 0.63

Males 1-30 g/d 400/723 1 1.19 (0.79-1.81) 1.33 (0.88-2.03) 1.22 (0.80-1.85) 1.01 (0.66-1.54) 0.98
≥30 g/d 222/290 1 1.62 (0.92-2.84) 1.56 (0.86-2.84) 1.49 (0.83-2.69) 1.51 (0.81-2.83) 0.24 0.40

Females 1-30 g/d 561/991 1 1.01 (0.71-1.43) 0.98 (0.70-1.37) 1.19 (0.84-1.68) 0.86 (0.59-1.24) 0.80 0.98
≥30 g/d 54/75 1 1.30 (0.37-4.61) 0.58 (0.13-2.52) 0.87 (0.23-3.28) 0.72 (0.14-3.67) 0.52 0.32 0.31

NOTE: Counts do not necessarily add to the total sum due to missing data.
The lower quintile is reference category. All analyses are matched for age, sex, study center, and date of blood collection and further adjusted for smoking status, education level,
physical activity, fiber intake, intake of red and processed meat, alcohol consumption, and BMI.
The cutoff values for the quintiles of vitamin B2 sumwere 14.2, 18.1, 23.5, and 33.4 μmol/L; for the vitamin B6 sum theywere 45.4, 57.7, 72.6, and 105.3 μmol/L; for vitamin B12 they
were 220, 266, 312, and 380 pmol/L; and for MMA they were 0.14, 0.16, 0.18, and 0.22 μmol/L.
*Ptrend (two-sided) in risk calculated with conditional logistic regression models with the covariates in the model using values for quintile categories as the quantitative score of exposure.
†Pinteraction (two-sided) of the vitamin-colorectal cancer association by alcohol consumption (abstainers excluded) for the overall model, and separately for males and females.
‡Pinteraction (two-sided) of the vitamin-colorectal cancer association by sex, separately for individuals with low alcohol consumption (abstainers excluded) and high alcohol consumption.
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ars. A potential drawback of cohort studies with
ely short follow-up is reverse causality, i.e., the
menon that preclinical disease influences exposure
. This is more likely to affect individuals diagnosed
than those diagnosed later. In this respect, Lee et al.
reviously observed a stronger inverse association
en vitamin B6 and colorectal cancer in an earlier
ared with a later follow-up period. Although in
udy the associations between vitamin B6 sum and
individual species and risk of colorectal cancer
d more pronounced in those diagnosed within
rst years of follow-up compared with those diag-
later, it should be emphasized that there was no
ical evidence for effect modification by the duration
ow-up. Nevertheless, to present analyses according
ferent lengths of follow-up time should be recom-
ed in future studies.
most important dietary sources of vitamin B2
ilk and dairy products (44), whereas vitamin B6
be obtained from various food groups, including
vegetables, and meat (45). After ingestion, free
and FAD are converted to riboflavin, whereas
amin B6 species are converted into PLP and PL.
acts as a cofactor and PA is the catabolite prod-
these reactions (36, 45). As the sum variables for
in B2 and vitamin B6 might account for any in-
version between the two B2 species (35, 46–48)
he three B6 species (36, 45, 49), they are used
pplementary variables to determine vitamin B2
itamin B6 status, respectively.

E: Wild type is the reference category.
epidemiologic studies have investigated plasma
ntrations of B-vitamins in relation to colorectal can-

involv
taboli

r Epidemiol Biomarkers Prev; 19(10) October 2010
k (9, 10, 39, 41). The present study observed a risk
tion of 29% for individuals in the highest quintile of
m of vitamin B2 concentration compared with
in the lowest quintile. Although riboflavin has been
sted as the best plasma marker of vitamin B2 status
no relation with colorectal cancer was found for
avin, whereas it was found for FMN. FMN serves
ofactor in the synthesis of PLP (2, 51), which is
tive form of vitamin B6. Interestingly, in line with
us studies on plasma PLP (39, 41), we observed an
e association between the sum of vitamin B6 and
ctal cancer. We did not observe an association be-
plasma vitamin B12 and its marker MMA and co-

al cancer, whereas Dahlin et al. (10) observed that
a vitamin B12 was inversely associated with rectal
r. In the Aspirin/Folate Polyp Prevention Study,
investigated the effects of folic acid supplementa-
n incidence of new colorectal adenomas in persons
a history of adenomas, high plasma concentrations
P and riboflavin at baseline seemed to protect
st colorectal adenomas (52). Methodologic differ-
in cross-sectional, prospective, and intervention
s, as well as differences between data on intake
11–13, 26) and plasma concentrations (9, 10, 14,
), may have resulted in inconsistencies between
s. However, taking all epidemiologic studies into
nt, current evidence suggests a role for the vitamins
d B6 in colorectal carcinogenesis.
tably, folate and vitamin B12 are carriers of one-
n units, whereas vitamins B2 (53) and B6 (54) are
5. Distri
 enotypes by cancer site, an
 heir associations with colo
ed in many pathways othe
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hydrate, and vitamin metabolisms (53), whereas vi-
B6 has been shown to reduce oxidative stress and
s cell proliferation and angiogenesis (55). As colo-
cancer risk was not related to concentrations of fo-
37) and vitamin B12 in this cohort, the inverse
ation between risk and vitamin B2 and B6 may re-
echanisms not involving one-carbon metabolism.
itamin B2 and B6 are cofactors within the kynure-
etabolism which is related to inflammation (56).

verse association of PLP with the inflammatory
r C-reactive protein, which has been related to sev-
ancer types, has also been reported (57).
ohol consumption may reduce bioavailability of fo-
8) and vitamin B6 (59). So far, only two studies
investigated the interaction among vitamin B6 sta-
lcohol consumption, and colorectal cancer (39, 60),
oth studies suggest that a sufficient vitamin B6 sta-
ay prevent the development of colorectal cancer
ularly in persons with high alcohol consumption,
s which are in agreement with data for males of
esent study.
arding the role of genetic variants in the one-
n metabolism and colorectal cancer, we did not
e that the polymorphisms investigated were asso-
with colorectal cancer. Although some associa-
have been reported, previous studies did not
stently show associations of similar one-carbon
and colorectal cancer (4, 18–21, 23). Furthermore,
ally variable B-vitamin status did not modify the
ations between SNPs and colorectal cancer risk.
te the large study population, the sample size
still have been too small to detect associations

colorectal cancer risk, interactions between genes
uropean region, and interactions between genes
itamins, and may also have resulted in chance
gs. Nevertheless, we observed that the association
en MTRR 66A→G and colorectal cancer was mod-
y vitamin B2 status. Furthermore, the polymorph-
presented in this study may not cover all genetic
ility of the studied genes, but they represent a col-
of polymorphisms in genes encoding central en-

s of the one-carbon metabolism. All these variants

been shown to influence one-carbon metabolism

ed to cancer (18, 19, 23).
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