Hepatitis B Virus DNA in Persons with Isolated Antibody to Hepatitis B Core Antigen Who Subsequently Received Hepatitis B Vaccine

A. Eduardo Silva,* Brian J. McMahon, Alan J. Parkinson, Maria H. Sjogren, Jay H. Hoofnagle, and Adrian M. Di Bisceglie

From the Hepatitis Studies Section, National Institutes of Health, Bethesda, and the United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland; and the Alaska Native Medical Center and Arctic Investigations Program, National Center for Infectious Disease, Centers for Disease Control and Prevention, Anchorage, Alaska

Serum samples from 133 persons who were positive only for antibody to hepatitis B core antigen (anti-HBc) by enzyme immunoassay (EIA) were retested for seromarkers of hepatitis B virus (HBV) by radioimmunoassay and for HBV DNA by polymerase chain reaction analysis. All persons were subsequently vaccinated with hepatitis B vaccine. HBV DNA was found in only five persons, four of whom remained positive during retesting. Most persons had a primary antibody response with three doses of hepatitis B vaccine. Evidence of HBV DNA was not detected in 96% of persons with isolated anti-HBc by EIA.

Antibody to hepatitis B core antigen (anti-HBc) is considered a sensitive and specific serum marker of hepatitis B virus (HBV) infection [1]. Anti-HBc can be found in serum samples from persons who have been exposed to HBV. Most persons who have been infected with HBV and have recovered have antibody to hepatitis B surface antigen (anti-HBs), and those who are actively infected also have hepatitis B surface antigen (HBsAg).

The significance of finding anti-HBc as the sole marker of HBV infection remains uncertain. This finding could be due to false-positive results of reactivity tests, particularly when testing is performed by EIA (the method most used by commercial laboratories and blood banks [2, 3]); the loss of anti-HBs with time or failure of persons to develop anti-HBs after HBV infection; and the "window" phase of acute HBV infection, which occurs after the loss of HBsAg and before anti-HBs appears. In these cases anti-HBc IgM is almost always present, an HBV carrier state where there is undetectable HBsAg and low levels of HBV replication [4].

In this study, we utilized two methods to measure seromarkers of HBV infection in serum samples from 133 persons who had anti-HBc as the sole marker of HBV infection. We also used PCR analysis to determine if HBV DNA was present. We correlated our findings with responses to hepatitis B vaccine that we have previously reported [2].

Patients and Methods

All 133 subjects had participated in a study examining the response to hepatitis B vaccine in persons with only anti-HBc [2]. Participants were persons who were positive for anti-HBc but negative for HBsAg and anti-HBs when tested by EIA (Auszyme, Auszab, and Corzyme, Abbott Laboratories, North Chicago, IL) before vaccination. Precrnavacination serum samples were also tested for HBsAg, anti-HBs, and anti-HBc by RIAs (AUSR A II, Ausab, and Corab, Abbott Laboratories). Subjects were divided into four groups according to their anti-HBc and anti-HBs status (table 1). Anti-HBs levels in participants were again measured by RIA 1 month after the first and third doses of plasma-derived hepatitis B vaccine (20 μg per dose; Heptavax, Merck Pharmaceuticals, West Point, PA). A booster response was defined as development of ≥50 sample ratio units (SRU) of anti-HBs after one dose of vaccine, and a primary response was defined as ≥10 SRU of anti-HBs 1 month after the third dose of vaccine [2].

Precrnavacination serum samples were tested for HBV DNA by PCR analysis with use of nested primers from the precore/core region of the HBV genome [5]. This assay is able to detect as little as 10 genome equivalents of HBV DNA per sample. General measures to avoid contamination were utilized [6].

Results

Only five (3.8%) of 133 persons were positive for HBV DNA by PCR analysis (table 1). Repeated PCR testing of the
Table 1. Groups of subjects positive only for anti-HBc by EIA according to anti-HBc and anti-HBs status measured by EIA and RIA.

<table>
<thead>
<tr>
<th>Finding</th>
<th>Group A (n = 39)</th>
<th>Group B (n = 49)</th>
<th>Group C (n = 36)</th>
<th>Group D (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of anti-HBc by EIA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Presence of anti-HBc by RIA</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Presence of anti-HBs (<10 SRU) by RIA</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Presence of anti-HBs (≥10 SRU) by RIA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>No. with HBV DNA by PCR analysis</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>No. with booster response* / total no. tested</td>
<td>3/35</td>
<td>3/48</td>
<td>15/40</td>
<td>4/7</td>
</tr>
<tr>
<td>No. with primary response* / total no. tested</td>
<td>24/26</td>
<td>27/33</td>
<td>14/21</td>
<td>1/2</td>
</tr>
</tbody>
</table>

NOTE. anti-HBc = antibody to hepatitis B core antigen; anti-HBs = antibody to hepatitis B surface antigen; HBV = hepatitis B virus; SRU = sample ratio units; + = positive; − = negative.

* Development of ≥50 SRU of anti-HBs after one dose of hepatitis B vaccine.

In four other studies investigating serum samples positive only for anti-HBc by either RIA or EIA, PCR analysis revealed HBV DNA in <10% of samples in three studies [7, 9, 10] and in 35% of samples in one study from China [8]. It is likely that the proportion of persons with sera positive only for anti-HBc who are positive for HBV DNA will be higher among populations with a high prevalence of HBV infection.

Although a few reports have implicated persons with only anti-HBc as the source of posttransfusion hepatitis B, it would be both expensive and time-consuming for blood banks to screen samples that are HBsAg-negative but anti-HBc-positive. In this study, 26% of persons who were positive for anti-HBc by EIA were negative by RIA; only three (9%) of 35 persons had a booster response to one dose of hepatitis B vaccine, while 24 (92%) of 26 of those who did not have a booster response had a primary response. In addition, we have previously shown by comparing these two methods that most serum samples positive for anti-HBc by EIA, but negative by RIA, have low levels of anti-HBc [3]. In contrast, serum samples positive only for anti-HBc by both methods have high levels of anti-HBc when quantitated by RIA. Thus, raising the positive cutoff level for EIA or employing RIA for determination of anti-HBc would eliminate some of the false-positive results.

In conclusion, in this study, HBV DNA was not found in 96% of serum samples from individuals with only anti-HBc when tested by EIA. Since most of these persons had a primary response to hepatitis B vaccine, the finding of isolated anti-HBc is most likely to be a false-positive result. When a person who is screened for hepatitis B vaccination by EIA is found to have isolated anti-HBc in their serum, the most practical approach would be to offer the person the hepatitis B vaccine and evaluate their response to vaccination.

References

