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A promising new approach for eco-environmental modelling, such as algal growth prediction,

is the data-driven modeling using machine learning techniques: an artificial neural network (ANN)

being a typical method. Another method growing in popularity, based on the M5 model tree (MT)

algorithm, is the use of piecewise linear regression models at the leaf nodes of the tree. M5 MTs

using partial least-squares regression (PLSR) proposed in this paper were tested on a particular

dataset and then compared to M5 MTs, MLF- and RBF-ANN and k nearest neighbours (kNN). With

the dataset partitioned to periods of algal growth and no growth, M5 MTs using PLSR showed

better results for algal growth prediction in the reservoir than using the annual dataset and other

algorithms. This gives the idea that the M5-PLSR MTs, in spite of the lack of data, more effectively

seeks latent vectors between the closely correlated multivariate dataset partitioned using

clustering techniques. M5-PLSR MTs is a promising approach when there is a shortage of data

required to build a more transparent learning process model, and a combination with clustering

is recommended.
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INTRODUCTION

The conceptualization of most environmental processes

involves the formulation of relationships among variables.

These relationships do not necessarily imply that one

variable causes another, but that significant associations

exist among particular variables. Previously, research on

environmental processes used to describe and analyze only

univariate and bivariate datasets. Examples of the analysis

of univariate datasets include confidence intervals for the

mean, and techniques for correlation and regression.

Environmental conditions, such as eutrophication in a

reservoir, often involve a large number of variables (attributes:

e.g. temperature, pH, inorganic phosphate or Secchi depth)

that are considered to be related to a particular dependent

variable, such as algal growth. To understand the behavior

of a particular phenomenon in the natural environment it

has been customary to introduce controls on particular

variables, thus reducing the number of variables describing

the phenomenon by treating most of them as constants.

This can be done, for example, by performing laboratory

simulations using constant environment rooms. Such an

approach enables the research to focus on a small number

of variables, in spite of a large number of variables involved

in the particular phenomenon, typically one or two, which

can be analyzed using conventional statistical methods.
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Data-driven modelling (data mining) is a promising new

research direction for interpreting multivariate data

(Pedrycz et al. 2002; Witten & Frank 2005). In interdisci-

plinary research detecting patterns and rules in large

quantities of data, the terminologies used have varied

according to the research fields involved. Data-driven

modelling has proven a broader and increasing application

tendency over recent years, based on artificial intelligence

and/or statistics, complementing or replacing deterministic

models in many research fields.

Simply put, a data-driven approach is the process of

exploring relationshipsamonga largenumberof variablesand

quantities of data in order to extract meaningful information

from the data in the form of formulas, computer codes,

patternsor rules. The resulting informationcanbe storedasan

abstract mathematical model, referred to as a data-driven

model, and thennewdata areexaminedusing themodel to see

if it fits the established model. From this information, actions

can be taken to improve the model. In this sense, the

data-driven model can be said to learn. For model learning

with respect to environmental data, it is typical to predict a

continuous numerical value rather than a discrete category

(class) to which an example belongs (Quinlan 1992).

There are many data-driven (machine learning)

techniques. These include standard regression, artificial

neural network (ANN), k nearest neighbouring (kNN),

regression trees, model trees (MTs) and prediction by pre-

discretization. Each technique has its weaknesses: standard

regression is not a very powerful way of representing an

induced function because it is restricted to a linear rather

than a nonlinear relationship on data with spatial and

temporal variation. ANN is more powerful, but suffers from

opacity in that it does not disclose any information about

the physical processes that it represents (Solomatine &

Dulal 2003). kNN can be easily adopted to perform a

real-valued prediction, but it uses the “local modeling”

approach and lacks the generalization ensured, at least

partly, by global models like ANN (Solomatine et al. 2007).

Regression tree models are based on an assumption of a

linear dependence between inputs and outputs, with aver-

agednumerical values at each leaf nodeof the tree. Therefore,

at the leaves these models capture the linear dependence

between one or more independent variables, xn, and the

dependent (or response) variable, y. Unlike regression tree

models, MTs are tree-structured regression models that

associate leaves with multiple linear regression functions

used to calculate numerical values. Therefore, a model tree

constructs piecewise linearmodels at the leaves, but overall it

shows a nonlinear behavior. One distinct advantage is that

the MT mechanism is more transparent than that of many

other machine learning algorithms. Thus, one can easily

follow a tree structure to understand how a decision has been

made (Pedrycz & Sosnowski 2001). Additionally, when the

number of instances (observations) is smaller than the

number of attributes (variables) in each instance, a local

model with a regression approach is no longer feasible.

This problem is common in the partitioning technique when

using an MT approach, such as linear regression, as the

number of observations in the local model decreases with the

expansion of the tree. Partial least-squares regression (PLSR)

is an extension ofmultivariate linear regression, which solves

this problem by considering in–out pairs remaining at each

internal node and at the final leaf. Specifically, PLSR is

effective in situations where use of the traditional least-

squares error (LSE)-based multivariate method is severely

limited because there are fewer instances than the number of

attributes (Baffi et al. 1999; Tan et al. 2004).

In this paper, the PLSR technique was tested as the

regression algorithm used in MT models for algal growth

prediction of the Yongdam reservoir, Korea. Using MLP-

and RBF-ANN, kNN and M50 methods provided a

comparison with results of the proposed M5-PLSR MTs.

Because the metabolism of algae is influenced by the

season, the training and test datasets were partitioned into

two groups: the algal growth and no-growth periods.

The modelling results using an annual dataset, covering all

two periods, were compared with those using the parti-

tioned dataset, to test and identify if there are any

shortcomings in the partitioning performance of MTs on

algal growth and hibernation due to temperature variation.

DATA-DRIVEN MODELS

Model trees (MTs)

MTs are not as popular as ANN: they have only recently

been introduced in the water sector (Kompare et al. 1997a;
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Solomatine & Dulal 2003) and have not yet been widely

applied. Solomatine (2005) demonstrated the application of

MTs to hydrological and other problems, along with other

data-driven models. The advantages of MTs are that they

are more accurate than regression trees, more understand-

able than ANN, easy to train, and robust when dealing with

missing data (Witten & Frank 2005).

There are two basic MT approaches: multiple adaptive

regression splines (MARS; Friedman 1991) and M5 MTs

(Quinlan 1992). This research used the M5 algorithm for

inducing an MT. The MT approach involves two major

procedures: building the tree and inferring knowledge from

it. In Figure 1, for example, the tree-building procedure

involves partitioning the input space into mutually exclusive

regions using the linear regression model. In the inference

procedure, a new instance is fed into one of the models at

the leaves of the tree, according to a splitting condition

adopted in the tree-building procedure, and then the

predicted output is obtained from the linear model at

the leaf.

There is a version of the M5 algorithm known

as the M50 algorithm proposed by Wang & Witten (1997).

This algorithm has a similar structure to the M5 algorithm,

but is able to deal effectively with missing values and

enumerated attributes. These algorithms have the following

three main steps.

Building the tree

The basic tree is formed using the splitting criterion, which

treats the standard deviation of the class values that reach a

node as a measure of the error at that node, and calculates

the expected reduction in error as a result of testing each

attribute at that node. The attribute that maximizes the

expected error reduction is then selected. The standard

deviation reduction (SDR) for M5 is calculated using the

formula

SDR ¼ sdðTÞ2
i

X Tij j

Tj j
£ sdðTiÞ ð1Þ

where sd is the standard deviation of the set of examples

T that reach the node and Ti is the set that results from

splitting the node according to the chosen attribute.

The splitting process ceases when the class values of all

the instances that reach a node vary by less than 5% of the

standard deviation of the original instance set, or when

only a few instances remain.

Pruning the tree

An over-fitting problem can occur during MT construction

based on training data. Predictably, the accuracy of the tree

for the training examples increases monotonically as the

tree grows. However, this increases over-fitting, so that

the accuracy measured over the independent test examples

first increases, then decreases. A method for reducing this

problem is termed “pruning”.

For use in the smoothing process, a linear model is also

needed for each interior node of the tree, not just at the

leaves. Prior to pruning, a model is calculated for each node

Figure 1 | Splitting of input space and prediction by the model trees for a new

dataset. (a) Splitting of the input space such as X1 £ X2 by M5 model tree

algorithm; each model is a linear regression model y ¼ a0 þ a1x1 þ a2x2.

(b) Prediction for new instance by model tree.
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of the unpruned tree. The model takes the form

y ¼ x0 þ x1a1 þ x2a2 þ _cþ xkak

where a1, a2, … , ak are attribute values. The weights x1, x2,

… , xk are calculated using a standard regression. However,

only the attributes tested in the sub-tree below this node are

used in the regression, because the other attributes which

affect the predicted value have been taken into account in

the tests that lead to the node.

The pruning procedure uses an estimate of the expected

error that will be experienced at each node for the test data.

First, the absolute difference between the predicted value

and the actual output value is averaged for each of the

training examples that reach the node. Because the trees

have been built expressly for this dataset, this average will

underestimate the expected error for new cases. To

compensate for this, the output value is multiplied by the

factor (n þ v)/(n 2 v), where n is the number of training

examples that reach the node and v is the number of

attributes in the model that represent the output value at

that node. Therefore, this multiplication is done to avoid

underestimating the error for new data, rather than the data

against which it was trained. If the estimated error is lower

at the parent, the leaf node can be dropped (Witten &

Frank 2005).

Smoothing

A final stage is to use a smoothing process to compensate

for sharp discontinuities that inevitably occur between

adjacent linear models at the leaves of the pruned tree,

particularly for some models constructed from a small

number of training instances. The smoothing procedure

described by Quinlan (1992) uses the leaf model to compute

the predicted value, and that value is then filtered along the

path back to the root, smoothing it at each node by

combining it with the value predicted by the linear model

for that node. This involves the calculation

p
0

¼
npþ kq

nþ k
ð2Þ

where p0 is the prediction passed up to the next higher node,

p is the prediction passed to this node from below, q is the

value predicted by the model at this node, n is the number

of training instances that reach the node below and k is a

constant. In general, smoothing substantially increases the

accuracy of the predictions.

In the application of M5, it is not clear how to deal with

enumerated attributes and missing values. These factors are

critical in real-world datasets that are encountered in

practice, and to take account of them the SDR is further

modified to

SDR ¼
m

Tj j
£ bðiÞ £ sdðTÞ2

j[ L;Rf g

X Tj

���
���

Tj j
£ sdðTjÞ

2
64

3
75 ð3Þ

where m is the number of examples without missing values

for that attribute, T is the set of examples that reach this

node, b(i) is the correction factor calculated for the original

attribute to which this synthetic attribute corresponds, and

TL and TR are sets that result from splitting on this attribute

(all attributes are now binary).

In the present paper, the M50 algorithm with LSE

implemented in Weka software (1999–2005) was used.

M5-PLSR model trees

M5-PLSR MTs use the same SDR for tree induction, but

use PLSR instead of LSER for multivariate regression at

the leaves of the tree. The PLSR is a relatively recent

technique that generalizes and combines features from

principal component analysis (PCA) and multivariate linear

regression (Abdi 2003). Because, instead of finding the

hyperplanes of minimum variance, it finds a linear model

describing some predicted variables in terms of other

observable variables.

A goal of PLSR (or, more precisely, of the principal

component analysis part in it) is to deduces orthogonal

linear combinations of original predictors that correlate

highly with the response variables, while accounting for as

much variance in the predictors as possible. This means that

the PLSR method balances the objectives of finding latent

vectors that explain both the response and predictor

variation. Therefore, the PLSR method is well suited to

the prediction of regression models when the data is

highly correlated, and where there is only a limited number

of observations, because the predictor and predicted
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(response) variables are each considered as a block of

variables (Rosipal & Krämer 2006).

PLSR models the relationship between response and

predictor variables by means of latent variables. For a

dataset with response variable y [ R n£m and predictor

variable x [ R n£p, the PLSR decomposes the variables x

and y as follows:

X ¼ TPT þ E ¼
Pa

h¼1 thp
T
h þ E

Y ¼ UQT þ F ¼
Pa

h¼1 uhq
T
h þ F

ð4Þ

where T and U are matrices of the extracted score vectors

(components, latent vectors), P and Q represent matrices of

loadings, and E and F are the matrices of residuals.

The input and output variables are projected onto a

subspace of orthogonal latent variables to give the input

and output scores, t and u, respectively. The standard

algorithm for computing PLS regression components is

nonlinear iterative PLS (NIPLS). The NIPLS algorithm

starts with a random initialization of the Y score vector u

and repeats the sequence of steps below until conver-

gence. After convergence, the loading vectors p and q

can be computed. In summary, the NIPLS algorithm is

as follows:

(1) set the output scores u equal to a column of Y

(2) compute the input weights w by regressing X on u:

w T ¼ (u T·X)/(u T·u)

(3) normalize w to unit length: w ¼ w/(kwk)

(4) calculate the input scores t: t ¼ (X·w)/(w T·w)

(5) compute the output loadings q by regressing Y on t:

q T ¼ (t T·Y)/(t T·t)

(6) normalize q to unit length: q ¼ q/(kqk)

(7) calculate the new output scores u: u ¼ (Y·q)/(q T·q)

(8) check the convergence on u—if ‘yes’ go to (9),

otherwise go to (2)

(9) calculate the input loadings p by regressing X on t:

p T ¼ (t T·X)/(t T·t)

(10) compute the inner model regression coefficient b:

b ¼ (t T·u)/(t T·t)

(11) calculate the input residual matrix: E ¼ X 2 t·p T

(12) calculate the output residual matrix: F ¼ Y 2 b·t·q T

(13) if additional PLS dimensions are necessary, replace

X and Y by E and F, respectively, and repeat

steps 1–13.

In the model prediction step, the prediction Ŷ is

calculated by the new input X̂, and p T, q T, W T and b are

calculated in the model construction step.

For PLSR the N-way toolbox of Matlab was used

(Andersson & Bro 2000).

ARTIFICIAL NEURAL NETWORK (ANN)

In recent decades, an ANN has been used in many

real-world applications and offers an attractive paradigm

for a broad range of adaptive complex systems. Their

application has proven useful and has been successful

in a wide variety of pattern recognition and feature

extraction tasks.

Two kinds of ANN were used in this study for

comparison with the M5 MTs: supervised backpropagation

multilayer perceptron (MLP) and unsupervised feed-

forward radial basis function network (RBF). Radial basis

function (RBF) neural networks provide a powerful

alternative to multilayer perceptron (MLP) neural networks

to approximate or to classify a pattern set. RBF differs

from MLP in that the overall input–output map is

constructed from local contributions of Gaussian functions,

requires fewer training samples and trains faster than MLP.

The most widely used method to estimate centers and

widths consist of using an unsupervised technique called

a clustering rule. The centers of the clusters give the

centers of the RBF, and the distance between the clusters

provides the width of the Gaussians. As the audience of this

journal should know the standard type of ANN, it is not

described here.

k-nearest neighbor (kNN)

k-nearest neighbor is the most basic type of instance-based

learning method (Mitchell 1997) which locates k spatial

objects to a nearest given query point. In instance-based

learning, training instances are stored and a distance

function is used to determine which instance of the training

set is closest to a new unknown instance (Witten & Frank

2005). The distance between two instances is defined to be d

(xi, yi) which is an attribute of each instance withN features,

such that x ¼ {x1· · ·· · ·xN}, y ¼ {y1· · ·· · ·yN}, where absolute
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distance measuring dA is expressed by

dAðxi; yiÞ ¼
XN

i¼1

xi 2 yij j ð5Þ

and Euclidean distance dE is expressed by

dEðxi; yiÞ ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffi
x2i 2 y2i

q
ð6Þ

To find the closest instances, it is necessary to pass

through the dataset, one instance at a time, and compare it

to the query instance. We can represent the dataset as a

matrix D ¼ N £ P, containing P instances s 1,… , s P, where

each instance s i contains N features si ¼ {si1;…… ; siN}.

A vector o with length P of output values o ¼ {o i, … , o P}

accompanies this matrix, listing the output values o i for

each instance s i.

It should be noted that the vector o can also be seen as a

column matrix: if multiple output values are desired, the

width of the matrix may be expanded.

The kNN alogorithm consists of the following steps:

(1) store the output values of the M nearest neighbors to

query instance q in vector r ¼ {r i, … , r M} by repeating

the following loop M times:

a. go to the next instance s i in the dataset, where

i is the current iteration within the domain

{1, … , P}

b. if q is not set or q , d(q, s i): q ˆ d(q, s i), t ˆ o i

c. loop until reaching the end of the dataset

(i.e. i ¼ P)

d. store q into vector c and t into vector r

(2) calculate the arithmetic mean output r across r from

r ¼
1

M

XM

i¼1

ri ð7Þ

(3) return r as the output value for the query instance q

In Weka software, the kNN algorithm is termed

the “IBk classifier” (instance-based classifier with k

neighbors).

CASE STUDY

Site description

The Yongdam dam is located upstream in the Keum River,

which flows through the Midwest Korean Peninsula

(Figure 2). The Yongdam reservoir was formed as part of

the Yongdam impoundment for flood control (volume of

flood control: 137millionm3/yr), for water supply to

Jeonju city (700,000m3/d with a planned increase to

1,050,000m3/d), and for power generation (24,400 kW).

The principal morphometric feature of the Yongdam

reservoir is that it is a narrow, deep reservoir with a surface

area of about 37km2, a maximum width of 1 km and a

maximum depth of about 70m. The reservoir has a

retention time of 318 d and is served by a catchment of

about 928km2.

Korea is located in the East Asian monsoon belt. During

winter, continental high-pressure air masses develop over

Siberia, from which strong northwesterly winds bring dry,

cold air over Korea. The summer monsoon brings abundant

moisture from the ocean and produces heavy rainfall. About

70% of the annual rainfall occurs between June and

September. The winter monsoon is dry, and produces low

temperatures and little precipitation except for occasional

snowfalls. Normally, less than 10% of the total annual

precipitation falls in winter. This means that the pattern of

precipitation in Korea is variable both seasonally and

spatially, due to effects of the monsoon climate. The mean

temperature at the research site during the hottest month

(June) was 29.28C, the mean temperature in the coldest

month (January) was 24.98C and the range (coldest to

hottest months) was 34.18C.

In 2005, the total recorded precipitation was

1,445.8mm and the mean rainfall on days with precipi-

tation was 10.0mm in general ranging between 0.1 and

182.8mm. The mean inflow to the Yongdam reservoir and

the inflow range were 28.1m3/s and 0.1–1979.8m3/s,

respectively, and the mean outflow from the reservoir and

the outflow range were 31.4m3/s and 11.9–705.5m3/s,

respectively.

During summer, when flood events occur, a massive

quantity of non-point source pollutants diluted by precipi-

tation is discharged into the reservoir. Unlike point source
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inputs, material from non-point sources is discharged with

eroded sediment, resulting in an increase in the total

amount of pollutants. Similarly, the eroded particulate

matter discharged is in proportion to the flow rate, so that

the load increases significantly during flood events. Soil

erosion and sediment transport are common phenomena in

Korea, and they are closely coupled with deterioration in

water quality.

Data acquisition

In order to analyze the water quality of Yongdam reservoir,

samples were collected at the nine monitoring stations

(R2–R10 in Figure 3) at three depths within the reservoir

during the three years (2005–2007). Samples were

collected on 60 occasions: 23 in 2005, 23 in 2006 and 14

in 2007. Analysis of the collected samples was done on 16

water quality variables, including water temperature, total

phosphorus (TP), inorganic phosphate (PO4-P) and chloro-

phyll-a (Chl-a) representing the level of eutrophication,

which were used in this study.

The shape of the reservoir meant that the sampling

stations were located in three zones: the riverine zone

(R2, R3, R8), the transition zone (R4, R5, R6, R7) and the

lacustrine (lake) zone (R9, R10). However, the preferred

sampling station for the modelling data should be stable

and in a well-mixed zone, with respect to the reservoir

characteristics, because the data derived from such a site

would be expected to be more reliable (i.e. have lower error

values) than from other sampling stations. The sampling

station chosen was R9 in the lacustrine zone. This sampling

station is also important, because it is located near the

intake tower for water supply. Figure 4 shows the annual

variations in TP and Chl-a concentration during the

sampling period. Note that variation patterns (rise

and fall) of TP and Chl-a concentration are not in accord

with each other.

The water quality datasets had some limitations due to

the small number of samples taken. The average number of

samples is 2 each month due to a limited budget as well as

the difficulty of accessing the site during the monsoon.

The field observation datasets for 2005 and 2006 were used

as the training data, and the dataset for 2007 was used for

testing the trained models.

Variables like water temperature, pH, DO, TP,

PO4-P and Chl-a concentration are correlated with algal

Figure 2 | Location of the Yongdam reservoir on the Keum River, Republic of Korea.
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concentration, and were used to build a Chl-a prediction

model. Because algal blooms change the pH and DO but

these variables do not affect the emergence and growth of

the algae, we developed a Chl-a prediction model based

only on water temperature, TP, PO4-P and Chl-a. These four

variables are the parameters well known to be important

in the development of a eutrophication model under

limiting phosphate conditions. The season also influences

the metabolism of algae. Therefore, the training and test

datasets were partitioned into two groups: the algal growth

period (May–November) and the no-growth period

(December–April) in Korea. The modeling results using

an annual dataset covering both periods were compared

with those using the partitioned dataset.

In summary, the analyses involved in this study were the

ten cases identified in Table 1.

MODEL APPLICATION

Learning conditions

Modelers typically seek to develop techniques for finding

and describing information in data as aids to explain the

data and to make predictions from it. In the machine

learning phase, each data-driven technique uses predictor

variables (W. Temp., TP and PO4-P) and response variable

(Chl-a) for training; in the prediction phase, new instances

of only predictor variables are fed into the trained model,

and then the predicted values are obtained by inference

procedures or from the models at the leaves.

Figure 3 | Location of the sampling stations.

Figure 4 | Variations of TP and Chl-a concentrations at sampling station R9 for three

years (2005–2007). (a) Total phosphorus. (b) Chlorophyll-a.

Table 1 | Application cases for data-driven models according to annual and partitioned

dataset

Annual dataset

(January–December)

Partitioned datasets

(algal growth/no-growth period)

Case 1 ANN-MLP Case 6 ANN-MLP

Case 2 ANN-RBF Case 7 ANN-RBF

Case 3 kNN Case 8 kNN

Case 4 M50 Case 9 M50

Case 5 M5 þ PLSR Case 10 M5 þ PLSR
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For the LSER model trees, M50 MTs were built using

Weka software. The minimum number of instances was set

to 8 for the highest correlation coefficient between

measured and predicted data, and the smoothed linear

model option was applied for each interior node of the un-

pruned tree (see Figure 5). For the M5-PLSR MTs presented

in this paper, the minimum number of instances was set to

15, and the smoothed linear model option was applied for

each interior node of the un-pruned tree.

ANN was built using the Weka software that uses the

Levenberg–Marquardt algorithm. The number of epochs

used for training was 700. A classifier of MLP-ANN uses

back-propagation to classify instances. The number of

hidden nodes was two, which was found by trial-and-error

analysis of the ANN performance on the validation set (see

Figure 6). The optimal number of clusters for RBF-ANN

was nine in this study. ANN models were run on the same

training and test datasets as for the MTs.

For kNN, three instance-based neighbors and the

Euclidean distance metrics were used; the outputs of the

neighbors were additionally weighted by the inverse

distance to give higher weights to the closest neighbors.

Methods of error analysis

The error analysis methods applied in this study were the

correlation coefficient (CC), root mean square error

(RMSE) and root mean relative error (RRSE). The details

of their applications are explained below.

The correlation coefficient (CC) measures the strength

and direction of a linear relationship between two random

variables (the predicted and observed values). The CCs were

Figure 5 | Structure of model trees constructed by SDR and linear models at sampling station R9.
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obtained by dividing the covariance of the two variables by

the product of their standard deviations. The CC ranges

from 21 to 1, with negative values indicating that the

observed and predicted values tend to vary inversely.

It should be noted that, even if the correlation is close to

1, the predicted and observed values may not be similar, but

only tend to vary in a similar way.

The root mean square error (RMSE) measures the

discrepancies between predicted and observed values.

To calculate the RMSE the individual errors are squared,

added together, divided by the number of individual errors

and the square root of the resulting value is determined

(Equation (8)):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðPi 2OiÞ
2

vuut ð8Þ

where n ¼ number of observations; Oi ¼ ith of n obser-

vations; Pi ¼ ith of n predictions; �O and �P ¼ observation

and prediction averages, respectively. Values near zero

indicate a close match. The RMSE overcomes the short-

coming of the average error by considering the magnitude

rather than the sign of each discrepancy.

The root relative square error (RRSE) is relative to what

it would have been if an observation had been used.

Thus, the relative squared error takes the total squared error

and normalizes it by dividing by the total squared error of

the observation. By taking the square root of the relative

error, one reduces the error to the same dimensions as the

quantity being predicted:

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðPi 2OiÞ
2=
Xn

i¼1

ðOi 2 �OÞ2

vuut : ð9Þ

The RRSE index ranges from 0 to infinity, with 0

corresponding to the ideal situation. The RRSE exaggerates

situations where the prediction error is significantly

greater than the mean error. Consequently, in spite of the

data fluctuation, the RRSE explains the normalized relative

error levels.

RESULTS AND DISCUSSION

The prediction results for the M50 MTs and M5 MTs

using PLSR knowledge inferences (M5-PLSR MTs), and

the MLP and RBF ANN, are shown in Figure 7(a, b). It

shows quite different results for each modelling experiment.

The modelling results using two groups of data were

compared using the three error measures (see Table 2).

Table 2 shows that the CCs have quite high values except

for Case 8. Therefore, all models except for kNN show a

fair correlation between predicted and measured values

of Chl-a concentrations. Although Cases 5 and 6 have

relatively high CC values, the RMSE and RRSE values

are greater rather than the others. This means that the

predictions are relatively distant from the measured values.

What is important in the statistical error analysis is the

imprecision that is intrinsic in human cognition. There

are several outliers in terms of goodness-of-fit; however,

Figure 7 | Chl-a concentrations at sampling station R9 predicted using data-driven

models: M50 MTs, PLSR-M5 MTs, MLP-ANNs, RBF-ANNs and kNN. (a) Annual

dataset. (b) Partitioned dataset.

Figure 6 | Structure of ANN with two hidden layers applied at sampling station R9.
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there is always a possibility that in the natural environment

outliers exist.

Based on Figure 7, ANNs and the kNN algorithm

showed better results on the annual dataset than on the

partitioned ones. RBF-ANN for Case 2 shows a better result

than those of MLP-ANN and other algorithms. The reason

may be that it uses a clustering rule partitioning the annual

dataset into nine clusters bearing a stronger resemblance.

However, RBF-ANN for Case 7 using the partitioned

dataset became worse than Case 2. This may be because

of over-fitting. The M50 MT algorithm showed similar

results on both sets. M5-PLSR MTs showed unfair binary

splitting on the annual dataset. The reason is that the binary

splitting rule compares the SDR between the values of only

one attribute in spite of other attributes in each instance.

Eco-environmental data show irregular variations between

attributes of each instance like the non-linearity between TP

and Chl-a concentrations shown in Figure 4. In contrast,

M5-PLSR MTs gave a little better result on the partitioned

dataset for Case 10 than on the annual one for Case 5.

This is explained by the partitioning (clustering) of the

annual dataset into the two datasets of the algal growth and

no-growth periods brought some instances to bear a

stronger resemblance to each other than the annual dataset.

Like that, the use of the PLSR algorithm, which identifies

the latent vector that explains variations in both response

and predictor variables on the partitioned dataset than

variations in both response and predictor variables on the

annual dataset.

This was not observed when using ANN, kNN and M50.

ANN and kNN show similar or worse predictions when

using the partitioned dataset. This means that ANN and

kNN show certain limitations in modeling of water quality

related to biological processes, especially for high

dimensional data. For this reason, many studies have

examined simple relationships between Chl-a and DO or

pH (e.g. Schladow & Hamilton 1997; Heiskary & Markus

2001) for use in algal growth prediction models. The reason

for this is that DO and pH are dependent on algal growth

and decay, and can be easily measured.

Eco-environmental processes are often affected by

unknown factors such as retention times, reservoir flow

and/or mixing conditions (Lawrence et al. 2000). These

multiple factors affect eutrophication processes in the

reservoir, being a second- or third-order activity, which

was not the case in the laboratory experiment. This indicates

that data-driven models built on eco-environmental data

affected by these natural processes should be evolved

into various algorithms.

Although M50 and M5-PLSR MTs for Cases 4 and 5

show relatively greater errors than those of other algor-

ithms, they have the advantage of generating transparent

models as shown in Figure 5. M50 and M5-PLSR MTs

have improved prediction with the partitioned dataset.

This means that M5-PLSR MTs will show better prediction

using more closely correlated multivariate datasets.

Clustering can be used to group data that seem to fall

similarly together.

CONCLUSION AND FUTURE RESEARCH

A reliable prediction model using data-driven modeling

techniques typically needs a considerable amount of data.

As eco-environmental data have a periodic cycle and time

lags occur between nutrient uptake by algae and subsequent

growth, it may be meaningless to seek relationships between

algal growth and water quality parameters using bivariate

analysis without more sophisticated analysis techniques of

time series data. However, it is difficult to acquire adequate

time series data in reality. In most eco-environmental

research, the number of sampling occasions generally does

not exceed 30 per year, which is the minimum number for

Table 2 | Results of error analysis on each case: CC, RMSE and RRSE

Error terms

Cases CC RMSE RRSE

Case 1 0.74 1.78 1.09

Case 2 0.75 2.67 1.63

Case 3 0.74 1.65 1.01

Case 4 0.69 2.91 1.77

Case 5 0.73 3.63 2.21

Case 6 0.71 3.56 2.17

Case 7 0.69 2.16 1.31

Case 8 0.43 1.91 1.16

Case 9 0.71 2.87 1.75

Case 10 0.61 2.39 1.46
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ensuring a normal distribution in a dataset (Pentecost 1999).

In the present study, the number of instances considered

was 46 for the training dataset and 14 for the test dataset for

three years, from 2005–2007. To overcome this small

dataset size, the present study implemented M5 MTs

with the PLSR algorithm, and in the future, the additional

input data, each year, can improve the prediction efficiency

of this model.

As the number of predictors in the LSE regression

rapidly decreases as the tree expands, the M5 algorithm

based on the PLS regression can help overcome the effects

of insufficient data for cases involving new or recently

established reservoirs. In this study, the use of the M5 MTs

with the PLSR algorithm gave better results than the M50 in

the case of the partitioned dataset, probably because

the former has a function identifying the latent vectors,

which explain variations in the response and predictor

variables in algal growth prediction from the instance-based

partitioned dataset.

There have been reported only a few similar

applications of a multivariate (at least four variables) tree

structure and knowledge inference for predicting algal

growth in water quality management research (Kompare

et al. 1997a,b; Dzěroski 2001). The MTs have many

advantages over other data-driven models, including a

more explicit tree structure involving classification rules

and linear models at the leaves. However, for the MT

algorithm for eco-environmental data with more than three

water quality variables, it may be recommended to use a

clustering rule instead of binary splitting based on the

standard deviation reduction for tree generation. As the

PLSR algorism seeks latent vectors among response

and predictor variables, a minimum number of partitions

reflecting seasonal variations will show better results. Note

that if there are many leaves in the trees in the case of small

datasets, PLSR can be unreliable and result in negative

coefficients and consequently in negative predicted values.

As eco-environmental data have a periodic cycle, it

should be emphasized that implementation of long-term

monitoring strategies is important for providing adequate

datasets, such as the more partitioned dataset according to

environmental conditions in this study. The nonlinear

composite model of M5-PLSR MTs in this study will

contribute to development of a decision support tool for

the management of the reservoir water quality and/or as a

predictor of environmental processes.

Finally, the MTs-PLSR technique is a promising

approach when there is a shortage of data required to

build a more transparent learning process model, and the

combination with the clustering technique is recommended

for follow-up research.
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