Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins

Kyonoshin Maruyama1,2, Naoki Sato1,* and Niji Ohta2

1Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Urawa, Saitama Prefecture 338-8570, Japan and 2School of Human Science, Waseda University, 2-579-15 Mikajima, Saitama Prefecture 359-1192, Japan

Received January 4, 1999; Revised and Accepted March 8, 1999 DDBJ/EMBL/GenBank accession nos +

ABSTRACT

The *rbp* gene family of the cyanobacterium *Anabaena variabilis* strain M3 consists of eight members that encode small RNA-binding proteins containing a single RNA recognition motif (RRM). Similar genes are found in the genomes of *Synechocystis* sp. PCC6803, *Helicobacter pylori* and *Treponema pallidum*, but are absent from the other completely sequenced prokaryotic genomes. The expression of the *rbp* genes of *Anabaena* is induced by low temperature, with the exception of the *rbpD* gene. We found four stretches of conserved sequences in the 5′-untranslated region of the cyanobacterial *rbp* genes that are known to be induced by low temperature. The cold-regulated Rbp proteins contain a short C-terminal glycine-rich domain. In this respect, these proteins are similar to plant and mammalian glycine-rich RNA-binding proteins (GRPs), which also contain a single RRM domain with a C-terminal glycine-rich domain and are highly expressed at low temperature. Detailed phylogenetic analysis showed, however, that the cyanobacterial Rbp proteins and the eukaryotic GRPs do not belong to a single lineage, but that the glycine-rich domains are likely to have been added independently. The cold-regulation of both types of proteins is also likely to have evolved independently. Furthermore, the chloroplast RNA-binding proteins are not likely to have originated from the Rbp proteins of endosymbiotic cyanobacterium, but are supposed to have diverged from the GRPs. These results suggest that the cyanobacterial Rbp proteins and the eukaryotic GRPs are similar in both structure and regulation, but that this apparent similarity has resulted from convergent evolution.

INTRODUCTION

We recently isolated five *rbp* genes encoding RRM (RNA recognition motif)-type RNA-binding proteins from the cyanobacterium *Anabaena variabilis* strain M3 (1–3). Similar genes have been reported in a closely related strain, *Anabaena* sp. PCC7120 (4), as well as in distantly related cyanobacteria, such as *Chlorogloeopsis* sp. PCC6912 (4), *Synechococcus* sp. PCC6301 (5), *Synechococcus* sp. PCC7942, *Synechococcus* sp. PCC7002 (6) and *Synechocystis* sp. PCC6803 (7,8). Cyanobacterial RNA-binding proteins contain a single RRM and are smaller than other reported RNA-binding proteins containing RRMs (see below). In cyanobacteria, there are two types of RRM-type RNA-binding proteins: those which contain a very short C-terminal glycine-rich domain and are regulated by low temperature and those which lack a glycine-rich domain and are constitutively expressed (1–3,5). An *Anabaena* disruptant of the cold-regulated *rbpA1* gene starts the initial steps of differentiation to a heterocyst (nitrogen-fixing cell) during growth at low temperature in the presence of nitrate in the medium (9). This suggests an important role of the RbpA1 protein in maintaining a correct gene expression pattern or cell identity in cyanobacteria.

Curiously, until now, RRM-type RNA-binding proteins have been reported predominantly in various species of cyanobacteria (1–8). In most cases, there are multiple copies of genes that encode these RNA-binding proteins (*rbp* genes). Among other prokaryotes, only the completely sequenced genomes of *Helicobacter pylori* (10) and *Treponema pallidum* (11) contain a single copy of an *rbp* gene. No other bacteria, including the completely sequenced bacterial genomes of *Haemophilus influenzae* (12), *Mycoplasma genitalium* (13), *Methanococcus jannaschii* (14), *Bacillus subtilis* (15) and *Escherichia coli* K-12 (16), are known to contain *rbp* homologs.

Several different kinds of RNA-binding proteins that contain RRMs are known in eukaryotes. These proteins contain one or more copies of the RRM (about 80 residues long) with various sizes and numbers of auxiliary domains, such as a glycine-rich domain, an arginine-rich domain or an acidic domain, among others. The three-dimensional structure of the RRM domain of the U1A protein (17) and the SXL protein (18) among others have been determined. The results indicated the presence of a four-stranded β-sheet, which provides an RNA-interacting surface, and two α-helices that sustain the β-sheet from the back side. A protruding loop (loop 3) is also supposed to be involved in the...
Table 1. List of RRM-type RNA-binding proteins

<table>
<thead>
<tr>
<th>Accession</th>
<th>species</th>
<th>name</th>
<th>domain1</th>
<th>domain2</th>
<th>domain3</th>
<th>domain4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D17710</td>
<td>Anabaena variabilis</td>
<td>Av RBPA1</td>
<td>S2:R80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D40425</td>
<td>Anabaena variabilis</td>
<td>Av RBPD</td>
<td>T2:R100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE000594</td>
<td>Helicobacter pylori</td>
<td>Hp RBP</td>
<td>N3:K98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE001215</td>
<td>Trichomonas vaginalis</td>
<td>Tv RBP</td>
<td>K20:K98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L04171</td>
<td>Arabidopsis thaliana</td>
<td>At GRP1</td>
<td>R7:R85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z14897</td>
<td>Arabidopsis thaliana</td>
<td>At GRP2</td>
<td>R9:R87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D31710</td>
<td>Arabidopsis thaliana</td>
<td>At cp29</td>
<td>K100:R178</td>
<td>R250:R328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D31712</td>
<td>Arabidopsis thaliana</td>
<td>At cp31</td>
<td>K136:R214</td>
<td>R230:R308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U28686</td>
<td>Homo sapiens</td>
<td>Hs RNPM3</td>
<td>K7:R86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z29064</td>
<td>Homo sapiens</td>
<td>Hs hnRNPG</td>
<td>K9:R88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X12671</td>
<td>Homo sapiens</td>
<td>Hs hnRNPA1</td>
<td>K15:R92</td>
<td>K106:R183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M29065</td>
<td>Homo sapiens</td>
<td>Hs hnRNPA2</td>
<td>K10:R87</td>
<td>K101:R178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z4991</td>
<td>Arabidopsis thaliana</td>
<td>At U1A</td>
<td>T19:K98</td>
<td>I17:K250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M60784</td>
<td>Homo sapiens</td>
<td>Hs U1A</td>
<td>T11:D90</td>
<td>I209:K282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APO01035</td>
<td>Arabidopsis thaliana</td>
<td>At ASF</td>
<td>T8:G83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M69040</td>
<td>Homo sapiens</td>
<td>Hs ASF</td>
<td>R17:G92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L19418</td>
<td>Arabidopsis thaliana</td>
<td>At PABP</td>
<td>S57:D115</td>
<td>N125:R202</td>
<td>N216:Q293</td>
<td>N319:K396</td>
</tr>
<tr>
<td>U68104</td>
<td>Homo sapiens</td>
<td>Hs PABP</td>
<td>S12:D90</td>
<td>N100:R176</td>
<td>N192:K269</td>
<td>N295:K371</td>
</tr>
</tbody>
</table>

interactions with RNA. In the two central β-strands, an octapeptide called the ‘RNP-1 motif’ and a hexapeptide called the ‘RNP-2 motif’ have been identified as the RNA-binding sites (19). Within these motifs, the hydrophobic sidechains are supposed to interact with the RNA bases by stacking.

Many of the eukaryotic RRM-type RNA-binding proteins are known to be involved in pre-mRNA splicing or alternative splicing in the nucleus or in the control of mRNA translation efficiency in the cytoplasm (19,20). In plants, two additional classes of RRM-type RNA-binding proteins are known. First, the proteins localized within the chloroplast are supposed to be involved in the 3′-end processing of chloroplast mRNA (21). Second, glycine-rich RNA-binding proteins are localized in the nucleolus and are supposed to be involved in the processing of pre-rRNA (20). These proteins are known to respond to various stresses such as low temperature (22,23), wounding (24) and heavy metals (25). Recently, homologous glycine-rich RNA-binding proteins (GRPs) were also isolated from human (26), mouse (27) and Xenopus (28) and the expression of all of these is induced at low temperatures. Based on these findings, we are interested in a possible relationship between the cyanobacterial Rbp proteins and the eukaryotic GRPs.

MATERIALS AND METHODS

DNA techniques

Anabaena variabilis strain M3 was grown photoautotrophically as described previously (1). DNA was isolated from the A.variabilis cells as described previously (1). A genomic mini-library of A.variabilis in pBluescript SK+ was screened with digoxigenin (DIG)-labeled rbpA1 gene (XbaI–HindIII fragment) at low stringency (20% formamide during the hybridization, final washing in 2× SSC at 50°C). Other details of DNA blot hybridization have been described previously (1,2). Detection of DIG-labeled DNA probe was performed using an alkaline phosphatase–anti-DIG antibody conjugate (Roche Diagnostics) and a luminescence substrate CDP-Star (Roche Diagnostics).

Nucleotide sequence was determined on both strands by the chain-termination method with the Taq Dye Terminator Sequencing Kit (Applied Biosystems, Foster City, CA). RNA analysis was performed as described previously (2).

Computer-assisted sequence analysis

A similarity search of open reading frames against the GenBank database was performed at the Genome Net WWW Server (http://www.genome.ad.jp) through the Internet. The sources of amino acid sequences used in the phylogenetic analysis (Figs 4–6) are listed in Table 1. Alignment of the 5′-UTR of the rbp genes was constructed by the Clustal X program v.1.64 for the

endosymbiotic origin of chloroplast RRMs. We also propose that the presence of the glycine-rich domain and cold-regulation should be considered to be a result of convergent evolution of cyanobacterial Rbp proteins and eukaryotic GRPs.
Figure 1. Multiple alignment of all of the RRM-type RNA-binding proteins of A.variabilis strain M3. The amino acid sequences were aligned with Clustal X software v.1.64 and the resulting alignment was shaded and modified by drawing software. The residues that are conserved in all of the sequences are shown by white letters on a black background. The residues that are conserved in six and seven sequences are shown by black letters on a gray background. Other residues are shown in black letters on a white background. Allowed conservative amino acid groupings are (I,V,L,M), (F,Y,W), (Q,E), (D,N), (R,K) and (T,S). The residues of probable cAMP- and cGMP-dependent protein kinase phosphorylation sites are shown by white boxes.

Figure 2. Time course of accumulation of the rbp transcripts after a temperature shift from 38 to 22°C. Cells of A.variabilis strain M3, which had been grown at 38°C, were transferred to 22°C at time zero. Aliquots of 25 ml of culture were taken at 10 and 30 min and 1, 2, 3, 5 and 10 h and then RNA was extracted. The total RNA was glyoxylated, electrophoresed and then transferred to a nylon membrane (Biodyne A). The membrane was probed with a DIG- or fluorescein-labeled rbp probe (insets). The intensity of each band was quantified by densitometry and plotted as a function of time. In each case, the maximum level of the transcript was taken as 100. The two lines for rbpA3 represent results with the two transcripts observed for this gene (arrowheads in the inset).

Power PC (29) with the following parameter sets: gap open penalty = 5.00, gap extension penalty = 0.05, protein weight matrix = identity matrix. The alignment was finally adjusted manually. Conserved motifs were detected by the Coresearch program (30) and then adjusted by visual inspection. An alignment of RRM s was created by the Clustal X program with the following parameter sets: gap open penalty = 5.00, gap extension penalty = 0.05. The alignment was finally adjusted manually. Phylogenetic trees were constructed from the protein sequence alignment by the neighbor-joining method (31) using the Phylip package (the programs Seqboot, Protdist, Neighbor and Consense). To estimate the confidence level of monophyletic groups, bootstrap analysis of 100 replicates was conducted (32).

RESULTS AND DISCUSSION
Identification of rbp genes in A.variabilis strain M3

Previously, we estimated that the cyanobacterium A.variabilis strain M3 contains eight genes that encode RNA-binding proteins (rbp genes) and identified five of the rbp genes (rbpA1, rbpA3, rbpB, rbpC and rbpD). Now we have cloned all of the remaining members of the rbp gene family of A.variabilis. Based on the results of Southern blot hybridization, we estimated the size of the EcoRV fragments that contain the uncloned rbp genes to be 5.1, 2.1 and 1.6 kb, respectively. These DNA clones were isolated from
Figure 3. Schematic representation of the 5′-UTRs of cyanobacterial rbp genes. The diagram includes a 300 bp region that lies upstream of the translational initiation codon. The upstream half is displayed at a smaller scale for readability. The following rbp genes are analyzed: rbpA1, rbpA2, rbpA3, rbpB, rbpC, rbpD, rbpE, rbpF, and rbpH in A. variabilis strain M3, rbp1 and rbp2 in Synechococcus sp. PCC6301, rbpA in Synechococcus sp. PCC7002 and rbp1 (rbpA), rbp2 and rbp3 in Synechocystis sp. PCC6803. The consensus sequences are indicated by colored boxes. Black boxes are translational initiation codons, in most cases AUG. Red box, motif RBS (TTCGGAGA) that includes a typical ribosome-binding site; blue box, Box I (TCTCCGAA); yellow box, Box II (TTTGTTTNAA TG); green box, Box III (TTCGGYGA). The experimentally determined 5′-termini of the rbpA1 and rbpA3 transcripts are indicated by arrows above the lines. The scale indicates length in base pairs.

Figure 4. Schematic diagram of representative RNA-binding proteins containing one or multiple RRMs. The RRM is hatched, while glycine-rich domains are shaded.

Cold-regulation of the newly cloned genes

We previously showed that the expression of the rbpA1, rbpA2, rbpB, rbpC and rbpA3 genes is regulated by low temperature (1–3). The newly cloned genes, rbpE and rbpF, are also regulated by low temperature (Fig. 2). In the same figure, the time courses of the levels of the previously cloned genes are also shown for comparison. The level of the rbpF transcript increased after a temperature shift from 38 to 22°C and attained its maximum at the first hour. The level of the rbpE transcript attained its maximum at the second hour. It should be noted that the induction of the rbpC, rbpA3, rbpE and rbpF genes was transient. The two lines for the rbpA3 transcripts in Figure 2 represent results with the two transcripts detected for this gene (3). The level of the rbpA1 and rbpA2 transcripts remained high at steady-state at low temperature.

Conserved sequences in the 5′-UTR of the rbp genes

In a previous study (9), the rbpA1 gene was not required for cold-regulation of itself. In a recent study (36), both transcriptional and post-transcriptional regulation was found to be involved in the regulation of the rbpA1 gene. The finding that three kinds of proteins bind to the 5′-UTR that is required for the cold-regulation of the rbpA1 gene suggests that these factors are trans-acting
regulators of transcription. Now we have compared the 5′-UTR of all known rbp genes of cyanobacteria (Fig. 3). The diagram includes a 160 bp region that lies upstream of the translational initiation codon. We found four conserved regions in the 5′-UTR of the rbp genes. The conserved region RBS (5′-TTTGGYGA-3′) is located about six bases upstream of the translational initiation codon and this motif is highly conserved in all of the cold-regulated rbp gene sequences analyzed. The conserved region Box I (5′-TCTCCGAA-3′) is located about 40 bases upstream of the initiation codon. The conserved Box II (5′-TTTGTTTNNAGT-3′) is located about 90 bases upstream of the initiation codon. The conserved Box III (5′-GTTT-3′) is located about six bases upstream of the translational initiation codon and includes a typical ribosome-binding site (RBS, Box I and Box III) in the 5′-UTR of the cold-regulated rbp genes in the cyanobacteria. Also, neither Box I, II nor III are found in the 5′-UTRs of the csp and des genes. These results suggest that the conserved sequences (RBS, Box I and Box III) in the 5′-UTR of the rbp genes might represent novel types of putative cis-acting elements of cold-regulated genes.

Comparative analysis of the RRM-type RNA-binding protein

As described above, rbp genes are widely distributed among various species of cyanobacteria that do or do not fix dinitrogen (N₂). In addition, rbp genes are also found in some species of prokaryotes. The prokaryotic Rbp proteins are small (about 100 amino acid residues) and contain only a single RRM domain.

It is interesting to note that the copy number of rbp genes correlates with the genome size as far as cyanobacteria are concerned. For example, the 2.6 Mb genome of *Synechococcus* sp. PCC6301 includes two copies of the rbp genes (40). The 3.6 Mb genome of *Synechocystis* sp. PCC6803 includes three copies of the rbp genes (7). The genome sizes of *A. variabilis* M3 and *Anabaena* sp. PCC7118 (eight copies of the rbp genes) were shown to be similar to that of *Anabaena* sp. PCC7120 (41), which was estimated to be 6.4 Mb (42). Herdman et al. (41) suggested, based on the measurement of the genome size of 128 cyanobacterial strains, that the cyanobacterial genomes have evolved by
multiplication of the whole genome, with the unit genome size being $\sim 1.2 \times 10^9$ Da (1.8 Mb). Since the copy numbers of the cyanobacterial rbp genes in various cyanobacteria are consistent with this theory, the increase in the copy number of rbp genes is likely to have occurred by duplication of the whole genome and not by simple gene duplication.

To estimate a possible relationship between the prokaryotic Rbp proteins and the eukaryotic RNA-binding proteins of type RRM (Fig. 4), we constructed an alignment (Fig. 5) and a phylogenetic tree of 30 representative RRMs from various organisms (Fig. 6). In the multiple alignment, highly conserved residues are highlighted in color, so that we can easily recognize characteristic residues. As reported previously (3,19), aromatic amino acids within the motifs RNP-1 and RNP-2 are highly conserved. In addition, some residues are conserved in almost all RRMs analyzed. Highly conserved residues are L, F, G and A at positions 20, 24, 27 and 61, respectively. We also recognized group-specific characteristic residues. In the cyanobacterial RRMs, A, E, W and M in loop 5 are highly conserved (Fig. 1). In the prokaryotic and chloroplast RRMs, M is highly conserved at the last position of the RNP-1 motif.

The phylogenetic tree was constructed by the neighbor-joining method (Fig. 6). We also constructed trees by the UPGMA, the parsimony and the maximum likelihood methods and obtained essentially similar results (not shown). We used only representative RRMs in Figure 6 to avoid over-representation of certain groups, which would change the tree artificially. To show the phylogeny of individual groups, we constructed individual trees that include all known sequences of a group with an outgroup. All of the known cyanobacterial RRMs are highly conserved and form a single group (Fig. 7A). The cyanobacterial RRMs are most similar to other bacterial RRMs, forming a single group (Fig. 6). We can recognize several clearly identifiable clusters in the phylogenetic tree. This tree suggests that RRMs are classified according to groups of proteins of the same function and the position of the RRM, such as the small nuclear ribonucleoproteins, poly(A)-binding proteins, alternative splicing factors, heterogeneous nuclear ribonucleoproteins and chloroplast RNA-binding proteins. This classification is not related to the plant and animal kingdoms. Even the plant RRMs of other classes are quite divergent from the chloroplast and plant glycine-rich RNA-binding proteins. These results suggest that the eukaryotic RRM-type RNA-binding proteins are of ancient origin, probably dating from the ancestral eukaryote.

Cyanobacterial RNA-binding proteins and plant and mammalian GRPs share a lot of common features. Most of these RNA-binding proteins have a single RRM and a C-terminal glycine-rich domain (20,26,27). There are two types of cyanobacterial RNA-binding proteins: those that have a very short glycine-rich C-terminal domain (about 15 residues) and those that are devoid of a glycine-rich domain. The C-terminal domains of plant GRPs are longer (about 80 residues) than the corresponding cyanobacterial domains. The glycine-rich domains of mammalian proteins consist of two types: short ones of about 80 residues and longer ones of about 100 residues. All members with glycine-rich C-terminal domains contain Tyr residues along their entire length at regular spacing. A significant number of these RNA-binding proteins are synthesized in response to low temperature stress:
cyanobacterial RNA-binding proteins are highly abundant (~2% of total cellular protein) at low temperature in *A. variabilis* (2). The expression of the plant genes *Ccr1*, *Ccr2* and *blh001*, each encoding a GRP, is also induced by low temperature (22,23). In animals, the expression of the human genes *RBM3* and *CIRP* (26,27), as well as the *Xenopus* gene *XcIRP* (28), is induced by low temperature. We wanted to know if these cold-regulated RNA-binding proteins of prokaryotes and eukaryotes have a common origin.

The origin of the RNA recognition motif

Based on the phylogenetic tree, we can estimate the origin and evolution of the RRM domain. RRM are present in both eukaryotes and prokaryotes and all of these are likely to be of monophyletic origin. It is interesting that many bacteria such as *E.coli* and *B.subtilis* as well as archea are devoid of genes that encode RRM-containing proteins. Two points need to be considered: the intragenic duplication of the RRM domain and the presence of a C-terminal glycine-rich domain (Fig. 6). Clearly, the duplication of RRM domains occurs in various peripheral lineages of the phylogenetic tree, as seen in chloroplast RNA-binding proteins hnRNPA1, U1A and poly(A)-binding proteins. In poly(A)-binding proteins, two successive duplications of the second domain, which was produced by the first duplication event, resulted in the four RRM domains. The duplication of RRM domains seems to have occurred early during the evolution of the chloroplast RNA-binding proteins, before the diversification of cp29 and cp31 (Fig. 6). Detailed analysis including all known chloroplast homologs (Fig. 7B) suggests that domain duplication preceded the diversification of chloroplast RNA-binding proteins. In the case of splicosomal U1 proteins, the duplication occurred before separation of plants and animals (Fig. 6). Detailed analysis (Fig. 7C) suggests that the diversification of U1A and U2B occurred after the diversification of plants and animals. Since all the single-domain RRMs are linked at the center of the phylogenetic tree, we can conclude that the ancestral RRM protein contained a single RRM domain as seen in prokaryotic Rbp and eukaryotic GRP and ASF. We therefore propose that the root of the phylogenetic tree is located at the branch point between prokaryotic and eukaryotic proteins (arrow in Fig. 6).

The second point is the presence of a glycine-rich domain in some RNA-binding proteins of type RRM. The phylogenetic tree (Fig. 6) clearly supports the monophyly of the eukaryotic RNA-binding proteins that have a glycine-rich domain. To our surprise, this lineage is totally independent of the lineage of cyanobacterial RRps. It seems that the very short glycine-rich domain was added during the diversification of the cyanobacterial RRps (Fig. 7A) and has nothing to do with the glycine-rich domains of the eukaryotic proteins. Therefore, this is a case of convergent evolution. Although the function of the glycine-rich domain is still unknown, this domain might be functionally important for both cyanobacterial and eukaryotic RNA-binding proteins.

Another important point to note is that the chloroplast RNA-binding proteins are not direct descendents of cyanobacterial Rbps (Fig. 6). Most authors before this study showed a close relationship between the cyanobacterial Rbps and the chloroplast RNA-binding proteins based on the similarity of the RRMs of both types of proteins. If this were the case, it would be anticipated that the chloroplast RNA-binding protein lineage would be a sister group of the cyanobacterial lineage as in the case of GroEL (fig. 11 in ref. 43). But this is not the case. The chloroplast RNA-binding proteins must have diverged from other eukaryotic RNA-binding proteins, before addition of a glycine-rich domain or duplication of RRM domains.

Relationship with CSD and probable functions of the cyanobacterial RRps

It is appropriate to mention the relationship between the RRM proteins and the cold-shock domain (CSD) proteins. The
synthesis of many CSD proteins is induced by cold shock (44). The CSD proteins contain motifs similar to the RNP-1 and RNP-2 motifs of RRM, but these counterparts are present in the CSD in a different arrangement. In fact, there is no simple sequence similarity between CSD and RRM proteins. But CSD proteins also bind to single-stranded DNA or RNA. CSD proteins are present in prokaryotes such as E.coli and B.subtilis, as well as in eukaryotes. Curiously, no CSD proteins are reported in cyano-bacteria or other prokaryotes that contain RRM proteins. Apparently, these two types of RNA (or single-stranded nucleic acid)-binding proteins are mutually exclusive within the prokaryotic kingdom as far as we know. Archea lack proteins that contain CSD or RRM motifs. An interesting hypothesis is that the CSD and RRM proteins play similar roles in the prokaryotic cell and that only one of them is necessary for the activity of the cell. Both types of proteins are known to be synthesized to high levels after a cold shock or during growth at low temperatures. A suggested role of the Csp proteins in bacteria is as ‘RNA chaperones’, i.e. to unfold RNA at low temperature. The cyanobacterial Rp proteins are also likely to play a role as RNA chaperones (2,4,36), despite a lack of direct experimental evidence for this possibility.

ACKNOWLEDGEMENTS

We thank Dr Tetsuo Iino (School of Human Science, Waseda University) for helpful suggestions. This work was supported in part by Grants-in-Aid for Scientific Research to N.S. (no. 09874167) and to N.O. (no. 085404) from the Ministry of Education, Science, Sports and Culture, Japan.

REFERENCES