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ABSTRACT
◥

The dramatic impact of the COVID-19 pandemic has resulted in
an “all hands on deck” approach to find new therapies to improve
outcomes in this disease. In addition to causing significant respi-
ratory pathology, infection with SARS-CoV-2 (like infection with
other respiratory viruses) directly or indirectly results in abnormal
vasculature, which may contribute to hypoxemia. These vascular
effects cause significant morbidity and may contribute to mortality
from the disease. Given that abnormal vasculature and poor oxy-
genation are also hallmarks of solid tumors, lessons from the
treatment of cancer may help identify drugs that can be repurposed
to treat COVID-19. Although the mechanisms that result in
vascular abnormalities in COVID-19 are not fully understood, it
is possible that there is dysregulation of many of the same

angiogenic and thrombotic pathways as seen in patients with
cancer. Many anticancer therapeutics, including androgen depri-
vation therapy (ADT) and immune checkpoint blockers (ICB),
result in vascular normalization in addition to their direct effects
on tumor cells. Therefore, these therapies, which have been
extensively explored in clinical trials of patients with cancer,
may have beneficial effects on the vasculature of patients with
COVID-19. Furthermore, these drugs may have additional effects
on the disease course, as some ADTs may impact viral entry, and
ICBs may accelerate T-cell–mediated viral clearance. These
insights from the treatment of cancer may be leveraged to
abrogate the vascular pathologies found in COVID-19 and other
forms of hypoxemic respiratory failure.

The COVID-19 pandemic has transformed our world, causing
staggering levels of morbidity and mortality globally. Although vac-
cines have been developed at record pace and immunosuppressive
drugs have shown benefit in patient subgroups, improving the treat-
ment of COVID-19 will remain an important goal until population
immunity is achieved. Moreover, the yearly return of seasonal influ-
enza suggests that even widespread vaccination will not completely
eliminate COVID-19. At first glance, clinical oncology has little
relevance in the treatment of COVID-19. However, as we learn more
about the disease, it is possible that lessons from tumor biology will
offer insights into improving therapies for COVID-19.

Like SARS-CoV, SARS-CoV-2 interacts with cells using the angio-
tensin converting enzyme 2 (ACE2) receptor and the transmembrane
serine protease 2 (TMPRSS2; refs. 1–3). Unlike SARS-CoV, the SARS-
CoV-2 spike protein has a furin cleavage site which may expand its
tissue tropism via the use of additional receptors, such as neuropilin-1
(NRP1). NRP1 is a cell surface protein that serves as a coreceptor for
VEGF (4–6). VEGF, an angiogenic growth factor that induces vascular
leakage, is elevated in patients with COVID-19 (7). The VEGF-NRP1
pathway is involved in nociception, and there is evidence that the

SARS-CoV-2 spike protein can interfere with this pathway to block
pain and other neuronal signals (5, 8). It is not known, however,
whether SARS-CoV-2 binding to NRP1 affects VEGF signaling
through VEGFR2 in endothelial cells.

The ACE2, NRP1, and TMPRSS2 proteins are expressed on
multiple cell types, including endothelial cells (9), and there is
evidence that the virus can infect the endothelium, both in the lungs
and throughout the body (10, 11). Even if SARS-CoV-2 infection is
restricted to lung epithelium, the virus can have widespread effects
on vasculature by causing a systemic inflammatory state (12–14).
Whether through direct infection or systemic inflammation–
induced endotheliitis, COVID-19 can result in vascular damage,
loss of vascular integrity, and thrombosis. The direct effects of
SARS-CoV-2 on the vasculature may be a mechanism of severe
disease, independent of primary respiratory infection, epithelial
damage, and impaired ventilation (15–17).

COVID-19–related vascular abnormalities have some resemblance
to those seen in malignant solid tumors (11, 14, 18), and multiple
nonmalignant diseases (e.g., macular degeneration, schwannomas,
and tuberculosis; ref. 19). Blood vessels in tumors are structurally
abnormal and often hyperpermeable, having large intercellular open-
ings in the endothelial lining (Fig. 1). These vascular abnormalities are
caused by the overexpression of proangiogenic factors and/or under-
expression of antiangiogenic factors (20). The large openings in the
tumor vessel wall can cause fluid leakage to the extravascular space,
compromising blood perfusion and exacerbating tissue hypoxia (21).
The resulting impaired perfusion and hypoxia are two major barriers
to cancer treatment: the former compromises uniform delivery of
drugs and immune cells, and the latter attenuates the killing potential
of tumor reactive immune cells even after they accumulate in the
tumor microenvironment.

COVID-19 exhibits a number of clinical features similar to those
seen in patients with cancer, including increased tissue factor activa-
tion, presence of neutrophil extracellular traps, and activated
platelets (22–26). Loss of integrity of both the epithelial and endothelial
components of the alveolar-capillary membrane is a primary
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mechanism of impaired ventilation and hypoxemia in acute respira-
tory distress syndrome (ARDS) and COVID-19 (27). In addition,
endothelial disruption and the resulting thrombosis may lead to
impaired perfusion of normally ventilated lung and more extensive
hypoxemia (28). Although the lung is exposed to higher levels of
ambient oxygen than tumors, alveolar pO2 levels in the setting of V/Q
mismatch are lower than normal, and relative alveolar hypoxia has
been linked to inflammation (29). Alveolar hypoxia may also trigger
abnormal angiogenesis, ultimately increasing inflammation by allow-
ing inflammatory cells to accumulate in larger numbers. Endothelial
dysfunction may be significantly worse in patients with diabetes,
obesity, and renal dysfunction (30), all conditions associated with
increased mortality from COVID-19 (31).

The fact that vascular abnormalities are common in COVID-19
raises the question of whether some therapies that can improve the
function of the vasculature may help control the disease. There are
important gender differences in COVID-19, with men having a higher
risk ofdeveloping severedisease anddeath comparedwithwomen (32).
Although there is no evidence of androgen excess in COVID-19,
TMPRSS2, an androgen-responsive serine protease, is more abundant
in males in some tissues (9, 33), potentially contributing to the
observed increased risk for disease severity in men. The involvement
of TMPRSS2 and furin in the activity of the virus has also led to the
hypothesis that inhibition of these proteases might block virus infec-
tion and inhibit systemic dissemination (e.g., NCT04353284 and
NCT04583592 are testing the TMPRSS2 inhibitor, camostat mesylate,
in patients with COVID-19). In addition to direct inhibition of these
proteases, multiple androgen deprivation therapies (ADT) are being
tested in COVID-19 clinical trials, including the androgen receptor
blockers, bicalutamide (NCT04509999 and NCT04374279) and prox-
alutamide (NCT04446429), and the GnRH antagonist, degarelix
(NCT0439771).

Interestingly, androgen withdrawal also has beneficial effects on
vasculature. We have shown that castration-induced androgen with-
drawal in androgen-dependent tumors (e.g., prostate cancer) can
potentiate vascular normalization by suppressing the effects of andro-
gen-dependent expression of VEGF (34).

These indirect effects of androgen deprivation on vasculature are
similar to those observed when VEGF is inhibited directly. We have

shown in preclinical and clinical studies that blockade of VEGF and/or
other proangiogenic factors (e.g., angiopoietin-2) can transiently
normalize vessels, fortifying the tumor vessel wall and reducing
vascular permeability (20, 35). This, in turn, restores the functionality
of the tumor vessels, increasing delivery of oxygen, drugs, and immune
cells to the tumor tissue. Better vascular function improves treatment
outcomes for not only multiple malignant diseases, but also for many
nonmalignant diseases characterized by abnormal blood vessels (e.g.,
macular degeneration, schwannomas, and tuberculosis; ref. 19). Inter-
estingly, angiopoietin-2 levels predict severity of ARDS (36), and
targeting of angiopoetin-2 by mAbs improved survival in animal
models of ARDS (37).

Therefore, based on lessons from cancer treatment, we propose that
ADTs can have a dual benefit for patients with androgen-dependent
cancers who are also infected by SARS-CoV-2, as it could enhance
cancer therapy by normalizing tumor vessels, attenuate vascular
leakage and, in the case of some ADT drugs such as camostat, interfere
with virus propagation by reducing TMPRSS2-mediated viral entry.
Together, these effects may help mitigate the severity of COVID-19.
Retrospective analysis of men in the Veneto region of Italy
showed that patients with prostate cancer receiving ADT had a
significantly lower risk of SARS-Cov-2 infection compared with
patients not receiving ADT (38), and a smaller cohort from New
York showed lower rates of hospitalizations in an ADT prostate
cancer cohort (39). However, this remains an open question as
other cohorts have shown no effect (40). In patients with prostate
cancer, the accumulating evidence regarding the potential ability of
ADT to reduce SARS-CoV-2 infectivity should be considered in
weighing the risks and benefits of starting or restarting ADT.

While the risks of ADT likely preclude its use in other contexts, our
argument might be extended to patients with other, nonandrogen-
dependent cancers by considering how SARS-CoV-2 affects the
vasculature. If COVID-19 affects the vasculature directly through
infection, as well as indirectly through a hyperinflammatory state,
effective treatments should involve not only the inhibition of the virus
activity, but also the stabilization of the vasculature throughout the
body. Furthermore, with other coronaviruses, infection causes down-
regulation of the viral entry receptor, ACE2 (41), which can result in
increased VEGF signaling in the context of acute lung injury (42).
Thus, antagonizing VEGF, indirectly via ADT for androgen-
dependent tumors or directly using anti-VEGF/R agents, could
decrease blood vessel leakiness, mitigating some of the damage caused
by the virus-induced inflammation and improving perfusion in the
vessels. This could potentially decrease thrombosis and accumulation
of inflammatory cells in the lung and reduce hypoxemia by increasing
perfusion (43).

Although VEGF blockade has been associated with some throm-
boembolic complications (44), these can often be managed with
anticoagulation (42, 45–49). The relationship between VEGF inhibi-
tion and coagulation may require careful dose titration to find the
optimum balance of pro- and antithrombotic effects, similar to
optimizing the dose and schedule of anti-VEGF agents for cancer
treatment (50). Therefore, it is possible that inhibiting VEGF, either
directly or indirectly, can improve cancer therapy in androgen-inde-
pendent, as well as androgen-dependent tumors by normalizing the
tumor vessels, with the additional benefit of limiting the severity of
COVID-19. This concept is currently being tested in a number of
clinical trials using antiangiogenic therapy in patients with COVID-19
(NCT04275414, NCT04344782, NCT04305106, and NCT04511650).

To further leverage our toolbox developed for cancer research, we
recently repurposed a mathematical model for cancer to simulate

Translational Relevance

While vaccines are offering hope in preventingCOVID-19, there
remains an urgent need for rapidly deployable therapeutics for
patients with established infections. Moreover, the COVID-19
pandemic has once again highlighted the lack of effective therapies
for themost severe form of hypoxemic respiratory failure, the acute
respiratory distress syndrome (ARDS). ARDS in general, and in
COVID-19 in particular, is associated with vascular complications
and life-threatening coagulopathy.Wepropose that some therapies
currently being tested in clinical trials (androgen deprivation
therapy and immunotherapies) will have the additional benefit of
normalizing the vasculature and reducing thrombosis in patients
with COVID-19. Thus, these drugs may have dual roles, both in
modifying the course of disease, as well as preventing vascular
complications of COVID-19. Combinations of these drugs, which
have been extensively studied in the oncology space, could be
repurposed to ameliorate the tremendous morbidity and mortality
of COVID-19.
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various COVID-19 treatment strategies. The model predicts that
optimal clinical management of COVID-19 depends on the rapid
response of activated effector CD8þ T cells (51). In our model, early
control of the virus by adaptive immunity prevents the out-of-control,
self-fueling innate immune response that results in poor outcomes in
some patients (51). On the basis of this finding, we propose that
immune checkpoint blockers (ICB), which have revolutionized the
treatment of many types of cancer, can also be employed to improve
COVID-19 therapy. Indeed, it has been shown that TIM-3, a coin-
hibitory molecule present on T cells, is upregulated in the plasma of
patients with COVID-19 (52). Furthermore, there has been interest in
using ICBs in many chronic (e.g., human immunodeficiency virus and
Hepatitis B and C) and acute viral diseases (e.g., influenza; ref. 53). Our

simulations predict that ICBs, when given early in the disease course,
can act at multiple levels against COVID-19 progression. Specifically,
activation of CD8þ T cells can increase the killing of virus-infected
cells, which, in turn, decreases the production of proinflammatory
cytokines (e.g., IL6). This model suggests that having inflammation
under control, in turn, can reduce the accumulation of macrophages,
neutrophils, and other cells of the innate immune system and also
inhibit coagulation and blood vessel thrombosis. ICBs are also pre-
dicted to cause indirect antiviral effects by increasing production of
IFN, thus limiting viral replication.

Interestingly, recent studies show that the use of ICBs for cancer
therapy not only activates CD4þ and CD8þ T cells to elicit antitumor
responses, but can also indirectly normalize the tumor vasculature by

Figure 1.

Normalization of vasculature to limit thrombosis in COVID-19. Endothelial damage and vasculitis caused by viral infection, immune cell cytotoxic activity, and
elevated cytokine levels can expose basementmembrane and induce tissue factor and thrombosis. Sluggish blood flow, impaired ventilation, and hypoxemia can also
upregulate VEGF-A, which further increases vessel leakiness and access of plasma proteins and platelets to the subendothelial matrix. We propose that ADT, in
addition to affecting TMPRSS2-mediated viral entry into the cell, will help restore endothelial barrier function, thus limiting thrombosis. Furthermore, treatment with
anti-VEGF drugs and/or immune checkpoint blockers in the early stage of the disease can normalize vessels and limit viral damage to the endothelium, allowing
vascular repair and preventing thrombosis. NET, neutrophil extracellular trap; Teff cell, effector T cell; Th cell, helper T cell.
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increasing the production of IFNg , and thus improves tumor
blood vessel functionality (54–56). Therefore, similar to ADT and
direct anti-VEGF drugs, it is possible that ICBs could also normalize
the SARS-CoV-2–infected vessels. The timing of ICBs for treating
COVID-19 must be considered carefully, however, as it is now well
established that patients with severe COVID-19 benefit from immu-
nosuppression. If given too late, that is, after the innate immune
system is already ramping up, and the virus is not controlled by
adaptive immunity, ICBs could exacerbate the systemic inflammatory
response and worsen disease outcomes. This scenario is particularly
concerning, given that ICBs can cause life-threatening pneumonitis
in a small number of patients (57). In fact, initial reports suggested
that ICB use was associated with more severe COVID-19 disease (58),
raising concerns about immune hyperactivation. However, data
from larger cohorts have been more reassuring, suggesting that there
may be a complex interplay between ICB and COVID-19 disease
progression (59–63). These data raise the possibility that judicious use
of ICBs may be considered in some patients with COVID-19, as has
been proposed in several clinical trials (e.g., NCT04356508.)

Of course, the risk–benefit analysis for ICBs is complicated by the
possibility of immune-related adverse events, including myocarditis,
which in some cases can be life threatening (64). Furthermore, ICBs
can be associated with other rare significant immune-mediated com-
plications (65, 66). These risks vary depending on the choice of PD-1/
PD-L1 or CTLA-4 inhibitors and can be more severe with combined
therapy. Given that the median time of onset of grade >3 immune-
related adverse events is between 3 and 6months (65, 66), theremay be
a window where a short course of ICB may be less likely to cause
toxicity. Clearly, robust biomarkers for early identification of patients
who are likely to develop severe disease would be essential to guide ICB
therapy of patients with COVID-19.

ICBs could be combined with other therapeutics against
COVID-19, such as antiviral, anti-inflammatory, and antithrom-
botic drugs. Indeed, the combination of antiangiogenic agents and
ICBs has been shown to further improve vascular efficiency and
treatment outcomes in preclinical models of cancer (67, 68), and
the FDA has approved five such combinations in the past 2 years.
Given the commonalities between the tumor vasculature and the
blood vessels affected by SARS-CoV-2, leveraging the experience
of vascular normalization in cancer may provide novel therapeu-
tic strategies for COVID-19 (56, 69). Again, these approaches also

have the potential for significant side effects and toxicity and will
need to be tested in carefully designed clinical trials.

Tools that can identify patients likely to develop severe COVID-19,
or more specifically, endotypes of disease with prominent vasculo-
pathy, would help identify patients that may benefit from vascular
normalization and maximize the therapeutic ratio. These patients
could then be enrolled on trials of already FDA-approved drugs in
the ICB, ADT, and/or VEGF pathways. We anticipate that such a
collaborative effort between multiple different disciplines may yield
promising new treatments for this public health crisis by repurposing
drugs already approved for various malignancies. Moreover, the
knowledge gained from the study of COVID-19 coagulopathy may
point to therapies for other forms ofARDS, an ongoing health crisis for
which there exists almost no specific therapies.
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