Masting in *Fagus crenata* and its influence on the nitrogen content and dry mass of winter buds

QINGMIN HAN, 1,2 DAISUKE KABEYA, 3 ATSUHIRO IIO 4 and YOSHITAKA KAKUBARI 4

1 Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
2 Corresponding author (qhan@ffpri.affrc.go.jp)
3 Kiso Experimental Station, FFPRI, 5473-8 Kisofukushima, Nagano 387-0001, Japan
4 Faculty of Agriculture, University of Shizuoka, Ohyya 836, Shizuoka 422-8529, Japan

Received April 16, 2007; accepted February 11, 2008, published online June 2, 2008

Summary In *Fagus*, full-mast seeding years are invariably followed by at least one non-mast year. Both flower and leaf primordia develop during the summer within the same winter buds. Flower bud initiation occurs when the N content of developing seeds is increasing rapidly. We hypothesized that competition for nitrogen (N) between developing seeds and buds limits flower primordium formation in mast years and, hence, limits seed production in years following mast years. We tested this hypothesis in three *Fagus crenata* Blume forests at elevations of 550, 900 and 1500 m. Bud N concentration \(N_{\text{bud}} \), amount of N per bud \(N_{\text{bud}} \) and dry mass per bud (DM) were compared between a mast year (2005) and the following non-mast year (2006), and between winter buds containing both leaf and flower primordia \((B_{\text{BF}}) \), which were formed during the non-mast year, and winter buds containing leaf primordia only \((B_{\text{BL}}) \), which were formed in both mast and non-mast years. In addition, leaf numbers per shoot corresponding to the analyzed buds were counted, and the effect of masting on litter production was analyzed by quantifying the amounts of litter that fell in the years 2004 to 2007. The dry mass and N content of \(B_{\text{BF}} \) formed in 2006 by trees at both 550 and 1500 m were 2.1–3.4-fold higher than the corresponding amounts in \(B_{\text{BL}} \), although the numbers of leaves per current-year shoot in 2007 that developed from the two bud types in the same individuals did not differ significantly. These results indicate that more N and carbohydrate are expended in producing \(B_{\text{BF}} \) than in producing \(B_{\text{BL}} \). The amount of litter from reproductive organs produced in the mast year was similar to the amount of leaf litter at 900 and 1500 m, but three times as much at 550 m. Leaf numbers per shoot were significantly lower at all elevations in the mast year than in the non-mast years (and the amount of leaf litter at 550 and 1500 m tended to be lower in the mast year than in the non-mast years). In conclusion, preferential allocation of resources to seeds in the mast year reduced the availability of resources for flower primordium formation, and this may have accounted for the poor seed production in the following non-mast year.

Keywords: bud mass, elevation, flower bud, Japanese beech, leaf bud, litter, reproductive shoot.

Introduction

Among temperate tree species, including members of the genus *Fagus*, annual shoot growth is predetermined in the winter bud (Eschrich et al. 1989, Kimura et al. 1998, Uemura et al. 2000). There have been many studies of the effects of winter bud morphology, anatomy, morphogenesis and organogenesis in relation to shoot growth, branching architecture, tree size, and ecological niche (MacDonald and Mothersill 1983, Nitta and Ohsawa 1998, Costes 2003). However, less attention has been paid to the relationship between bud chemical composition and its relationship with shoot development, including flower and seed production.

Mast seeding or masting, i.e., synchronous seeding within plant populations, with high inter-year variability, is characteristic of many species, including tropical trees, temperate forest trees, and temperate herbs (Kelly 1994, Kelly et al. 1998, Uemura et al. 2000). There have been many studies of the effects of winter bud morphology, anatomy, morphogenesis and organogenesis in relation to shoot growth, branching architecture, tree size, and ecological niche (MacDonald and Mothersill 1983, Nitta and Ohsawa 1998, Costes 2003). However, less attention has been paid to the relationship between bud chemical composition and its relationship with shoot development, including flower and seed production.

Mast seeding or masting, i.e., synchronous seeding within plant populations, with high inter-year variability, is characteristic of many species, including tropical trees, temperate forest trees, and temperate herbs (Kelly 1994, Kelly et al. 1998, Uemura et al. 2000). There have been many studies of the effects of winter bud morphology, anatomy, morphogenesis and organogenesis in relation to shoot growth, branching architecture, tree size, and ecological niche (MacDonald and Mothersill 1983, Nitta and Ohsawa 1998, Costes 2003). However, less attention has been paid to the relationship between bud chemical composition and its relationship with shoot development, including flower and seed production.

Mast seeding or masting, i.e., synchronous seeding within plant populations, with high inter-year variability, is characteristic of many species, including tropical trees, temperate forest trees, and temperate herbs (Kelly 1994, Kelly et al. 1998, Uemura et al. 2000). There have been many studies of the effects of winter bud morphology, anatomy, morphogenesis and organogenesis in relation to shoot growth, branching architecture, tree size, and ecological niche (MacDonald and Mothersill 1983, Nitta and Ohsawa 1998, Costes 2003). However, less attention has been paid to the relationship between bud chemical composition and its relationship with shoot development, including flower and seed production.
in the photosynthetic machinery (Evans 1989) and the limited amounts of available N in soils of most regions (Niinemets et al. 2001, Han et al. 2003). In addition, early season leaf growth after bud burst is more dependent on N supplied by remobilization from internal stores than on N uptake by roots (Grassi et al. 2002, Frak et al. 2006, Millard et al. 2006). Furthermore, compared with small juvenile trees, large mature trees rely on the remobilization of stored N for growth each spring more than on N uptake by roots (Millard 1996).

Large proportions of the N in trees can be allocated to reproductive organs in masting events. In *Fagus crenata* Blume, for instance, the N contents of reproductive organs account for 22–57% of total N in annual litterfall in mast years (Kawada and Maruyama 1986, Yasumura et al. 2006). Therefore, masting events may reduce the internal storage pool of N, and thus the amount of N that can be remobilized. Periodic fertilization of *F. crenata* forests has been shown to reduce the interval of masting events and to diminish the reduction in diameter growth in mast years (Hashizume 1991). Large individuals have a shorter mast interval than small individuals (Takeda 1992), and the former have a larger potential internal storage pools than the latter. These results suggest that masting can affect internal N dynamics in trees in the following year. If so, the nitrogen status of winter buds may provide a useful and easily measured early index of masting events. Yasaka et al. (2001) tried to predict masting events of *F. crenata* based on the numbers of flower buds in winter buds. To our knowledge, however, there have been no studies on the relationships between masting and N in winter buds.

In both *F. sylvatica* and *F. crenata*, observations spanning two centuries and 12 years, respectively, show that little or no seed production occurs following a full-mast seeding year, although the intervals between full masting events varied from 2 to 20 years (Hilton and Packham 2003, Suzuki et al. 2005). The flower primordia of *F. crenata* trees differentiate in the same winter buds as the leaf primordia beginning in June and July when, in mast years, the protein contents of concurrently developing seeds are increasing rapidly (Hashizume and Fukutomi 1978, Hashizume 1983). We, therefore, hypothesized that the effect of full masting on bud N is the factor responsible for poor masting the following year. We tested this hypothesis in three *F. crenata* forests at elevations of 550, 900 and 1500 m by (1) examining the effects of masting on the N concentration (*N*_{con}), amount of N (*N*_{nat}) and dry mass (DM) in individual buds, (2) analyzing the differences in *N*_{con}, *N*_{nat} and DM between leaf buds (*B*_L) and flower buds (*B*_F), (3) examining the difference in leaf numbers per reproductive and non-reproductive shoots that formed from the corresponding *B*_L and *B*_F in the previous year and (4) analyzing the effect of masting on litter production.

Materials and methods

Study site

The study area was located in the Naeba Mountains in southern Niigata Prefecture, Japan (36°51′ N, 138°46′ E), where *F. crenata* forests are found over an altitudinal range from 550 to 1500 m. Eight permanent plots along the altitudinal gradient were established in 1970 for long-term ecological monitoring within the framework of the International Biological Program (Kakubari 1977). The bedrock is predominantly andesite and basalt, on which moderately water-retentive brown forest soil has formed. During the period 1979–2006, mean annual precipitation and temperature at a nearby meteorological station (36°56′ N, 138°49′ E, 340 m a.s.l.; Japanese Bureau of Meteorology) were 2225 mm and 11.5 °C, respectively. Around 3–4 m of snow accumulates during the winter. Three of the eight permanent plots with elevations of 550, 900 and 1500 m were chosen for study. General characteristics of the selected stands and trees are shown in Table 1. Further details about the sites are presented in Kakubari (1977) and Kubota et al. (2005).

Bud sampling and nitrogen analysis

At all elevations in the Naeba Mountains, *F. crenata* fully fruited in 2005, which was followed by a non-fruiting year in 2006. Three to five trees that fully fruited around a scaffolding tower in each plot were selected for study. Samples were collected from the same individuals at 550 and 1500 m in both years. At 900 m, however, the sampled individuals differed between the two years because the tower collapsed under heavy snow and the boughs of some individuals selected in 2005 were broken. Three of the four selected individuals at 550 m and all of the selected trees at 1500 m produced flower buds in 2006 and fruited in 2007, but all of the selected individuals at 900 m formed only leaf buds in 2006. At elevations of both 900 and 1500 m, an additional individual that did not fruit in 2005 was selected, as a reference, but the data acquired from these additional trees were not pooled with the data from the fruiting trees in the following statistical analyses.

Two branches were sampled from each tree in November after leaf fall. In each case, the branching system representing the previous 5 years of growth was retained, and all of the buds were used for analysis.

Table 1. General information on the plots and selected individuals of *Fagus crenata* at three elevations in the Naeba Mountains in 2005.

<table>
<thead>
<tr>
<th>Elevation (m)</th>
<th>Slope aspect (°)</th>
<th>Age (years)</th>
<th>Density (trees ha⁻¹)</th>
<th>Stand leaf area index</th>
<th>Tree leaf area index</th>
<th>Tree height (m)</th>
<th>Diameter at breast height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550</td>
<td>0 N</td>
<td>150–200</td>
<td>238</td>
<td>5.1</td>
<td>4.0</td>
<td>26.7–36.7</td>
<td>36.7–77.6</td>
</tr>
<tr>
<td>900</td>
<td>13 NE</td>
<td>83–84</td>
<td>1190</td>
<td>4.9</td>
<td>3.6</td>
<td>17.2–22.8</td>
<td>20.5–38.1</td>
</tr>
<tr>
<td>1500</td>
<td>8 NE</td>
<td>190–260</td>
<td>248</td>
<td>5.5</td>
<td>2.7</td>
<td>19.2–21.6</td>
<td>34.1–62.6</td>
</tr>
</tbody>
</table>
on the branching system were collected. Branch order was not taken into account, but because all branches were located in the upper parts of the tree crowns, the selected branching systems were assumed to be comparable in the environmental conditions (especially light regime) to which they had been exposed.

All buds were dried to constant mass at 70 °C. Bud N concentration was determined by gas chromatography (GC-8A, Shimadzu, Kyoto, Japan) after combustion with circulating O2 from an NC analyzer (Sumigraph NC-900, SCAS, Osaka, Japan). Six to twelve B_L and B_F from each sampled branch were used for N analysis.

Leaf number per shoot

In 2007, we counted leaf numbers per current-year shoot sampled from eight branches of each selected tree at all elevations, based on the same 5-year-old branching system mentioned above. Leaf numbers formed on 1- to 3-year-old shoots were counted from the petiole scars.

Litter-trap samples

Litter from 10 litter-traps placed at each elevation was collected monthly. The litter traps had a mouth of 0.25 m² and were fixed about 1 m above the ground. Litter that fell from species other than F. crenata was discarded, and the F. crenata litter was sorted into fractions of leaves, woody organs (bark, bud scales and branches) and reproductive organs (flowers, husks and nuts), and dried to constant mass at 70 °C.

Statistical analyses

Effects of all independent variables (i.e., bud type, masting year and study site) on all measured potentially dependent variables were evaluated by fitting generalized linear mixed models (GLMMs) by restricted maximum likelihood. The GLMMs provide a flexible way to model traits that do not satisfy the assumptions of a standard linear model, allowing fixed and random factors to be distinguished in the model (Verbeke and Molenberghs 1997). Their use in this case is justified by the normal or Poisson distribution of dependent variables under consideration and the inclusion of random sources of variation (i.e., individuals and branches). First, \(N_{\text{con}}, N_{\text{bud}} \) and DM in single buds of trees that fruited in 2005 were treated as dependent variables. The fixed effects of bud type (\(B_L \) in 2005, \(B_I \) in 2006 and \(B_F \) in 2006) and study site (Table 2) on those parameters were evaluated by fitting generalized linear mixed models (GLMMs) by restricted maximum likelihood. The variances derived from individuals, branches within individuals, and twig age classes within branches were included in the model as random factors. Data on the branching system were collected.
ined whether masting affected leaf number per shoot by counting petiole scars (on both reproductive and non-reproductive shoots) of individuals that fruited for each year from 2004 to 2007. We found that numbers of leaves per shoot were significantly lower in the masting year than in the non-masting years (Figure 5, Table 4). In addition, the number of leaves per shoot in the non-fruited trees examined at both 900 and 1500 m were higher than in the trees that fruited in 2005.

Effects of masting on litter fall
Litter from reproductive organs accounted for 72, 53 and 43% of the total amount of *F. crenata* litter that fell in 2005 at 550, 900 and 1500 m, respectively (Figure 6). Compared with the mean value for annual leaf litter per tree over the four monitored years, the amount of leaf litter that fell in the masting

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>N_{bud}</th>
<th>N_{con}</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Bud type</td>
<td>2</td>
<td>8.53</td>
<td>67.97</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Study site</td>
<td>2</td>
<td>10.3</td>
<td>0.23</td>
<td>0.798</td>
</tr>
<tr>
<td>Interaction</td>
<td>3</td>
<td>9.0</td>
<td>3.43</td>
<td>0.066</td>
</tr>
<tr>
<td>Individual</td>
<td></td>
<td>6.59E–03</td>
<td>7.89E–03</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td>4.01E–03</td>
<td>1.27E–03</td>
<td></td>
</tr>
<tr>
<td>Branch</td>
<td>0</td>
<td>2.50E–04</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>1.95E–02</td>
<td>1.07E–02</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Summary statistics for the Type III test of fixed effects and the estimated random effects in the generalized linear mixed model, with dependent variables of winter bud nitrogen amount per bud (N_{bud}), nitrogen concentration (N_{con}) and bud dry mass (DM) in *Fagus crenata* between B_L buds in the mast year 2005, B_L and B_F buds in the following non-mast year 2006, at elevations of 550, 900 and 1500 m. The degrees of freedom of the denominator (den df) were calculated by general Satterthwaite approximation.
The year of 2005 was about 30% lower at 550 m, and there were lesser reductions at elevations of 900 and 1500 m. Leaf litter was significantly higher in 2007 than in 2005 at all elevations.

Figure 3. Relationships between winter bud dry mass (DM) and (a) nitrogen concentration (N_{con}) and (b) nitrogen content per bud (N_{bud}) when individual-averaged data from all elevations were pooled: $N_{\text{bud}} = 0.0108\text{DM}$, $r^2 = 0.95$, $P < 0.001$ (open symbols and the broken line indicate data from the mast year, 2005); $N_{\text{bud}} = 0.0134\text{DM}$, $r^2 = 0.95$, $P < 0.001$ (closed symbols and the solid line indicate data from the non-mast year, 2006). Values shown are means ± SE. Circles, squares and triangles represent individuals at elevations of 550, 900 and 1500 m, respectively. Encircled symbols represent flower buds.

Figure 4. Comparison of mean numbers of leaves per current-year fruit-bearing shoots (F) and non-fruiting shoots (NF) developed from winter buds produced in 2006 sampled from the upper crowns of trees that fruited at elevations of 550 and 1500 m. Values shown are means ± SE estimated from individual-averaged data of three trees that fruited in both 2005 and 2007. Results of the statistical analysis of the factors affecting this parameter are shown in Table 3.

Figure 5. Interannual variations in numbers of leaves per current-year shoots sampled from 2004 to 2007 at elevations of (a) 550, (b) 900 and (c) 1500 m from three to five trees that fruited in 2005 (closed symbols). Open symbols represent corresponding values obtained from single individuals that did not fruit in 2005 and/or 2007. Arrows represent the years when fruiting occurred at the respective elevations. Results of the statistical analysis of the factors affecting this parameter are shown in Table 4.

Table 3. Summary statistics for the Type III test of fixed effects and the estimated random effects in the generalized linear mixed model for leaf numbers in current-year shoots in 2007 within the three Fagus crenata trees that fruited in both 2005 and 2007 at elevations of 550 and 1500 m. The degrees of freedom of the denominator (den df) were calculated by general Satterthwaite approximation.

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>den df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproduction</td>
<td>1</td>
<td>64.63</td>
<td>1.78</td>
<td>0.187</td>
</tr>
<tr>
<td>Study site</td>
<td>1</td>
<td>4.17</td>
<td>6.05</td>
<td>0.067</td>
</tr>
<tr>
<td>Interaction</td>
<td>1</td>
<td>64.63</td>
<td>0.38</td>
<td>0.540</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td>1.62E+02</td>
<td>1.46E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 continued...
Table 4. Summary statistics for the Type III test of fixed effects and the estimated random effects in the generalized linear mixed model for leaf numbers in current-year shoots during 2004 and 2007 in Fagus crenata trees sampled at elevations of 550, 900 and 1500 m (n = 3–5). The degrees of freedom of the denominator (den df) were calculated by general Satterthwaite approximation.

<table>
<thead>
<tr>
<th>Effect</th>
<th>df</th>
<th>den df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masting</td>
<td>1</td>
<td>43.48</td>
<td>11.28</td>
<td>0.002</td>
</tr>
<tr>
<td>Study site</td>
<td>2</td>
<td>12.88</td>
<td>1.98</td>
<td>0.178</td>
</tr>
<tr>
<td>Interaction</td>
<td>2</td>
<td>43.12</td>
<td>0.04</td>
<td>0.959</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td>2.55E–03</td>
<td>2.55E–03</td>
<td>1.16E–02</td>
<td>0.294</td>
</tr>
<tr>
<td>Branch</td>
<td>1.42E–03</td>
<td>1.42E–03</td>
<td>1.09E–02</td>
<td>0.338</td>
</tr>
<tr>
<td>Twig age</td>
<td>1.16E–02</td>
<td>1.16E–02</td>
<td>0.12E–02</td>
<td>0.908</td>
</tr>
<tr>
<td>Residual</td>
<td>1.56E+00</td>
<td>1.56E+00</td>
<td>1.28E+00</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Discussion

The numbers of leaves per shoot did not differ significantly between reproductive and non-reproductive shoots within individuals that fruited in 2007 at either 550 or 1500 m (Figure 4), in agreement with the results of an earlier study of Styrax obassia Sieb. et Zucc. (Miyazaki et al. 2002); however, both N_leaf and DM of the winter buds from which they originated were higher in B_F than in B_L in 2006 (Figures 1a and 1c). In addition, the amount of N in litter from reproductive organs accounted for 47–67% of the total N content of the litter in 2005 (data not shown); values that were close to, or exceeded, maximum values (22–57%) previously reported for F. crenata (Kawada and Maruyama 1986, Yasumura et al. 2006). These results support the conclusion that the N contents of reproductive organs are substantial in masting years. Flower primordia of F. crenata start to differentiate in winter buds in June and July, months in which protein contents of developing seeds (N allocation) rapidly increase in a mast year (Hashizume and Fukutomi 1978, Hashizume 1983). Both seeds and winter buds have the same N sources (N absorption by roots or remobilization of internally stored N, or both), and assuming that N absorption by roots did not differ significantly between 2005 and 2006, these results imply that a large proportion of the available N was supplied to seeds in the masting year, resulting in a shortage in the supply of N to buds. The limited N supply to buds (in conjunction with the larger expenditure of N required to develop a B_F than a B_L) may, in turn, have impeded the differentiation of flower primordia in winter buds in the masting year (Figures 1a and 3). These speculations are consistent with the N limitation hypothesis and may explain why masting years are always followed by non-masting years in both European beech (Hilton and Packham 2003) and Japanese beech (Suzuki et al. 2005).

Leaf numbers per shoot were significantly lower in the full masting year than in the other years (Figure 5, Table 4), in accordance with the annual variations in leaf litter (Figure 6). However, the buds from which the leaves originated developed in the preceding non-masting year (2004), in which there was no competition from seeds for N and carbohydrate resources during flower differentiation. Therefore, it is likely that the observed reduction in leaf number per shoot may be caused by the large N expenditure for B_F. Decreases in total bud numbers per individual when B_F developed, or the possibility that smaller leaves with less DM were produced in the reproductive shoots, as found in S. obassia (Miyazaki et al. 2002), or both, may also have contributed to the reductions in annual leaf litter. The extent to which leaf numbers per shoot and leaf litter decrease in a mast year may be related to the total numbers of B_F per individual, based on the differences in the ratio of litter originating from reproductive organs and leaves between different sites, given that the effects of study sites on leaf number per shoot were not significant (Figures 5 and 6, Tables 3 and 4).

Trees at 900 m did not fruit in 2007, unlike the trees at 550 and 1500 m, even though the amount of seeds produced per
unit leaf mass was much lower at 900 m than at 550 m, and the
effects of study site on X_{CO2}, N_{bud} and DM were not significant
(Figure 6, Tables 2– 4). Although our data provide no definitive
exploration for these alitudinal differences, the observed
differences may be related to: (1) non-synchronized reproductive
behavior among the individuals at 900 m (Healy et al. 1999); (2) differences in tree size (for example, Takeda (1992)
found that large trees tend to fruit more frequently than smaller
trees; (c) differences in internal storage pool size
reflecting differences in tree sizes; and (4) differences in
secondary metabolites (Selås et al. 2001).

In conclusion, masting reduced dry mass and amount of ni-
trogen in winter buds of Fagus crenata, a species that produces
buds with predetermined numbers of leaves and shoots. Prefer-
ential allocation of resources to seeds in the mast year will
have reduced the availability of resources for flower primor-
dium formation, and may have accounted for the poor seed
production in the following non-masting year.

Acknowledgments

The authors thank the students of the Silvicultural Laboratory, Shizu-
oka University, for assistance in litter collection and analysis. We
thank Dr. Peter Millard for valuable comments on the earlier version
of this paper. The statistical analyses were performed with the assist-
ance of the Computer Center for Agriculture, Forestry and Fish-
eries Research, MAFF, Japan. This research was supported by a
Grant-in-Aid for Scientific Research from the Japan Society for the
Promotion of Science and a Global Environment Research Fund grant
from the Japanese Ministry of the Environment.

References

Costes, E. 2003. Winter bud content according to position in 3-year-
old branching systems of ‘Granny Smith’ apple. Ann. Bot. 92:
581–588.

Eschrich, W., R. Burchardt and S. Essiamah. 1989. The induction of
sun and shade leaves of the European beech (Fagus sylvatica L.):

Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of

Nitrogen availability, local light regime and leaf rank effects on the
amount and sources of N allocated within the foliage of young
walnut (Juglans nigra × regia) trees. Tree Physiol. 26:43–49.

2002. Measurement of xylem sap amino acid concentrations in
conjunction with whole tree transpiration estimates spring N
remobilization by cherry (Prunus avium L.) trees. Plant Cell Envi-
ron. 25:1689–1699.

Han, Q., T. Kawasaki, S. Katahata, Y. Mukai and Y. Chiba. 2003. Hor-
izontal and vertical variations in photosynthetic capacity in a
Pinus densiflora crown in relation to leaf nitrogen allocation and accla-
mation to irradiance. Tree Physiol. 23:851–857.

Hashizume, H. 1983. Initiation and development of flower buds in

Hashizume, H. 1991. Seeds ecology of Fagus crenata. In Natural En-
vironment and Its Conservation on Buna (Fagus crenata) Forest.
Eds, H. Murai, T. Yamatani, H. Kataoka and M. Yui. Soft Science,
Tokyo, pp 53–64.

of fruits and seeds in Fagus crenata. J. Jpn. For. Soc. 60:163–168.

common beech (Fagus sylvatica L.) in northern Europe over two

Hoch, G. 2005. Fruit-bearing branchlets are carbon autonomous in
mature broad-leaved temperate forest trees. Plant Cell Environ.

compounds in temperate forest trees. Plant Cell Environ. 26:
1067–1081.

Kakubari, Y. 1977. Beech forests in the Naeba Mountains: distribu-
tion of primary productivity along the altitudinal gradient. In Pri-
University of Tokyo Press, Tokyo, pp 201–212.

Kawada, H. and K. Maruyama. 1986. Effects of seed bearing of a nat-
ural beech (Fagus Crenata Blume) forest on amount of litter fall

1998. Effects of current-year and previous-year PPFDs on shoot
gross morphology and leaf properties in Fagus japonica. Tree
Physiol. 18:459–466.

Kubota, M., J. Tenhunen, R. Zimmermann, M. Schmidt, S. Adiku
and Y. Kakubari. 2005. Influences of environmental factors on the
radial profile of sap flux density in Fagus crenata growing at differ-
et elevations in the Naeba Mountains, Japan. Tree Physiol. 25:
545–556.

MacDonald, A.D. and D.H. Mothersill. 1983. Shoot development in
61:3049–3065.

Matthews, J.D. 1955. The influence of weather on the frequency of

Millard, P. 1996. Ecophysiology of the internal cycling of nitrogen for

2006. Translocation of nitrogen in the xylem of field-grown cherry
and poplar trees during remobilization. Tree Physiol. 26:527–536.

Miyazaki, Y., T. Hiura, E. Kato and R. Funada. 2002. Allocation of re-
sources to reproduction in Fagus crenata Blume forest on amount of

Niihems, Ü., D.S. Ellsworth, A. Lukjanova and M. Tobias. 2001. Site
fertility and the morphological and photosynthetic acclimation of

Nitta, I. and M. Ohsawa. 1998. Bud structure and shoot architecture of
canopy and understory evergreen broad-leaved trees at their nor-

Suzuki, W., K. Osumi and T. Masaki. 2005. Mast seeding and its spa-
tial scale in Fagus crenata in northern Japan. For. Ecol. Manage.

TREE PHYSIOLOGY ONLINE at http://heronpublishing.com